
Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.059284

ARTICLE

Hourglass-GCN for 3D Human Pose Estimation Using Skeleton Structure and
View Correlation

Ange Chen, Chengdong Wu* and Chuanjiang Leng

Faculty of Robot Science and Engineering, Northeastern University, Shenyang, 110169, China
*Corresponding Author: Chengdong Wu. Email: wuchengdong@mail.neu.edu.cn
Received: 02 October 2024 Accepted: 19 November 2024 Published: 03 January 2025

ABSTRACT

Previous multi-view 3D human pose estimation methods neither correlate different human joints in each view
nor model learnable correlations between the same joints in different views explicitly, meaning that skeleton
structure information is not utilized and multi-view pose information is not completely fused. Moreover, existing
graph convolutional operations do not consider the specificity of different joints and different views of pose
information when processing skeleton graphs, making the correlation weights between nodes in the graph and
their neighborhood nodes shared. Existing Graph Convolutional Networks (GCNs) cannot extract global and deep-
level skeleton structure information and view correlations efficiently. To solve these problems, pre-estimated multi-
view 2D poses are designed as a multi-view skeleton graph to fuse skeleton priors and view correlations explicitly
to process occlusion problem, with the skeleton-edge and symmetry-edge representing the structure correlations
between adjacent joints in each view of skeleton graph and the view-edge representing the view correlations between
the same joints in different views. To make graph convolution operation mine elaborate and sufficient skeleton
structure information and view correlations, different correlation weights are assigned to different categories of
neighborhood nodes and further assigned to each node in the graph. Based on the graph convolution operation
proposed above, a Residual Graph Convolution (RGC) module is designed as the basic module to be combined
with the simplified Hourglass architecture to construct the Hourglass-GCN as our 3D pose estimation network.
Hourglass-GCN with a symmetrical and concise architecture processes three scales of multi-view skeleton graphs to
extract local-to-global scale and shallow-to-deep level skeleton features efficiently. Experimental results on common
large 3D pose dataset Human3.6M and MPI-INF-3DHP show that Hourglass-GCN outperforms some excellent
methods in 3D pose estimation accuracy.
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1 Introduction

3D human pose estimation refers to estimating spatial coordinates of a set of specific joints of each
human instance from images or videos. It has promising applications in monitoring, virtual reality,
and human-robot interaction [1–4]. According to the view number of pose information adopted for
estimating 3D poses, 3D pose estimation methods can be classified into monocular methods [5–7] and
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multi-view methods [8–11]. Under monocular camera configuration, not only the depth information in
images is blurred but also partial joints are occluded [12,13], resulting in low pose estimation accuracy.
The above problems are alleviated in multi-view methods on account of utilizing multi-view pose
information.

To aggregate multiple-view pose information, some methods [14,15] projected estimated multi-
view 2D heatmaps into 3D grids [16,17] as the 3D pose constraint space and applied 3D convolution
neural networks [15,18] or Pictorial Structure Models [19] to estimate 3D poses. However, these meth-
ods associate the same joints in different views indirectly and require large amounts of computation,
parameters, and memory. Some methods lifted 2D poses of the same joint from different views to 3D
joint coordinates via the epipolar constraint [20,21] or differentiable Direct Linear Transform based
on the Singular Value Decomposition [22] or Shifted Iterations method [14] when camera projection
matrices were given. Although the triangulation method directly associates the same joints in different
views, the algebraic approach cannot learn sufficient correlations between multi-view poses. Moreover,
the correlations between different human joints are not exploited in above methods, illustrating that
skeleton structure information was not utilized. Skeleton structure information has been verified to be
beneficial to monocular 3D pose estimation [23–26] since skeleton priors alleviate the occlusion and
depth ambiguity problem. However, there has been no research introducing the skeleton graph into
multi-view 3D pose estimation.

Graph Convolutional Networks were introduced to process unstructured data such as skeleton
graphs. GCNs can be divided into spectral-based GCNs [27,28] and non-spectral-based GCNs [29],
spectral-based GCNs are suitable to deal with graphs with fixed topology such as the skeleton graph.
In general graph convolutional operations [30,31], all pairs of neighboring nodes share the same
correlation weight. To extract various graph features, neighborhood nodes of each node in a single-
view skeleton graph were divided into three categories in the graph convolution operations [32,33], with
different weights learned to represent the correlations between each node and its different categories of
neighborhood nodes. Nevertheless, the correlations between the same joints from different views are
not modelled. Additionally, extracted skeleton structure features are not elaborate enough since the
correlation weights between all nodes in the graph and their neighborhood nodes of a certain category
are still shared. For example, the shoulder, elbow, and hand joints have corresponding symmetric
neighborhood nodes. It is unreasonable for each pair of symmetric nodes to share the same correlation
weight because of the specificity of different joints. To be specific, these joints have different degrees
of freedom or derive from different views.

