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ABSTRACT

Advances in software and hardware technologies have facilitated the production of quadrotor unmanned aerial
vehicles (UAVs). Nowadays, people actively use quadrotor UAVs in essential missions such as search and rescue,
counter-terrorism, firefighting, surveillance, and cargo transportation. While performing these tasks, quadrotors
must operate in noisy environments. Therefore, a robust controller design that can control the altitude and attitude
of the quadrotor in noisy environments is of great importance. Many researchers have focused only on white
Gaussian noise in their studies, whereas researchers need to consider the effects of all colored noises during the
operation of the quadrotor. This study aims to design a robust controller that is resistant to all colored noises.
Firstly, a nonlinear quadrotor model was created with MATLAB. Then, a backstepping controller resistant to colored
noises was designed. The designed backstepping controller was tested under Gaussian white, pink, brown, blue, and
purple noises. PID and Lyapunov-based controller designs were also carried out, and their time responses (rise time,
overshoot, settling time) were compared with those of the backstepping controller. In the simulations, time was in
seconds, altitude was in meters, and roll, pitch, and yaw references were in radians. Rise and settling time values
were in seconds, and overshoot value was in percent. When the obtained values are examined, simulations prove
that the proposed backstepping controller has the least overshoot and the shortest settling time under all noise
types.
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1 Introduction

Quadrotor is a four-rotor UAV with vertical take-off and landing (VTOL) capability [1,2].
Quadrotor does not need a runway during take-off and landing. It can hang in the air, rotate around
its own axis, flip in the air, and achieve hard maneuvers [3,4]. These characteristics make quadrotor
UAVs more advantageous than fixed-wing UAVs [5].

Today, quadrotors are used in various areas, such as search and rescue, surveillance, counter-
terrorism, border patrol, combating natural disasters, agricultural spraying, cargo transportation,
mapping, mineral exploration, and aerial photography [6,7].
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In order for the quadrotor to perform these critical tasks, it needs a robust controller that can
operate in noisy environments [8,9]. Many researchers have carried out studies on controller design for
quadrotor UAVs that can operate in noisy environments. However, since researchers generally focus
on the quadrotor’s trajectory tracking under white Gaussian noise in their studies, there have been few
studies in the literature on the quadrotor’s trajectory tracking under other colors in the color spectrum.
For a comprehensive robustness analysis, it is necessary to consider all colored noises. Fig. 1 shows the
colors of noise.

Figure 1: Power spectral densities of different colors

The primary motivation of this research is to design a robust controller for a quadrotor UAV that
can track altitude and attitude references under all colored noises. The main contributions of this study
are summarized below:

• Firstly, a nonlinear model of the quadrotor UAV was created with MATLAB/Simulink soft-
ware.

• Secondly, a robust backstepping controller was designed to control the altitude and attitude
of this nonlinear quadrotor model. A classical PID controller design and a Lyapunov-based
controller design were also used to perform a comparative robustness analysis with the
backstepping controller.

• Thirdly, these controllers were tested under band-limited Gaussian white, pink, brown, blue,
and purple noises. The controllers’ overshoot, rise time, and settling time values under these
noises were acquired, and a comparative robustness analysis was performed.

The obtained results demonstrated the robustness of the backstepping controller. A Pseudocode
briefly explaining the work done is shown in Fig. 2.
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Figure 2: Pseudocode of the work

