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ABSTRACT

Internet of Things (IoT) refers to the infrastructures that connect smart devices to the Internet, operating
autonomously. This connectivity makes it possible to harvest vast quantities of data, creating new opportunities for
the emergence of unprecedented knowledge. To ensure IoT securit, various approaches have been implemented,
such as authentication, encoding, as well as devices to guarantee data integrity and availability. Among these
approaches, Intrusion Detection Systems (IDS) is an actual security solution, whose performance can be enhanced
by integrating various algorithms, including Machine Learning (ML) and Deep Learning (DL), enabling proactive
and accurate detection of threats. This study proposes to optimize the performance of network IDS using an
ensemble learning method based on a voting classification algorithm. By combining the strengths of three powerful
algorithms, Random Forest (RF), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM) to detect both
normal behavior and different categories of attack. Our analysis focuses primarily on the NSL-KDD dataset, while
also integrating the recent Edge-IIoT dataset, tailored to industrial IoT environments. Experimental results show
significant enhancements on the Edge-IIoT and NSL-KDD datasets, reaching accuracy levels between 72% to 99%,
with precision between 87% and 99%, while recall values and F1-scores are also between 72% and 99%, for both
normal and attack detection. Despite the promising results of this study, it suffers from certain limitations, notably
the use of specific datasets and the lack of evaluations in a variety of environments. Future work could include
applying this model to various datasets and evaluating more advanced ensemble strategies, with the aim of further
enhancing the effectiveness of IDS.
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1 Introduction

The Internet of Things (IoT) is seen as an indispensable pillar in sectors like smart cities,
transport, and healthcare [1]. However, the evolution of the IoT and mobile Internet has highlighted
the limits of the centralized cloud, particularly in terms of latency and efficiency [2]. To remedy
this, edge computing technologies such as fog computing and cloudlets have been introduced to
optimize latency and network performance [3]. Security means preserving the integrity, availability,
and confidentiality of data, through strategies such as access control, information encryption, and
strict system configuration [4]. However, in the face of increasingly complex environments and the
challenges they pose, these approaches have a number of limitations. This study concentrates on
the analysis of network intrusion detection systems (NIDS), abusing innovative artificial intelligence
techniques such as ML and DL algorithms, to detect abnormal or suspicious behavior, and aims to
improve the performance of NIDS by adopting an ensemble learning method, specifically the voting
classifier algorithm. This approach combines the strengths of three powerful algorithms, Random
Forest (RF), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM) to identify normal
activities and various types of attack within the NSL-KDD dataset, while also applying to a recent
dataset, Edge-IIoT, adapted to industrial IoT environments. Two contributions were validated:

• Firstly, we employ the Ensemble Learning (EL) method to maximize and enhance the proposed
model’s performance, while minimizing the learning time to maximize the system’s overall
efficiency.

• Secondly, to develop effective detection systems, a classification model is designed following
three main steps: data preprocessing, training and building the model, and evaluating the model.

The rest of this paper is organized as following. The Section 2 provides background and review
some related work on IDS approaches incorporating ML, DL and EL algorithms. The Section 3
presents and elaborates the proposed new framework. The Section 4 highlights the experimental
evaluation results obtained with the model. The paper then concludes with suggestions for future
research directions.

2 Background and Related works

This section presents general overviews and a critique of selected recent work on IDSs that
integrate both ML and DL algorithms with the aim of improving the security of the IoT.

2.1 Background

Mobile Edge Computing or Fog Computing, however, offers the most auspicious solution for
interoperability among various heterogeneous devices. Edge networks and Fog devices provide a larger
scalability and flexibility. Furthermore, they are practical and easy to improve upon [3]. Various
researchers have suggested different architectures for the IoT, the three layers represent the basic
architecture most commonly used in IoT. However, it is still inadequate for emerging IoT applications
[4]. The five-layer architecture shown in Fig. 1, is a conceptual structure that splits the IoT system into
five separate functional layers to facilitate the design, deployment, and management of IoT systems.
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Figure 1: Five layers IoT architectures

This architecture includes the perception layer, which encompasses the end devices and digital
applications, such as actuators, sensors, machines and other equipment, responsible for collecting and
analyzing data. Here, raw data are acquired before being transmitted to the subsequent layer for pre-
treatment. Next, the network layer, or transport layer, ensures data transmission between the various
layers of the IoT architecture. This layer ensures connectivity between network nodes, using various
wireless communication technologies, such as cellular networks, Wi-Fi and Bluetooth. The processing
layer, located at the intermediate level, has the role of processing, storing and analyzing data from
the transport layer [4]. It can also run basic analysis algorithms to extract relevant information from
the raw data. The application layer, or Graphical User Interface (GUI) layer, represents the element
with which the user interacts. It uses the data processed by the previous levels to make decisions,
trigger actions, provide information to users and generate reports. The business layer converts data
into actionable information and oversees IoT services, including security, device management, identity
management, data and policy management. It ensures that data processing is carried out securely, in
line with the policies established by the organization or IoT service provider.

Therefore, security is primarily about ensuring data integrity, availability, and confidentiality
through various approaches, including authorization, secure storing of data, auditing, managing
systems, and setting up configurations [5]. However, system complexity and other challenges make
the application of these methods difficult and give rise to numerous problems. To enhance the security
of IoT networks, IDS have been developed.