To extract high-level skeleton structure features to estimate 3D poses from 2D skeleton graphs,
some methods [34,35] stacked multiple graph convolution layers to perform on skeleton graphs
at the original scale. Transformer architecture [36] used multi-head graph self-attention blocks to
capture local information between adjacent nodes and long-range dependencies between joints in
the spatiotemporal domain. High-order graph convolution utilized multi-hop neighborhoods [37]
to capture dependencies between nodes at different hop distances. However, these methods make
it difficult to extract global skeleton features efficiently in computation complexity and network
parameters. To comprehensively analyze local-to-global skeleton graph structure, some methods
[38–40] adopted the high-to-low and low-to-high architectures to extract structure features of multi-
scale skeleton graphs. A local-to-global hierarchical graph convolution architecture [39,41] was
adopted to exploit multi-scale graph representation. However, these methods construct complicated
network structures or do not perform graph convolution operations in the low-to-high process to
obtain deep-level semantic information at various scales.
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To address the aforementioned problems, firstly, pre-estimated multi-view 2D poses are designed
into a multi-view skeleton graph to introduce skeleton graphs into multi-view pose estimation, which
fuses skeleton features and view correlations explicitly to process occlusion problem. As shown in
Fig. 1, the skeleton-edge and symmetry-edge in each view of skeleton graph respectively represent the
structure correlations between kinematically connected joints and the symmetry correlations between
limb joints, the view-edge represent the view correlations between the same joints in different views.
Subsequently, to express various skeleton structure priors and view fusion information, neighborhood
nodes of each node are divided into seven categories consisting of three physically connected joints,
one symmetry joint and three joints in the other views, with different correlation weights assigned
to different categories. Based on this, different weights are assigned to each node in the graph to
distinguish the characteristics of different joints for further representing more elaborate correlations
between all nodes and their neighborhood nodes of the same category. Finally, according to the graph
convolution operation proposed above, a Residual Graph Convolution (RGC) module is designed as
the basic module. Inspired by the Stacked Hourglass Network [42], RGC module is combined with
the simplified Hourglass architecture to construct the Hourglass-GCN as our 3D pose estimation
network. Hourglass-GCN is a symmetrical network composed of graph convolution, graph pooling,
graph upsampling and skip connection components which are all designed to be concise. Hourglass-
GCN processes three scales of multi-view skeleton graphs to extract local-to-global scale and shallow-
to-deep level skeleton semantic information and view correlations efficiently. Experimental results on
common large 3D human pose dataset Human3.6M and MPI-INF-3DHP show that Hourglass-GCN
outperforms some excellent methods in 3D pose estimation accuracy.

Main contributions of this study are summarized as follows:

(1) Pre-estimated multi-view 2D poses are designed as a multi-view skeleton graph, with the
skeleton-edge and symmetry-edge representing the skeleton structure information and the
view-edge explicitly modelling the correlations between different views of joints.

(2) To extract elaborate skeleton structure information and view correlations, neighborhood nodes
of each node are divided into seven categories, with different correlation weights assigned to
different categories of neighborhood nodes and different nodes in the graph to represent the
correlations between all nodes and their neighborhood nodes of several categories.

(3) A Residual Graph Convolution module is designed as the basic module and combined with the
simplified Hourglass architecture to construct a symmetrical and concise Hourglass-GCN as
our 3D pose estimation network. Hourglass-GCN processes three scales of multi-view skeleton
graphs to extract local-to-global scale and shallow-to-deep level graph features efficiently.
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Figure 1: Constructed multi-view skeleton graph. To avoid messy lines, only the symmetry-edge (black
line) and view-edge (red lines) associated with the right elbow joint (blue node) in one view, and all
skeleton-edges (grey lines) in multiple views are represented, other edges are omitted

2 Method

The general architecture of our multi-view 3D pose estimation model is described in Fig. 2. A set
of 2D joint locations are estimated from multiple views of synchronous images respectively through
an off-the-shelf trained cascaded pyramid network [43]. 2D poses are constructed to be a multi-view
skeleton graph as the input of Hourglass-GCN to predict multi-view 3D joint locations. The loss
function concludes the 3D pose loss and symmetry loss. Some individual components are introduced
in detail below.