2 Related Work

Researchers have worked on different techniques to control the altitude and attitude of the quadro-
tor. This section discusses the recent related studies on controlling the quadrotor. MA et al. focused on
particle swarm optimization tuned trajectory tracking control for a quadrotor based on the Lyapunov
method under the Gaussian white noise effect [10]. Kumar et al. used the Lyapunov stability analysis
and developed a novel dynamic recurrent functional link neural network for the identification of
nonlinear systems [11]. Kumar et al. conducted a comparative study of neural networks for the
control of nonlinear dynamical systems using Lyapunov stability-based adaptive learning rates [12].
Cheded et al. developed a novel, robust Kalman filter-based controller for the trajectory tracking of a
quadrotor under a Gaussian zero mean white noise [13]. Zhao et al. focused on the reference tracking of
a quadrotor under white noise. They have developed an active disturbance rejection switching control
algorithm against white noise. Their algorithm could reach stable control of the quadrotor UAV in
the white noise range of 0.1 dB [14]. Guerrero-Sánchez et al. developed an observer-based controller
for a quadrotor. Their designed observer estimates the state from noisy output measurements. They
used a Gaussian noise with a variance of 0.001 as the test signal [15]. Mahfouz et al. focused on the
control of a four-rotor UAV under white Gaussian noise. They compared the performances of different
PID control techniques under white Gaussian noise [16]. Wang et al. designed a PD controller to
control the attitude of the quadrotor. They used a white Gaussian noise with zero mean and one
variance to test the robustness of the controller [17]. Hou et al. proposed a nonsingular terminal
sliding mode controller for a quadrotor and tested their proposed sliding mode controller under
Gaussian white noise and model uncertainties [18]. Xu et al. focused on the path-following control of a
quadrotor under Gaussian noise. They used the Lyapunov theorem while designing the controller [19].
Cen et al. proposed a Gaussian process regression-based control technique for a quadrotor UAV. They
performed trajectory tracking simulations of the quadrotor under measurement noise and compared
their proposed controller with an integral backstepping controller [20]. Labbadi et al. designed a sliding
mode controller for a quadrotor under Gaussian random disturbances and uncertainties. They ensured
the stability of the quadrotor by using Lyapunov’s theorem [21]. Arul et al. presented a collision
avoidance algorithm and utilized a model predictive control technique for quadrotor swarms under
Gaussian noise. Their proposed method requires 5 ms to compute a local collision-free trajectory
[22]. Bouaiss et al. designed a Model Predictive Controller (MPC) for a quadrotor. They used the
MPC controller for trajectory tracking under Gaussian noise and compared the performance of the
MPC controller with a classic PID controller [23]. Wang et al. developed an MPC controller for a
quadrotor’s trajectory planning problem in unknown environments. They implemented a real-time
Gaussian noise as an aerodynamic disturbance to the quadrotor. They achieved a trajectory generation
in unknown places by up to 75% in their tests [24]. Noordin et al. designed a super-twisting sliding
mode controller for a quadrotor. They tested the robustness of the controller under Gaussian white
noise. They compared the trajectory simulation results of the proposed sliding mode controller and
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classical PID controller. They saw that the sliding mode controller provided more robust performance
than the PID controller [25].

3 Nonlinear Modelling of the Quadrotor

A quadrotor is a UAV with four propellers that can take off and land vertically, hover in the air,
and rotate around its own axis [26,27].

In this research, a quadrotor with a cross configuration was used [28]. The schematic represen-
tation of the quadrotor used is given in Fig. 3. Rotors rotating in the same direction are shown with
the same color. The body axis, the Earth axis, the direction of the torques produced, and the attitude
angles are shown in Fig. 3.

Figure 3: Schematic representation of the quadrotor

The quadrotor moves in 6 degrees of freedom [29]. The rotation matrix is used in the transforma-
tion from the Earth-centered frame to the body-centered frame. Rotation matrices for attitude angles
are given in Eqs. (1) to (4). In the rotation matrices below, c stands for cosine, and s stands for sine.

R (ϕ) =
⎡
⎣1 0 0

0 c (ϕ) s (ϕ)

0 −s (ϕ) c (ϕ)

⎤
⎦ (1)

R (θ) =
⎡
⎣c (θ) 0 −s (θ)

0 1 0
s (θ) 0 c (θ)

⎤
⎦ (2)

R (ψ) =
⎡
⎣c (ψ) s (ψ) 0

−s (ψ) c (ψ) 0
0 0 1

⎤
⎦ (3)

R (ϕ, θ , ψ) = R (ϕ) R (θ) R (ψ) (4)
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Eq. (5) shows the orthogonal rotation matrix.

R =
⎡
⎣cψcθ sψcθ −sθ

cψsθsϕ − sψcϕ sψsθsϕ + cψcϕ cθsϕ
cψsθcϕ + sψsϕ sψsθcϕ − cψsϕ cθcϕ

⎤
⎦ (5)

Eqs. (6) and (7) represent the transformation between body angle rates and Earth angular rates.
P, Q, and R are angular velocities in the body frame. ϕ̇, θ̇ , and ψ̇ represent Earth’s angular rates.

T =
⎡
⎣1 tan (θ) s (ϕ) tan (θ) c (ϕ)

0 c (ϕ) −s (ϕ)

0 sec (θ) s (ϕ) sec (θ) c (ϕ)

⎤
⎦ (6)

⎡
⎣ϕ̇

θ̇

ψ̇

⎤
⎦ = T

⎡
⎣p

q
r

⎤
⎦ (7)

Eq. (7) requires that θ �= π

2
for derivatives. While ϕ and θ angles are close to 0, it means that the

quadrotor is hovering and T is approximately a unit matrix [30]. In this situation, the relation between
Earth’s angular rates and body angular velocities can be described as linear, as in Eq. (8).⎡
⎣ϕ̇

θ̇

ψ̇

⎤
⎦ ≈

⎡
⎣p

q
r

⎤
⎦ (8)

Force (F) and torque (T) formulas are represented in Eqs. (9) and (10). w is angular velocity, b is
thrust coefficient, and d is drag coefficient. The relative speed of the rotor (wr) is given in Eq. (11). The
i subscript in the equations describes the number of rotors from 1 to 4.