Our research focuses on NIDS, which are placed at the edge of the network infrastructure and
analyze a real-time copy of the traffic. It is essential to improve these NIDS by integrating advanced
artificial intelligence technologies, such as ML and DL. Identifying suspicious or abnormal activities
is crucial for ensuring that IoT environments are secure and protected against a variety of attacks,
including Keylogging Denial of Service (DoS), Distributed Denial of Service (DDoS) and Service
Scanning. To enhance IDS performance, we have combined deep learning, ML and EL approaches.
However, despite these advances, several challenges remain, notably real-time detection, unbalanced
classes, high-dimensionality, optimization of massive data volumes and temporal performance con-
straints [6].

2.2 Related Works

In 2018, Benaddi et al. [7] have developed an approach called Principal Component Analysis-
fuzzy (PCA-fuzzy) clustering-KNN, which integrates principal component analysis (PCA) and fuzzy
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clustering with KNN-based feature selection techniques. This method was implemented on the NSL-
KDD dataset to identify DoS, Probe, U2R and R2L attacks. At the same time, Resende et al. [8]
have conducted an in-depth study of key concepts related to IDS, attack types, modeling, frequently
used approaches and classifications. Their study focused on approaches based on RF, taking into
account the specificities of these models. Fei et al. [9] analyze ML techniques applied to data flow
analysis in cyber-physical systems, addressing several perspectives, including advice on integrating ML
methods into Cloud and Fog architectures. In addition, Meidan et al. [10] introduce an innovative
anomaly detection approach for the IoT, called N-BaIoT. This approach captures snapshots of
network behavior and uses deep autoencoders to detect anomalies in network traffic generated by
compromised IoT devices.

In 2019, Zeng et al. [11] provided a trivial DL-based scheme to classify encapsulated traffic and
detect intrusions. In addition, Guezzaz et al. [12] introduced an IDS framework for monitoring net-
work traffic, based on Pcapsocks and a traffic classification scheme based on MLP. This approach was
used to detect and classify occurrences as either normal or unusual. In addition, Chaabouni et al. [13]
explored ML algorithms used in NIDSs specifically designed for IoT policies, while highlighting the
particular challenges these NIDSs face in IoT positions.

In 2020, Chaabouni et al. [14] have developed a ML-based IDS, dubbed OneM2M, to ensure
IoT security. Test results reveal a detection rate of around 93.80%, a precision of 92.95%, FPR
of 1.53%, an accuracy (ACC) of 92.32%, and a CPU learning time of 9280 ms. Simultaneously,
Tang et al. [15] have designed a real-time detection method for SQL injection attacks in HTTP
traffic. Their method is supported by the use of different ANN models, such as long-term memory
networks (LSTM) and multilayer perceptrons (MLP). At the same time, Wazirali et al. [16] suggested a
method for strengthening an IDS by adjusting KNN hyperparameters using five-fold cross-validation.
Hussain et al. [17] have extended the NIDS concept by addressing several security issues in the IoT.
Their study evaluates the application of ML and DL techniques to solve problems. In addition,
Thakker et al. [18] examined the various IDS datasets used for evaluating intrusion detection models.
Their study includes an overview of ML and DL techniques applied to IDS, as well as an analysis
of the CIC-IDS-2017 and CSE-CIC-IDS-2018 datasets. They also explored current advances in IDS
datasets, which can serve as a reference for different research communities to use new IDS datasets to
develop effective ML- and DL-based intrusion detection systems.

In 2021, Gu et al. [19] have developed an intrusion detection system based on an SVM model,
incorporating a NB feature transformation applied to the original data. This approach generates high-
quality data, underlining the crucial importance of data quality in optimizing the performance of IDS.
The model demonstrates exceptional accuracy on several datasets, reaching 99.35% on NSL-KDD,
98.58% on KYOTO 2006+, 98.92% on CICIDS 2017, and 93.75% on UNSW-NB15. Concurrently,
Jin et al. [20] have exploited Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGB)
and LightGBM techniques to enhance the performance of an IDS featuring a CNN, suitable for binary
and multi-class clustering tasks. Experimental outcomes demonstrate that the it guarantees a minimum
detection rate of 99.7%, attesting to its remarkable efficiency. Concomitantly, Guezzaz et al. [21]
designed a decision tree (DT)-based NIDS model based on the CICIDS 2017 and NSL-KDD datasets.
They then compared the performance of their model with that of other approaches using the same
datasets. This proposal achieved an average accuracy of 98.8% on CICIDS 2017 and 99.42% on
NSL-KDD. Simultaneously, Debicha et al. [22] studied the impact of adversarial attacks on intrusion
detection based on deep learning. In addition, by evaluating adversarial training efficiency as a defense
strategy, they showed that adversarial examples, when sufficiently distorted, can mislead the detector.
However, this approach enhances the robustness of intrusion detection through the integration of
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adversarial training. Furthermore, Peterson et al. [23] offer a detailed analysis of one of the most recent
datasets, Bot-IoT, with around 73 million instances (Big Data). Their aim is to provide researchers
with an in-depth understanding of Bot-IoT, outlining its key features and highlighting potential
challenges to consider. In addition, they looked at data cleansing procedures, followed by an overview
of applications for this dataset in published research. Shafiq et al. [24] have taken up the challenge of
efficient feature selection to accurately detect malicious traffic in IoT networks. Their solution, named
CorrAUC, is based on an innovative wrapper method for accurately sorting and selecting features
relevant to the chosen ML, employing the area under the curve (AUC) as a performance measure.
They subsequently incorporated TOPSIS and Shannon entropy in a bidirectional framework for
validating the chosen patterns, with the aim of identifying the malicious content in IoT networks. This
approach was experienced on the Bot-IoT database with four different machine learning algorithms.
Experimental results revealed average performances in excess of 96%. Leevy et al. [25] presented a
simplified method for Bot-IoT, reducing the number of features used to just 3 of the 29 available.
They opted for a simple learning algorithm, such as a decision tree classifier, to ensure accurate
classification. The results show that the predictive models achieve mean scores of over 0.99 for the
area under the receiver operating characteristic curve (AUC ROC), as well as for the area under the
recall and precision curve (AUPRC).