Fi = bwi
2 (9)

Ti = dwi
2 (10)

wr = −w1 + w2 − w3 + w4 (11)

The relation between control inputs (U 1, U 2, U 3, U 4) and angular velocities is represented in
Eq. (12). U 1 is lift force, and U 2, U 3, and U 4 represent relevant torques. The l symbol is the arm length
of the quadrotor.

u =

⎡
⎢⎢⎣

U1

U2

U3

U4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

F
Tϕ

Tθ

Tψ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

b b b b
0 −lb 0 lb
lb 0 −lb 0
−d d −d d

⎤
⎥⎥⎦

⎡
⎢⎢⎣

w2
1

w2
2

w2
3

w2
4

⎤
⎥⎥⎦ (12)

The transformation from angular velocities to control inputs is given in Eq. (13).⎡
⎢⎢⎣

w2
1

w2
2

w2
3

w2
4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1/4b 0 1/2bl −1/4d
1/4b −1/2bl 0 1/4d
1/4b 0 −1/2bl −1/4d
1/4b 1/2bl 0 1/4d

⎤
⎥⎥⎦

⎡
⎢⎢⎣

U1

U2

U3

U4

⎤
⎥⎥⎦ (13)
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The inertial moments of the quadrotor are represented in Eqs. (14)–(16). Msphere is the mass of the
spherical dense center, Mrotor is the mass of one rotor, and r is the radius.

Ix = 2
5

Mspherer2 + 2l2Mrotor (14)

Iy = 2
5

Mspherer2 + 2l2Mrotor (15)

Iz = 2
5

Mspherer2 + 4l2Mrotor (16)

Fig. 4 represents the spherical mass and point masses of the quadrotor.

Figure 4: Spherical mass and point masses of the quadrotor

Equations of the motion of the quadrotor are presented from Eqs. (17) to (22).

Ẍ = U1

m
[c (ϕ) s (θ) c (ψ) + s (ϕ) s (ψ)] (17)

Ÿ = U1

m
[s (θ) s (ψ) c (ϕ) − s (ϕ) c (ψ)] (18)

Z̈ = −g + U1

m
[c (ϕ) c (θ)] (19)

ϕ̈ = 1
Ix

U2 +
(

Iy − Iz

Ix

)
ψ̇ θ̇ + wr

JR

Ix

θ̇ (20)

θ̈ = 1
Iy

U3 +
(

Iz − Ix

Iy

)
θ̇ ψ̇ + wr

JR

Iy

ϕ̇ (21)

ψ̈ = 1
Iz

U4 +
(

Ix − Iy

Iz

)
θ̇ ϕ̇ (22)

In this study, the OS4 quadrotor model is used. Table 1 shows the physical constants of this
quadrotor.
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Table 1: Physical constants of the OS4 quadrotor model

Constant Value Unit

Arm length (l) 0.23 m
Gravity (g) 9.81 m/s2

Mass (m) 0.65 kg
Max. rotor velocity (wmax) 1000 rad/sec
Max. torque (tmax) 0.15 Nm
Thrust coefficient (b) 3.13 Ns2

Drag coefficient (d) 7.5 × 10−7 Ns2

Inertial moment on x axis (Ix) 7.5 × 10−3 kg.m2

Inertial moment on y axis (Iy) 7.5 × 10−3 kg.m2

Inertial moment on z axis (Iz) 1.3 × 10−2 kg.m2

Rotor inertia (JR) 6.5 × 10−5 kg.m2

4 Control Structures

In this part, PID, Lyapunov-based, and backstepping controller structures are described.

4.1 PID Control

PID controllers are widely used in the industry because their structure is simple, their parameters
can be easily adjusted, and they are easy to manufacture [31]. To prove the robustness of the proposed
backstepping controller in this research, a comparative robustness analysis was carried out with the
PID controller. The PID controller has three parameters: Kp, Ki, and Kd. The PID controller aims
to minimize the error signal e(t) by using the control signal u(t). The general equation of the PID
controller is given in Eq. (23).

u (t) = Kpe (t) + Ki

∫ t

0

e (τ ) dτ + Kd

de (t)
dt

(23)

The U 1 control input that controls the altitude of the quadrotor is given in Eq. (24).

U1 =
m

(
g + ezKp + Ki

∫
ezdt + Kd

dez

dt

)

cos ϕ cos θ
(24)

In Eq. (24), θ angle is rotation around the y-axis and ϕ angle corresponds to rotation around the
x-axis. Since the quadrotor does not rotate in the x and y axes during vertical flight, the denominator
of the U 1 will never be zero.

U 2, U 3, and U 1 control inputs control roll, pitch, and yaw angles, respectively. The equations of
these control inputs are given in Eqs. (25)–(27).

U2 = eϕKp + Ki

∫
eϕdt + Kd

deϕ

dt
(25)
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U3 = eθKp + Ki

∫
eθdt + Kd

deθ

dt
(26)

U4 = eψKp + Ki

∫
eψdt + Kd

deψ

dt
(27)

Table 2 shows the PID controller coefficients. The PID Tuner app in Simulink was used to
determine the coefficients of the PID controller. Coefficients were manually adjusted using the
graphical interface of PID Tuner. Optimum controller coefficients were set to have low overshoot
and short settling time.

Table 2: PID controller coefficients

Coefficient Altitude Roll Pitch Yaw

Kp 0.82 0.12 0.14 0.13
Ki 1 0.05 0.07 0.05
Kd 1.65 0.06 0.08 0.1

4.2 Lyapunov-Based Control

Lyapunov-based control is a nonlinear control method that depends on the Lyapunov stability
theorem [32]. In this study, the most commonly used sum of squares function was used as the Lyapunov
function. The Lyapunov-based controller targets to control the position of the quadrotor directly. In
this approach, x = 0 is defined as the equilibrium point. D is determined as a compact space of f (0) in
Rn real coordinate space. The continuous Lyapunov function V : D → R+, which satisfies requirements
in Eqs. (28) and (29), is defined.

V (0) = 0, V (x) > 0 in D, x �= 0 (28)

V̇ (x) ≤ 0 in D (29)

The equilibrium point is asymptotically stable in D under V̇ (x) < 0 in D, x �= 0 conditions.
Then, a part that contains stabilization angles and their derivates is defined as the desired attitude
at the equilibrium point for the attitude control. In this state, x = (ϕd, 0, θ d, 0, ψ d, 0), where ϕd, θ d,
and ψ d, are defined as desired roll, pitch, and yaw angles. Since angular velocities will be zero at the
stabilization point, their derivatives will also be zero. Positive defined Lyapunov function at the desired
attitude is described in Eq. (30).

V (x) = 1
2

[
ϕ̇2 + (ϕ − ϕd)

2 + θ̇ 2 + (θ − θd)
2 + ψ̇ 2 + (ψ − ψd)

2
]

(30)

Eq. (31) describes the derivative of V (x).

V̇ (x) = [
(ϕ − ϕd) ϕ̇ + ϕ̈ϕ̇ + (θ − θd) θ̇ + θ̈ θ̇ + (ψ − ψd) ψ̇ + ψ̈ψ̇

]
(31)

Equations of motion defined in Eqs. (17–22) can be simplified under perfect cross configuration
VTOL (Ix = Iy) condition when the quadrotor close to the equilibrium point (wr = 0, ψ̇ = 0, θ̇ = 0,
ϕ̇ = 0) and Eq. (32) is obtained.
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V̇ (x) = (ϕ − ϕd) ϕ̇ + ϕ̇
l
Ix

U2 + (θ − θd) θ̇ + θ̇
l
Iy

U3 + (ψ − ψd) ψ̇ + ψ̇
l
Iz

U4 (32)

The control inputs of attitude angles are defined from Eqs. (33) to (35) for the stability criteria.

U2 = −Ix

l
(ϕ − ϕd) − k1ϕ̇ (33)

U3 = −Iy

l
(θ − θd) − k2θ̇ (34)

U4 = −Iz (ψ − ψd) − k3ψ̇ (35)

By substituting U 2, U 3, and U 1 control inputs in Eq. (32), the equation could be rewritten as in
Eq. (36).

V̇ (x) = −ϕ̇2 l
Ix

k1 − θ̇ 2 l
Iy

k2 − ψ̇ 2 l
Iz

k3 (36)

In the above equations from Eqs. (33) to (36), k1, k2 and k3 indicate positive coefficients which
are negative semidefinite. Stability for the equilibrium point is provided by the Lyapunov theorem.
Asymptotic stability is achieved by LaSalle’s invariance principle since the controlled maximum
invariant set of the subsystem in S = {X ∈ R6V̇ |X = 0} is limited by the equilibrium point. Lyapunov
function and its time derivative are given in Eqs. (37) and (38) for altitude control.