In 2022, Mohy-eddine et al. [26] have employed the wustl-iiot-2021 and BoT-IoT datasets for
expanding IDS by using EL, specifically for IoT edge computing. Their methodology incorporates the
application of Pearson correlation for feature selection and the use of isolation forest for outlier elim-
ination. Experimental results revealed that this model performed remarkably well, with success rates
(ACC) of 99.99% and 99.12%, AUC scores of 92.48% and 99.3%, and Matthew correlation coefficients
(MCC) of 92.17% and 93.96% on the BoT-IoT and wustl-iiot-2021 datasets. Besides, Yang et al. [27]
carried out an extensive literature review, studying 119 major papers in the field of anomaly-based
intrusion detection. Their research covered various aspects, including data preprocessing, evaluation
criteria, attack detection techniques, and other key elements. Furthermore, Sengan et al. [28] have
proposed DAR-ML, an innovative solution for detecting DoS attacks in healthcare data. The results
obtained show that this approach achieves 98.19% accuracy, ensuring high reliability with a remarkably
low false alarm rate. At the same time, Liu et al. [29] developed an intrusion detection system to solve
the challenges encountered in WSNs by combining the KNN algorithm and arithmetic optimization
(AOA). This system, evaluated on the WSN-DS dataset, achieved 99% accuracy. The application of
the PL-AOA algorithm for the detection of DoS attacks showed a significant improvement of 10%
over the use of the KNN algorithm alone. Asif et al. [30] introduced the MR-IMID model, based
on MapReduce, offering reliable management of large datasets using basic hardware infrastructures.
the results show an accuracy of 97.7% in the learning phase and 95.7% in the validation phase.
Simultaneously, Fu et al. [31] have developed a traffic IDS using the NSL-KDD dataset. Their
method combines an attention mechanism with a bidirectional long-term memory network (Bi-
LSTM), creating a deep learning (DL) model for network intrusion detection (DLNID). To overcome
the problem of data imbalance, they incorporated adaptive synthetic sampling (ADASYN). The results
indicated that their model outperformed the comparison methods, with an accuracy of 90.73% and
an F1-score of 89.65%. Saba et al. [32] proposed an IDS based on CNN, using the BoT-IoT and NID
datasets. Their model showed significant improvements in accuracy, reaching 92.85% and 99.51%,
respectively. In addition, Roy et al. [33] have designed a ML-based IDS to efficiently identify anomalies
and cyber-attacks, using the NSL-KDD and CICIDS2017 datasets. This proposition makes it possible
to target the features most essential for intrusion detection. Thanks to several optimizations, such
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as multicollinearity elimination, sampling and dimensionality reduction, the model achieves a high
detection rate while reducing false alarms.

In 2023, Mohy-eddine et al. [4] have designed an IDS based on the KNN algorithm, incorporating
feature selection via an elective approach that combines PCA, statistical tests and a genetically
based algorithm. In order to optimize model performance on unbalanced target datasets, such as
BoT-IoT, they adopted the Matthews Correlation Coefficient (MCC), reaching a score of 97%, an
accuracy (ACC) of 99.99%, and a processing time of 102 s for the five selected features. In addition,
Ennaji et al. [34] have designed an innovative IDS, i-2NIDS, based on ML. By exploiting the NSL-
KDD dataset, this system can distinguish normal activity and detect various kinds of attack, including
DDoS/DoS, Probing, R2L and U2R. The results of the experiments confirmed the efficiency of
the model, with an accuracy rate of around 99% in tests. Simultaneously, He et al. [35] provide
an in-depth analysis of DL-based IDS and explore in detail black-box and white-box adversarial
attacks against deep neural networks (DNNs), examining their relevance in the context of NIDS.
Gaurav et al. [36] review the body of research devoted to malware detection, covering both dynamic and
static detection methods, as well as hybrid approaches and techniques that improve detection efficiency.
Harini et al. [37] have proposed a three-layer intrusion detection method for attack identification and
prediction. The first layer employs a weighted-DNN, the second associates a CNN with a LSTM,
and the third layer integrates the XGBoost algorithm. To deal with the imbalance of minority attack
classes, an adaptive synthetic oversampling algorithm (ADASYN) is used to generate additional
samples. Evaluations carried out on the NSL-KDD, CIDDS 001 and CICIDS-2017 datasets show
outstanding performance, with an accuracy rate of 97.94% for NSL-KDD, 97.9% for CIDDS 001
and 98.3% for CICIDS-2017. Concomitantly, AI Lail et al. [38] have developed a NIDS that exploits
machine learning to effectively identify modern attacks. Their approach, using the random forest
model, surpassing previous models, achieving a detection rate for modern network attacks of up
to 97%. In addition, to address the challenges identified, Song et al. [39] proposed an innovative
method combining temporal convolutional network (TCN). This approach is based on a synchronized
bidirectional recurrent unit (BiGRU) and a self-attention device. Using such an approach, an outstand-
ing accuracy of 97.83% was achieved on the CSE-CIC-IDS2018 public dataset. Vitorino et al. [40]
propose a systematization of knowledge (SoK) to synthesize and summarize adversarial learning
approaches, while addressing open questions related to their application in the field of NIDS. This
synthesis also highlights the essential characteristics that a contradictory example must possess to
be considered realistic. Zhang et al. [41] propose a new classification system for detecting intrusions,
combining advanced techniques in feature engineering and optimization of models. Their approach
is based on advanced feature engineering, incorporating methods such as redundancy minimization
and relevance maximization (mRMR), correlation optimization via mutual information, and the use
of synthetic minority oversampling (SMOTE) to process network data. Additionally, Yao et al. [42]
propose an innovative and optimized NIDS, taking advantage of a GRU bidirectional autoencoder
and the Soft Voting method to efficiently detect unknown attacks, including zero-day attacks. The
performance evaluation, carried out on the WSN-DS, KDD CUP99 and UNSW-NB15 datasets,
shows recognition rates of 97.91%, 98.23% and 98.92% respectively. Louk et al. [43] have evaluated
an innovative ensemble model, called Dual-IDS, using the NSL-KDD, UNSW-NB15 and HIKARI-
2021 datasets. Such approach cleverly merges two well-established ensemble techniques: bagging and
gradient-enhanced decision tree (GBDT). The results show that this combination is a particularly
effective solution for anomaly-based intrusion detection.