V (x) = 1
2

[
(z − zd)

2 + ż2
]

(37)

V̇ (x) = (z − zd) ż + ż
(

g − (cos θ cos ϕ)
U1

m

)
(38)

U1 altitude control input is defined in Eq. (39) for stability.

U1 = − m
cos θ cos ϕ

(zd − z − g) − kzż (39)

After the U 1 is substituted in Eq. (38), the Eq. (40) is obtained. kz is a positive constant given by
Eq. (39), which is negative semi-definite.

V̇ (x) = −ż2 kz

m
(cos θ cos ϕ) (40)

The coefficients of the Lyapunov-based controller are given in Table 3. While kz is the altitude
controller coefficient, k1, k2, and k3 are the roll, pitch, and yaw angle controller coefficients. The
Lyapunov-based controller coefficients are determined by trial and error. While determining the
coefficients, the coefficients that would cause the least overshoot and the shortest settling time were
preferred.
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Table 3: Coefficients of the Lyapunov-based controller

Coefficient Value

kz 2.15
k1 0.167
k2 0.168
k3 0.104

4.3 Backstepping Control

The proposed backstepping control method is an adaptive control approach used in nonlinear
systems. This control method depends on a recursive design that links the selection of a Lyapunov
function with a feedback control system and provides strict feedback to obtain asymptotic stability.
In this research, Lyapunov’s direct method is combined with principles of adaptive control. First, the
tracking error z1 is defined in Eq. (41).

z1 = ϕd − ϕ (41)

The Lyapunov function and its time derivative for the z1 variable are given in Eqs. (42) and (43).

V (z1) = 1
2

z1
2 (42)

V̇ (z1) = z1 (ϕ̇d − ϕ̇) (43)

Since the derivative of the Lyapunov function should be negative semi-definite, the new virtual
control input ϕ̇ is defined to stabilize z1 as in Eq. (44).

ϕ̇ = ϕ̇d + a1z1 (44)

a1 should be a positive coefficient to provide negative semi-definitiveness. When this virtual control
input is substituted in Eq. (43), the equation in Eq. (45) is obtained.

V̇ (z1) = −a1z1
2 (45)

Another change of variable is represented in Eq. (46).

z2 = ϕ̇ − φ̇d − a1z1 (46)

After the changes, the augmented Lyapunov function can be written as in Eq. (47).

V (z1, z2) = 1
2

z1
2 + 1

2
z2

2 (47)

Derivative of the Lyapunov function in Eq. (47) could be written as in Eq. (48).

V̇ (z1, z2) = −a1z1
2 − z1z2 + z2ϕ̈ − z2 (ϕ̈d − a1 (z2 + a1z1)) (48)

According to Eq. (20), the ϕ̈ variable can be rewritten in Eq. (49).

ϕ̈ = ψ̇ θ̇a1 + a2θ̇wr + l
Ix

U2 (49)
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U 2 control input is defined as in Eq. (50) under ϕ̈ = 0,
...
ϕ = 0, θ̈ d = 0, and V̇ (z1, z2) < 0 conditions.

U2 = Ix

l

(
z1 − a1θ̇ ψ̇ − a2θ̇wr − a1 (z2 + a1z1) − a2z2

)
(50)

The a2z2 term under a2 > 0 condition is added to stabilize z1. With the same steps, U 3 pitch angle
control input and U 4 yaw angle control input are defined in Eqs. (51) and (52):

U3 = Iy

l

(
z3 − a3ϕ̇ψ̇ − a4ϕ̇wr − a3 (z4 + a3z3) − a4z4

)
(51)

U4 = Iz

(
z5 − a5ϕ̇θ̇ − a5 (z6 + a5z5) − a6z6

)
(52)

The Eqs. (53) to (56) describe the variables used in U 3 and U 4.

z3 = θd − θ (53)

z4 = θ̇ − θ̇d − a3z3 (54)

z5 = ψd − ψ (55)

z6 = ψ̇ − ψ̇d − a5z5 (56)

The z7 variable in Eq. (57) describes the altitude tracking error.

z7 = z − zd (57)

The Lyapunov function and its derivative for z7 variable are given in Eqs. (58) and (59).

V (z7) = 1
2

z7
2 (58)

V̇ (z7) = z7 (żd − ż) (59)

The x8 virtual control input is defined as in Eq. (60) to stabilize z7 function.

x8 = żd + a7z7 (60)

Another variable change is given in Eq. (61).

z8 = x8 − żd − a7z7 (61)

After the variable changes, the new Lyapunov function could be written as in Eq. (62).

V (z7, z8) = 1
2

z7
2 + 1

2
z8

2 (62)

The derivative of the Lyapunov function in Eq. (62) is explained as in Eq. (63).

V̇ (z7, z8) = −a7z7
2 − z7z8 + z8x8 − z8 (z̈d − a7 (z8 + a7z7)) (63)

The derivative of the virtual control input x8 is explained in Eq. (64).

ẋ8 = g − cos θ cos ϕ
U1

m
(64)
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The U 1 altitude control input is given in Eq. (65).

U1 = m
cos θ cos ϕ

(z7 + g − a7 (z8 + a7z7) − a8z8) (65)

Table 4 represents the coefficients of the backstepping controller. The coefficients of the backstep-
ping controller were obtained by trial and error. The aim was to get the coefficients with minimum
overshoot and the fastest settling time.

Table 4: Backstepping controller coefficients

Variable Roll Pitch Yaw Altitude

(a1, a2, a3, a4, a5, a6, a7, a8) (8.6, 6.9) (8.1, 3.9) (8.4, 4.1) (1.4, 5.9)

5 Simulations

In this section, reference tracking simulations were performed under white Gaussian noise, pink
noise, brown noise, blue noise, and purple noise. Simulations were made using the MATLAB program.
The block diagram of the designed system is given in Fig. 5. ϕd, θ d, ψ d are reference trajectories, and ϕd,
θ d, ψ d are output trajectories of the system. Colored noise is added to the output of the backstepping
controller. Within the scope of the study, the proposed backstepping controller was compared with the
classical PID controller and the Lyapunov-based controller. For this purpose, the rise time, overshoot,
and settling time data of all three controllers were compared. The obtained results prove the robustness
of the backstepping controller.

Figure 5: Block diagram of the designed system

5.1 Simulations under White Gaussian Noise

In this section, reference tracking simulations were performed under band-limited white Gaussian
noise. White Gaussian noise was given to the system with 0.01 power and 0.1 sampling time. Com-
parative robustness analysis was performed by obtaining rise time, overshoot and settling time data
of PID, Lyapunov-based and backstepping controllers. Fig. 6 shows reference tracking simulations
under white Gaussian noise.

Table 5 shows the time response data of the controllers under band-limited white Gaussian noise.
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(a) (b)

(c) (d)

Figure 6: (a) Roll angle reference tracking under band-limited white Gaussian noise; (b) pitch angle
reference tracking under band-limited white Gaussian noise; (c) yaw angle reference tracking under
band-limited white Gaussian noise; (d) altitude reference tracking under band-limited white Gaussian
noise

Table 5: Time response of controllers under band-limited white Gaussian noise

Controller Rise time (s) Overshoot (%) Settling time (s)

Roll angle PID 0.19 15.85 –
Roll angle Lyapunov-based 1.83 45.08 –
Roll angle backstepping 0.57 0.58 2.13
Pitch angle PID 0.1 47.01 –
Pitch angle Lyapunov-based 1.73 67.48 –
Pitch angle backstepping 0.77 1.09 2.56
Yaw angle PID 0.25 10.92 –
Yaw angle Lyapunov-based 0.73 13.43 –
Yaw angle backstepping 0.76 0.7 2.53
Altitude PID 0.49 14.37 6.44
Altitude Lyapunov-based 4.3 1.53 7.38
Altitude backstepping 1.39 0.45 3.6
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It is clear that the backstepping control structure is more robust to white Gaussian noise
compared to PID and Lyapunov-based controllers. It has the shortest settling time. While PID and
Lyapunov-based controllers show significant overshoot, the backstepping controller presents nearly
no overshoot. It can be concluded that the backstepping controller can track altitude and attitude
references better than PID and Lyapunov-based controllers. PID and Lyapunov-based controllers do
not have a settling time for roll, pitch, and yaw angle references, as they cannot catch and stay within
2% of the final reference value.

5.2 Simulations under Pink Noise

Pink noise is background noise in electronic devices. Pink noise with a sampling time of 0.1 s was
given to the system with the Colored Noise Generator block in Simulink. Simulations of controllers
under pink noise are presented in Fig. 7.