In 2024, Saied et al. [44] have written a comprehensive review of recent advances in artificial
intelligence applied to intrusion detection in IoT domain. They made a careful selection of articles,
classifying them according to the artificial intelligence algorithms used to enhance IoTsecurity devices.
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Akhiat et al. [45] used KDDCup-99 network dataset to evaluate the performance of IDS-EFS tool,
designed to identify the optimal subset of features for attack detection, by comparing it with other
increasingly popular feature selection methods. The results demonstrated a considerable improve-
ment in performance, with accuracy, precision and recall rates approaching 99.9%. Furthermore,
Wang et al. [46] propose a robust framework called Learn-IDS, which effectively adjusts to the
challenges posed by the datasets used in training deep learning models. Experimental results reveal
that this platform improves detection accuracy and dynamically adapts to emerging threats in complex
scenarios. Biswas et al. [47] proposed a high-performance, machine-learning-based, real-time IDS
framework that incorporates hybrid feature selection techniques. They also carried out an in-depth
analysis on five public datasets, including CICIDS2017, NSL-KDD, UNSW-NB15, ISCX-IDS2012
and KDD Cup99. The findings demonstrate that the IDS presented achieves remarkable results,
99.98% accuracy in detecting malicious traffic. Simultaneously, Paya et al. [48] introduced Apollon,
an innovative defense system designed to protect IDSs against adversarial machine learning (AML)
attacks. To evaluate its effectiveness, they used three datasets: CSE-CIC-DS-2018, CIC-DDoS 2019
and CIC-IDS-2017, and trained several classifiers (MLP, RF, DT, NB and LR) to compare them
with the proposed solution. The results underline the robustness of the Apollon system against AML
attacks, as well as its ability to effectively detect these attacks while preserving optimal performance
on traditional network traffic. In this context, Table 1 presents a comparison of different approaches
to intrusion detection systems (IDS) aimed at enhancing the security of IoT environments.

Table 1: Comparing IDS approaches offering secure IoT

Papers Year Algorithms Methods Accuracy Data

Benaddi et al. [7] 2018 KNN PCA-fuzzy
clustering-KNN
technique

94.23% (DoS)
69.87% (R2L)
80.09% (U2L)
78.86% (Probe)

NSL-KDD

Zeng et al. [11] 2019 DL Deep-full-range
(DFR)

99.85%

99.41%

ISCX
VPN-non
VPN
ISCX 2012
IDS

Chaabouni
et al. [14]

2020 Decision tree
J48

– 92.32% OneM2Mdata

Tang et al. [15] 2020 LSTM, MLP – 99.67% ISP
Wazirali et al. [16] 2020 KNN in

supervised
KNN insemi
-supervised

5-fold cross
validation

99.10%
98.49%

NSL-KDD

Jin et al. [20] 2021 CNN GBM, XGB,
LightGBM

99.7% BoT-IoT, IoT
Network
Intrusion
MQTT-IoT-
IDS2020
IoT-23

(Continued)
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Table 1 (continued)

Papers Year Algorithms Methods Accuracy Data

Gu et al. [19] 2021 SVM NB feature 99.35%
93.35%
98.58%

98.92%

NSL-KDD
UNSW-NB15
KYOTO
2006+
CICIDS 2017

Guezzaz et al. [21] 2021 DT – 99.42%
98.8%

NSL-KDD
CICIDS 2017

Douiba et al. [1] 2022 GB, DT CatBoost 99.81%
99.98%
100%
100%

NSL-KDD
IoT-23
BoT-IoT
Edge-IIoT

Hazman et al. [5] 2022 AdaBoost Feature selection
methods:
Boruta, mutual
information,
correlation

99.98%
99.99%
100%

IoT-23
BoT-IoT
Edge-IIoT

Mohy-eddine
et al. [26]

2022 RF Pearson’s
correlation

99.12%

99.99%

Wustl-iioT-
2021
BoT-IoT

Mohy-eddine
et al. [4]

2023 KNN Feature selection:
PCA, GA,
univariate
statistical

99.99% BoT-IoT

Ennaji et al. [34] 2023 RF, KNN, LR
and MLP

5-fold cross
validation

99.97%
(normal
activities)
99.79%
(DDoS/DoS)
99.72% (Probe)
99.96% (R2L)
99.98% (U2R)

NSL-KDD

Although a great deal of research has led to the development of intrusion models based on machine
learning methods, several gaps still remain. Some research, such as that by Chaabouni et al. [13],
focuses mainly on isolated algorithms, often overlooking the potential benefits of ensemble learning.
In addition, much research is limited to specific datasets, such as NSL-KDD, without exploring
the generalization of models to other datasets as Edge-IIoT. Our model, by integrating RF, KNN
and SVM algorithms into a voting classifier, overcomes these limitations by providing a robust and
adaptable solution that enhances intrusion detection on both NSL-KDD and Edge-IIoT datasets.
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3 Proposed Model

The purpose of the present section is to present in detail the design principles of the new model
and describe the algorithms employed in its construction.

3.1 Outline of the Suggested Model

This section presents the procedures used to develop an enhanced model, aimed at boosting
detection efficiency, accuracy and time to completion. An overview of model design is provided in
Fig. 2.

Figure 2: Architecture of our IDS approach for IoT security

Our optimized modeling approach is structured into three main steps:

• Data pre-processing: pre-processing is applied to the dataset as a whole, to eliminate unused
data (NaN, etc.) and duplicates. This process includes feature selection, which involves the
extraction of sub-sets of characteristics, retaining the most significant and pertinent ones, as well
as eliminating others that are viewed as noisy influences. The objective is to achieve a supervised
classification of records from the NSL-KDD and Edge-IIoT datasets, dividing them into two
categories (Normal and Attack), while optimizing the cost and time required for learning.

• Training and building the model: the aim of this step is to reassemble the training and test
datasets, and to develop a classification model using the data processed by the pre-processing
subsystem.

• Evaluating the model: to assess the efficiency of the proposed model, it is necessary to calculate
several performance measures, such as accuracy, precision, recall, and F1-score, from the
confusion matrix.

In the NSL-KDD Test dataset, each instance is labeled to identify its class. Each instance is thus
classified as normal or abnormal. To assess the performance of machine learning models, we employ
cross-validation with 10 iterations. We hypothesize that the model should generalize to new data when
trained on labeled data. However, validation or confirmation is required to guarantee the accuracy of
its predictions. Cross-validation enables us to check whether this hypothesis is valid or not so that we
can then choose the right machine-learning algorithm to perform a specific task.
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3.2 Details of the Designed Model

In the present section, we examine how supervised machine learning can be employed to develop
the most effective IDS.

3.2.1 Random Forest (RF)

Random Forest, a supervised learning algorithm widely adopted, is used for both classification
and regression tasks. It is built on the construction of decision trees from various samples, followed by
a majority decision for the classification or a mean decision concerning the results of the regression.

Each tree has a fragmented view of the problem thanks to a double random draw shown
in Eq. (1) [49]:

RF = tree bagging + feature sampling (1)

• Tree bagging: a random draw with replacement from the database rows (the observations).
• Feature sampling: a random draw on the database columns (the variables).

The final decision is based on the voting majority score for classifying, and the mean score for
regressing.

3.2.2 Support Vector Machine

SVM stands out as a particularly useful supervised learning algorithm for both classification and
regression tasks. Nevertheless, it is mainly used to explain classification difficulties.

In binary classification, the SVM’s aim is to find the hyperplane that most effectively divides the
examples in the two classes. This hyperplane is defined by Eq. (2) [50]:

ωtx + b = 0 (2)

where ω is the weight vector usual to the hyperplane and b is the bias term.

When data are linearly separable, the optimum hyperplane will be the one maximizing the margin,
defined as the distance to the nearest examples in each class. SVM optimization can be expressed as a
convex optimization problem. For linearly separable data, the optimization problem shown in Eq. (3):

minω,b

1
2

‖ω‖2 (3)

Under the constraints escribed in Eq. (4):

yi

(
ωTxi + b ≥ 1, ∀i

)
(4)

when the input data are non-linearly separated, SVM uses a kernel to project them into a higherdi-
mensional space, where they can be separated by a hyperplane. The kernel can be linear, polynomial
or Gaussian (RBF).

3.2.3 K-Nearest Neighbors

KNN is a distance-based ML algorithm utilized for regression and classification problems. It
calculates the distance between an unlabeled point and its nearest neighbors, then identifies items
with the smallest distances to define the category of the indefinite variable [35].
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The KNN algorithm uses Euclidean distance to identify nearest neighbors. To find the Euclidean
distance between two points x and y [51], we apply the Eq. (5):

d (x, y) =
√∑N

i=1
x2

i − y2
i (5)

with N denoting the number of features such as, x = {x1, x2, x3, . . . , xN} and y = {y1, y2, y3, . . . , yN}.

3.2.4 Voting Classifier

The principle of the algorithmic voting classifier is based on combining the predictions of several
machine learning models, with the aim of obtaining an optimized result. This approach involves
using several models, each with its own strengths and weaknesses, to compensate for their biases
and improve overall prediction accuracy. There are two types of voting classifiers: In the hard-vote
classifier framework, each model contributes an equal vote to the predicted class, and the final class
is determined by a majority vote as shown in Eq. (6).