(a) (b)

(c) (d)

Figure 7: (a) Roll angle reference tracking under pink noise; (b) pitch angle reference tracking under
pink noise; (c) yaw angle reference tracking under pink noise; (d) altitude reference tracking under
pink noise

The comparison of rise time, overshoot, and settling time of PID, Lyapunov-based, and backstep-
ping controllers under pink noise is shown in Table 6.
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Table 6: Time response of controllers under pink noise

Controller Rise time (s) Overshoot (%) Settling time (s)

Roll angle PID 1.45 23.28 –
Roll angle Lyapunov-based 4.69 34 –
Roll angle backstepping 1.39 0.22 1.83
Pitch angle PID 1.12 43.9 –
Pitch angle Lyapunov-based 4.29 52.2 –
Pitch angle backstepping 1.5 1.23 2.30
Yaw angle PID 1.40 8.30 –
Yaw angle Lyapunov-based 9.85 8.7 –
Yaw angle backstepping 1.56 0.34 2.16
Altitude PID 1.47 15 4.93
Altitude Lyapunov-based 10.16 0 9.7
Altitude backstepping 2.14 0 2.99

The backstepping controller has the least overshoot of all reference tracking. When following the
references, it shows overshoots in the range of 0%–1%. It reaches a stable settling time value in a short
time in all references.

The PID control structure represents a faster rise time compared to the other two controllers.
However, it exhibits a higher overshoot compared to the backstepping controller and cannot reach a
stable settling time value in reference tracking other than the altitude reference.

The Lyapunov-based controller has the longest rise time and highest overshoot compared to the
other two controllers.

5.3 Simulations under Brown Noise

In this section, simulations were carried out under brown noise. The equivalent of brown noise in
nature is the noise made by waterfalls and rivers, heavy rainfall noise, and thunder. Brown noise with
a sampling time of 0.1 s was created with the Colored Noise Generator block in the Simulink. Fig. 8
shows the simulations made under brown noise.

Table 7 represents the time response data of the controllers under brown noise.

When the data in Table 7 is examined, albeit the PID control structure has a short rise time, it
shows the highest overshoot in all references. The settling time is longer than that of the backstepping
controller.

Lyapunov-based controller has the longest rise time. It does not show overshoot because the rise
time is very long. It also has the longest settling time. In yaw angle tracking, there is no settling time
as it cannot settle within ±2% of the reference.
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(a) (b)

(c) (d)

Figure 8: (a) Roll angle reference tracking under brown noise; (b) pitch angle reference tracking under
brown noise; (c) yaw angle reference tracking under brown noise; (d) altitude reference tracking under
brown noise

Table 7: Time response of controllers under brown noise

Controller Rise time (s) Overshoot (%) Settling time (s)

Roll angle PID 0.24 3.7 1.33
Roll angle Lyapunov-based 1.73 0 7.01
Roll angle backstepping 0.53 0.39 1.98
Pitch angle PID 0.11 40.9 5.3
Pitch angle Lyapunov-based 1.12 1.53 6.8
Pitch angle backstepping 0.76 0.33 2.33
Yaw angle PID 0.34 5.1 4.06
Yaw angle Lyapunov-based 5.26 0 –
Yaw angle backstepping 0.77 0.41 2.34
Altitude PID 0.49 14.3 6.47
Altitude Lyapunov-based 3.97 0 7.70
Altitude backstepping 1.43 0.5 3.51
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The backstepping control design presents an overshoot near 0%. Additionally, the settling time
is shorter than that of other controllers in all reference tracking except for the yaw angle. The
backstepping controller provides a more robust performance because it shows almost no overshoot
and has a shorter settling time than other controllers.

5.4 Simulations under Blue Noise

In this section, simulations were carried out under blue noise. The natural equivalent of blue noise
is similar to the hissing sound made by fountains. Blue noise was produced with a sampling time of
0.1 s using the Colored Noise Generator block in Simulink. Fig. 9 shows controller simulations under
blue noise.

(a) (b)

(c) (d)

Figure 9: (a) Roll angle reference tracking under blue noise; (b) pitch angle reference tracking under
blue noise; (c) yaw angle reference tracking under blue noise; (d) altitude reference tracking under blue
noise

Table 8 represents the time response data of the controllers under blue noise.

According to Table 8, the backstepping controller has the shortest rise time for roll, pitch, and yaw
angles. In addition, the backstepping controller shows the least overshoot in all reference types. The
only controller that has a settling time in all references is the backstepping controller. Other controllers
cannot settle within ±5% of the reference value due to noise. The PID controller has a settling time
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only in the altitude reference. Other references do not have data on settling time. The Lyapunov-based
controller has no settling time in any reference and shows the highest overshoot. When all these results
are evaluated, it turns out that the backstepping controller is the most robust of all.

Table 8: Time response of controllers under blue noise

Controller Rise time (s) Overshoot (%) Settling time (s)

Roll angle PID 1.12 113.3 –
Roll angle Lyapunov-based 1.74 307.7 –
Roll angle backstepping 0.42 10.4 9.05
Pitch angle PID 0.98 87.2 –
Pitch angle Lyapunov-based 3.49 272.9 –
Pitch angle backstepping 0.77 13.3 9.07
Yaw angle PID 1.1 98.4 –
Yaw angle Lyapunov-based 3.88 203.1 –
Yaw angle backstepping 0.75 8.1 6.87
Altitude PID 0.49 14.2 4.02
Altitude Lyapunov-based 3.96 50.7 –
Altitude backstepping 1.42 0.5 2.57

5.5 Simulations under Purple Noise

In this section, simulations were carried out under purple noise. The natural equivalent of purple
noise is a high-pitched hissing sound. Purple noise with a sampling time of 0.1 s was generated using the
Colored Noise Generator block in Simulink. Fig. 10 shows the simulations performed under purple
noise.

Table 9 represents the time response data of the controllers under purple noise.

When the values in Table 9 are viewed, the backstepping control structure has the fastest rise time
in all references except the altitude reference. The backstepping controller shows the lowest overshoot
in all reference tracking. Additionally, it has a settling time in all references. PID and Lyapunov-based
controllers have no settling time except for altitude reference because they cannot reach the ±5% range
of the reference value. In altitude reference, the backstepping controller has a much shorter settling
time than the other two controllers. In this case, it is clear that the backstepping control design is more
robust than the other two controllers under purple noise.
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(a) (b)

(c) (d)

Figure 10: (a) Roll angle reference tracking under purple noise; (b) pitch angle reference tracking under
purple noise; (c) yaw angle reference tracking under purple noise; (d) altitude reference tracking under
purple noise

Table 9: Time response of controllers under purple noise

Controller Rise time (s) Overshoot (%) Settling time (s)

Roll angle PID 1.04 95 –
Roll angle Lyapunov-based 1.77 145.8 –
Roll angle backstepping 0.41 12 9.85
Pitch angle PID 0.99 91.9 –
Pitch angle Lyapunov-based 2.22 158 –
Pitch angle backstepping 0.44 14.9 9.86
Yaw angle PID 0.88 84.3 –
Yaw angle Lyapunov-based 3.55 87.6 –
Yaw angle backstepping 0.77 8 6.86
Altitude PID 0.50 13.3 4.05

(Continued)
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Table 9 (continued)

Controller Rise time (s) Overshoot (%) Settling time (s)

Altitude Lyapunov-based 3.10 137 14.58
Altitude backstepping 1.42 0.45 2.93

6 Conclusion

In this research, nonlinear modeling of a quadrotor and robust backstepping controller design
resistant to white Gaussian noise and colored noises were carried out. A comparative robustness
analysis was performed with PID and Lyapunov-based controllers to prove the robustness of the
backstepping controller. These three controllers were compared under band-limited Gaussian white
noise, under pink noise, under brown noise, under blue noise, and under purple noise. Rise time,
overshoot, and settling time values of controllers were acquired under all these conditions. When
the results were examined, it was observed that the backstepping control structure presented the
least overshoot and the shortest settling time. PID and Lyapunov-based controllers did not have
settling time because they suffered excessive distortion under colored noises. PID and Lyapunov-based
controllers showed high overshoot under colored noises. Additionally, the backstepping controller is
the only controller with a settling time in all references. PID and Lyapunov-based controllers are less
robust to noise and, therefore, do not have a settling time in many reference tracking simulations.
Since the Lyapunov-based controller does not reach 90% of the given reference in almost any of
the simulations, there is no rise time data. When all these results are evaluated, it is clear that the
backstepping control is the most robust controller. It is the controller that shows the least overshoot
and has the shortest settling time under all conditions.

7 Limitations and Further Study

In this study, a robust backstepping controller is designed to control the altitude and attitude of a
nonlinear quadrotor model under colored noise. As seen in Fig. 1, simulations are performed under all
types of noise in the color spectrum. Time response data has proven that the proposed backstepping
controller is better than the classical PID and Lyapunov-based controllers. However, this study is a
simulation study and has no practical application. In the future, practical applications are planned to
be carried out with a real drone. In addition, it is intended to develop new methods that will enable
trajectory tracking in adverse weather conditions such as fog, haze, rain, and night using a quadrotor
with a camera and image processing techniques.
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