Final Class = Majority class among {M1 (x) , M2 (x) , . . . , MN (x)} (6)

when N is the number of classification models.

In the soft-vote classifier, models weight their votes according to their confidence in the prediction.
Thus, the votes of the most confident models have more influence on the final decision, as described
in in Eq. (7).

Final Class = arg maxj

∑N

i=1
ωiPi(j|x) (7)

where ωi denotes the weight assigned to the model Mi, and Pi(j|x) presents the probability that the
model attributes to the sample x to belong to class j.

4 Experimental Evaluation and Results

The purpose of this section is to provide a comprehensive analysis of both datasets selected and
the results obtained from the model developed.

4.1 Datasets with Features Selection

NSL-KDD datasets are subdivided into three categories: numericals, nominals and binaries.
Attributes in binary form occupy positions 7, 12, 14, 15, 21 and 22, while positions 2, 3 and 4
correspond to nominal attributes. All other attributes are numeric. In addition, in the Edge-IIoT
dataset, various attack types are listed, including Normal, DDoS_UDP, DDoS_ICMP, Ransomware,
DDoS_HTTP, SQL_injection, and others, as shown in Fig. 3. Furthermore, Fig. 4 illustrates the
distribution of attacks within the dataset.

Fig. 3 displays the frequency of different types of attack detected in an Edge-IIoT environment.
The horizontal axis indicates the attack label (0 for normal connections and 1 for attacks), while the
vertical axis signifies the number of occurrences of each type. Attacks are classified by type, including
methods such as MITM, Ransomware, SQL Injection, DoS under multiple protocols (TCP, UDP,
ICMP), and others. The color and length of the bars illustrate the diversity and frequency of each type
of attack, making it easy to visualize the prevalence of certain threats within the infrastructure.
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Figure 3: Attack label vs. attack type on Edge-IIoT set

Figure 4: Distribution of attack type on Edge-IIoTset

Fig. 4 shows the percentage distribution of different traffic types in an Edge-IIoT environment.
Each segment represents a specific type of traffic or attack, with a legend detailing category including
Normal, DDoS (via UDP, ICMP, HTTP, TCP), Ransomware, SQL Injection, Port Scanning, Back-
door, XSS, MITM, and others. The largest proportion is occupied by “Normal” traffic (15.4%), while
attacks are distributed with varying proportions, illustrating the diversity and frequency of threats in
the IoT environment.

Edge-IIoT and NSL-KDD datasets first undergo pre-processing, including attribute type conver-
sion, according to the following steps:
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4.1.1 Pre-Processing for NSL-KDD Dataset

• Digitization (conversion of symbolic data into digital form): As mentioned earlier, the NSL-
KDD database consists of 3 nominal attributes (“protocol_type”, “service” and “flag”). Given
that container network models only accept numerical attributes. There are several conversion
methods, including the LabelEncoder method, which we used to digitize the nominal-type
attributes of the NSL-KDD database.
LabelEncoder is a utility class that transforms labels into numerical values, limiting them to a
range from 0 to n_classes-1.

• Normalization: The results obtained after digitization are very diverse and cover a wide range
of values. Some attributes have high values (such as src_bytes, dst_bytes, etc.), while others
have low values (such as serror_rate, same_srvrate, etc.). This disparity can adversely affect the
effectiveness of the intrusion detection model, particularly in terms of profitability. To overcome
this difficulty and ensure the model’s effectiveness, it is essential to adjust or denormalize the
database values. In our case, the data in the two databases are normalized to the interval [0,1]
using a transfer function named StandardScaler.

• Cross-validation is carried out with a constant number of 10 folds. With this configuration,
each model is trained on 90% of the data, while the remaining 10% is used for testing.

In view of the size of the NSL-KDD dataset, which consists of a total of 41 features and 125,973
items for learning, and 22,544 for tests, it would be too complex to use all these features to build
a classification model. This approach could significantly affect the performances of the training
algorithm, especially in terms of running time and utilization of resources of the system. In addition,
it is unnecessary to use all NSL-KDD attributes for the IDS to be able to classify TCP/IP connections
and detect attacks. Some attributes are more important than others in this context. Hence our use of
a feature selection step, namely recursive feature elimination.

4.1.2 Pre-Processing for Edge-IIoT Dataset

To make the data suitable for use in our machine learning models, we subjected it to a pre-
processing process. Our aim was to optimize model accuracy and efficiency. To achieve this, we applied
various pre-processing methods to Edge-IIoT datasets.

• Drop features: we have eliminated columns composed entirely of NaN values or containing only
specific values, such as zeros or ones. Before this deletion, our dataset contained 63 columns
and 157,800 rows. After this operation, we’re left with 33 columns, all valid, while retaining the
157,800 rows.

• Encoding (Digitization): we adopted a coding approach using LabelEncoder to convert cate-
gorical variables into numerical values, making them usable in our analysis. More specifically,
we transformed the “Attack_type” column into two categories: 1 for normal attacks and 0 for
all other forms of attack.

• Class balancing: imbalanced datasets are defined by an irregular distribution of classes or
labels, resulting in a significantly different number of instances belonging to each class. This
can result in one class being over- or under-represented in the dataset. We adopt the Random
Under Sampling method, eliminating examples from the majority class in order to balance the
classes. However, this approach may result in the loss of information essential to the model’s
performance.
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• Normalization: we scaled the columns to normalize them to the same amplitude, a necessary
step when the ranges of values are disparate. For this, we used the StandardScaler method,
which ensures consistent scaling of values.

An experimental assessment of our method has been carried out on systems equipped with
IntelTMCoreTMi5 multicore processors, 12 GM RAM and 64-bit operating system. Simulations were
run on Colab with Python 3, using 107 GB disk space and 12.7 GB RAM. We also employed several
libraries, including Scikit-learn, Pandas, NumPy, Time and Seaborn, for implementation and results
analysis.

4.2 Experimental Outcomes and Analysis

This section is split into three parts: it begins with the results obtained with the NSL-KDD dataset,
followed by those from the Edge-IIoT dataset, before concluding with a comparison between these two
datasets.

The confusion matrix, shown in Table 2, is used to assess the effectiveness of the intrusion
detection model. By comparing model predictions with actual (labeled) data, it provides a measure
of the model’s accuracy.

Table 2: Confusion matrix

Predicted

Normal Attack

Actual Normal True_Negative (TN) False_Positive (FP)
Attack False_Negative (FN) True_Positive (TP)

Where

• True positive (TP): The test correctly detects an (-).
• False positive (FP): The test detects (+) activity as an (-).
• True negative (TN): The test correctly detects (+) activity.
• False negative (FN): The test detects an (-) as (+) activity.

To assess IDS performance, we compute various measures based on the parameters presented in
Table 2.

Accuracy (Acc) represents the percentage of correct guesses completed by the model in relative to
the total of calculations made, is calculated by the Eq. (8):

Acc = TP + TN
TP + TN + FP + FN

(8)

Recall (R) evaluates the percentage of true positives, indicating the capacity of the model to
correctly identify positive cases among all true positives.

R = TP
FN + TP

(9)
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In Eq. (10), precision (P) represents the probability that a prediction for a given category is
accurate.

P = TP
TP + FP

(10)

In Eq. (11), the F1-score (F1) expresses the harmonic mean F, which merges the two measures of
recall and precision into a single number, with a range of values between 0 and 1.

F1 = 2 × Precision × Recall
Precision + Recall

(11)

Referring to the confusion matrix (Table 2), it is apparent that the model correctly identified
DoS/DDoS and Probe attacks, as illustrated in Figs. 5 and 6, with significant TN and TP values.

Figure 5: Confusion matrix for DoS attack using ensemble learning

Figure 6: Confusion matrix for Probe attack using ensemble learning
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On the other hand, Figs. 7 and 8 show that the model had difficulty identifying the R2L and U2R
attacks, with TP values of 1 and 0, respectively.

Figure 7: Confusion matrix for R2L attack using ensemble learning

Figure 8: Confusion matrix for U2R attack using ensemble learning

By analyzing the performance of the algorithms, Table 3 presents the conditions and assumptions
that influence their efficiency. Subsequently, the analysis of execution times and maximum memory
usage for each algorithm, as shown in Tables 4–8, enables us to evaluate their scalability along these
two dimensions. Algorithms such as Random Forest (RF) demonstrate good scalability in terms
of execution time, although they may encounter limitations concerning memory usage. In contrast,
the SVM and Voting Classifier algorithms, despite their low memory consumption, require longer
execution times. KNN, however, stands out for its speed, but its calculation method may constrain it
due to the size of the data.
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Table 3: Assumption and Condition for our algorithms

Algorithm Assumption/Condition

RF Assumption: The performance of the RF algorithm stays satisfactory
provided that the number of trees does not surpass a certain limit.
Beyond this threshold, there is a significant increase in memory
consumption and execution time.

SVM Condition: SVM scalability is affected by kernel size and number of
features, which requires data pre-processing (like dimension reduction).

KNN Assumption: KNN is scalable as long as data dimensionality remains
low. However, with high-dimensional data, performance can deteriorate
due to the so-called “curse of dimensionality”.

Voting_classifier Condition: The scalability of the Voting Classifier is closely linked to the
number of classifiers it contains. Indeed, integrating too many classifiers
can lead to a considerable increase in execution time, which could limit
the efficiency of the method.

Table 4: Results in % of proposed models for detecting DoS/DDos attacks using multi-class
classification

Algorithms Accuracy Precision Recall F1-score Time (s) Memory (MiB)

RF 99.82 99.88 99.62 99.78 9.32 1480.83
KNN 99.71 99.68 99.67 99.68 15.13 0.00
SVM 99.38 99.10 99.45 99.23 75.28 0.09

Table 5: Results in % of proposed models for detecting Probe attacks using multi-class classification

Algorithms Accuracy Precision Recall F1-score Time (s) Memory (MiB)

RF 99.65 99.63 99.27 99.59 6.51 1481.34
KNN 99.07 98.60 98.50 98.55 8.17 0.00
SVM 98.45 96.90 98.36 97.61 31.39 0.01

Table 6: Results in % of proposed models for detecting R2L attacks using multi-class classification

Algorithms Accuracy Precision Recall F1-score Time (s) Memory (MiB)

RF 98.06 97.21 96.84 96.99 7.08 1482.21
KNN 96.74 95.32 95.49 95.40 7.59 0.00
SVM 96.79 94.85 96.26 95.53 115.05 0.04
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Table 7: Results in % of proposed models for detecting U2R attacks using multi-class classification

Algorithms Accuracy Precision Recall F1-score Time (s) Memory (MiB)

RF 99.75 97.23 85.81 88.55 5.36 1481.74
KNN 99.70 93.14 85.07 87.83 4.57 0.00
SVM 99.63 91.05 82.90 84.87 7.57 0.03

Table 8: Results of performance evaluation for voting classifier

Attack Accuracy Precision Recall F1-score Time (s) Memory (MiB)

DoS 0.9978 0.9987 0.9970 0.9975 101.01 0.27
Probe 0.9925 0.9974 0.9890 0.9885 52.97 0.46
R2L 0.9727 0.9580 0.9631 0.9604 139.89 0.21
U2R 0.9974 0.9487 0.8662 0.8764 18.54 0.26

The data presented in Tables 4–7 show that the RF algorithm clearly outperformed the rest of
the models throughout the testing dataset. Indeed, it achieved a maximum accuracy score of 99.82%,
a precision level of 99.88%, a recall value of 99.62%, and an F1-score of 99.78% in the detection of
DoS/DDoS attacks. What’s more, when it comes to detecting probe attacks, the RF model outperforms
other models on all performance indicators. It achieves 99.65% accuracy, 99.63% precision, 99.27%
recall, and an F1-score of 99.59%. What’s more, when it comes to detecting U2R attacks, the RF model
boasts an impressive accuracy of 99.75%. However, the performance of the three models used—KNN,
RF, and SVM—in terms of precision (97.23%, 91.05%, 93.14%, respectively), recall (85.81%, 82.09%,
85.07%, respectively) and F1-score (88.55%, 84.87%, 87.83%, respectively) is rather poor. On the other
hand, in the case of R2L attacks, the models used offer relatively modest performance compared with
other types of attack: RF has an accuracy of 98.06%, while KNN and SVM have accuracies of 96.79%.
These results highlight the difficulties encountered by our model in detecting U2R and R2L attacks.

To optimize performance, EL is employed by aggregating the predictions of the Random Forest,
K-Neighbors, and Support Vector Machine algorithms to achieve optimal results, as illustrated in
Table 8. The ensemble approach consists in merging the different results of different machine learning
models to get an optimum overall performance. In this way, the aim is to combine several machines,
with their own strengths and weaknesses, to compensate for each other’s biases and achieve a more
reliable prediction. For our purpose, we are using a Voting Classifier, a method similar to the Bagging
Classifier.

To evaluate IDS performances with Edge-IIoT dataset, various metrics are calculated using RF,
KNN and SVM algorithms, as shown in Figs. 9–12, The RF algorithm showed a low FP and FN
rate, at 0.88% and 5.76%, respectively, as well as optimal performance in terms of TP. In contrast, the
SVM algorithm recorded a high FN rate, reaching 26.33%, suggesting that the classifier struggled to
classify attacks correctly. On the other hand, the KNN algorithm achieved similar results to the Voting
Classifier, with TP rates of 59.73% and 59.84%, respectively.
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Figure 9: Confusion matrix for SVM classifier on Edge-IIoT dataset

Figure 10: Confusion matrix for RF classifier on Edge-IIoT dataset

Figure 11: Confusion matrix for KNN classifier on Edge-IIoT dataset

In order to evaluate the performance of our model on the Edge-IIoT dataset, we chose the optimal
parameters, as revealed in Table 9, using the GridSearchCV method to optimize the hyperparameters.
This process aims to maximize the efficiency of the algorithm by identifying the optimal values for
each key parameter. Fig. 13 demonstrates that the optimized parameters delivered an average cross-
validation precision of 94.66%, with a standard deviation of 1.87%, and an accuracy of 93.36%,
testifying to the stability of the RF algorithm.



462 CMC, 2025, vol.82, no.1

Figure 12: Confusion matrix for Voting classifier on Edge-IIoT dataset

Table 9: Parameter selection and optimization for our algorithms

Algorithm Parameters tested Best parameters Method

RF n_estimators = [100, 200, 300] n_estimators = 100 GridSearchCV
max_depth = [5, 10] max_depth = 5
random_state = 42 random_state = 42
cross_validation = 10 cross_validation = 10

SVM C = [0.1, 1, 10] C = 10 GridSearchCV
Kernel = [‘rbf’, ‘linear’] Kernel = ‘rbf’

KNN n_neighbors = [5, 10, 15, 20, 30] n_neighbors = 10 GridSearchCV
weights= [‘uniform’, ‘distance’] weights = ‘uniform’

Figure 13: Comparison of performance measurements in the Edge-IIoT dataset
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For the optimized SVM model, the accuracy obtained on the test set is 72.61%, with a precision of
88.35%, a recall of 72.61%, and an F1-score of 76.27%. In the case of the KNN model, after adjustment
of the hyperparameters, performance on the test set translates into an accuracy of 73.65%, a precision
of 87.36%, and an F1-score of 77.1%. These results highlight the crucial impact of hyperparameter
optimization in improving KNN model performance for attack detection.

Lastly, the performance of the Voting Classifier indicates that it is possible to optimize results by
combining the advantages of the different models, achieving a specificity of 93.06% and an overall
improvement in performance.

5 Conclusion

We have developed a new IDS based on supervised classification algorithms from ML, including
RF, SVM, and KNN. We have evaluated this system based on two datasets dedicated to intrusion
detection: NSL-KDD and Edge-IIoT. The results indicate that our model succeeded in effectively
detecting the different types of attack, with accuracy values of 99% for the NSL-KDD dataset and
93% for Edge-IIoT. This performance confirms the robustness of our approach. In our future work,
we will further explore the possibilities of improving data security by exploiting the federated learning
method.
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