Multi -view 
synchronous images Estimated 2D poses

Multi -view 
skeleton graph Estimated 3D poses

Trained cascaded 
pyramid network

Hourglass -
GCN 3D pose loss &

Symmetry loss
Main view

Figure 2: General framework of our 3D pose estimation model. Multi-view 2D poses are constructed
to be a multi-view skeleton graph as the input of our 3D pose estimation network Hourglass-GCN

2.1 Fusing Skeleton Structure and View Correlation

As shown in Fig. 1, multi-view 2D poses are constructed as a multi-view skeleton graph
ς = (V , ε, A) to fuse skeleton structure and view correlation, where V = {vpm|p = 1, . . . , P;
m = 1, . . . , M} denotes all nodes in the graph with P views and M joints in each view. ε = {

eij |i, j ∈ V
}

denotes all edges in the graph, representing the correlations between neighboring nodes. All edges are
divided into three parts: (1) skeleton-edge: direct physical connections between adjacent joints in each
view of skeleton graph; (2) symmetry-edge: indirect connections between symmetric limb joints; (3)
view-edge: connections between the same joints in different views of graphs. The skeleton-edge and
symmetry-edge represent the skeleton structure information, and the view-edge represent the multi-
view pose correlation information. A = (

aij

)
n×n

with n = P × M is the adjacency matrix, representing
the connectivity between all nodes, where aij = 1 if (i, j) ∈ ε and aij = 0 if (i, j) /∈ ε.
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2.2 Extracting Elaborate Multi-View Skeleton Graph Features

A common graph convolutional operation [31] in Eq. (1) is applied as the baseline for processing
multi-view skeleton graphs. X l ∈ R

n×Dil and X l+1 ∈ R
n×Dol denote the node features of the input graph

and output graph of the l-th graph convolution layer, respectively, where n denotes the node number
in the graph, Dil and Dol represent the feature dimensions for each node. The graph convolutional
operation involves the following steps. First, X l is multiplied by W l ∈ R

Dil×Dol , denoting a common
convolution operation on the input graph through Dol filters with kernel size (Dil, 1). Second, feature
of each node is updated by associating with the correlative features of its neighborhood nodes through
multiplying a normalized adjacency matrix Â = D−1/2ÃD−1/2, where Ã = IN + A and Dii = ∑

j Ã
ij
.

Finally, ReLU is adopted as the activation function σ (·) to increase the nonlinearity.

X l+1 = σ
(

ÂX lW l
)

(1)

In Eq. (1), all edges in the graph represent the same correlation weight W l. Considering the
diversity of spatial connection structures between joints and the differences between multi-view pose
information, neighborhood nodes of each node are first divided into four categories in each single-
view skeleton graph and then divided into three categories to distinguish the pose information from
other views. The multi-view skeleton graph in Fig. 2 depicts different colors of dots to denote different
categories of neighborhood nodes: 1) the center node itself (black); 2) a node (green) which is directly
connected to the center node in the skeleton and has a shorter path to the root node (grey); 3) a
node (red) which is directly connected to the center node and has a longer path to the root node; 4)
a node (yellow) which is symmetric with the center node; 5) a node (blue) that represents the same
joint as the center node in the second view; 6) a node (purple) that represents the same joint in the
third view; 7) a node (brown) that represents the same joint in the fourth view. The root node points
to the abdomen joint. The right elbow joint is taken as an example of the center node. Colorful solid
lines represent different correlations between one center node and its neighborhood nodes. Different
learnable weights are set to represent the correlations between each node and different neighborhood
nodes. Accordingly, the graph convolutional operation in Eq. (1) is transformed into Eq. (2), where c
is the category index, W l

c is the convolution kernel weight for the c-th category of neighborhood nodes.
Âc represents the adjacency matrix between n nodes and their c-th type of neighborhood nodes, where
Â = ∑7

c=1 Âc.

X l+1 = σ
(∑

c
ÂcX

lW l
c

)
(2)

However, the specificity of different nodes in the graph is not considered in Eq. (2). Therefore,
different learnable weights are assigned to each node when learning the correlations between all nodes
and a certain category of neighborhood nodes to further learn elaborate skeleton structure information
and view correlation information. Modified graph convolutional operation is written in Eq. (3), where
Fc ∈ R

n×Dol is a learnable weight matrix for n nodes and Dol−dimensional features per node, and �
denotes the dot product operation between two matrices.

X l+1 = σ
(∑

c
ÂcX

lW l
c � Fc

)
(3)

2.3 Hourglass-GCN for 3D Pose Estimation

Based on the graph convolution operation proposed above, a Residual Graph Convolution (RGC)
module is designed as the basic module. In Fig. 3a, the RGC module is composed of a GCN Unit



178 CMC, 2025, vol.82, no.1

and a Per-Node Feature Fusion (FF) layer. GCN Unit in Fig. 3b implements the weighted feature
fusion of neighboring nodes, where matrix multiplication operation is conducted between a learnable
weight matrix FC for n nodes and constant adjacency matrix ÂC to obtain the correlation weight matrix
between neighboring nodes, which represents the skeleton structure information and view correlations.
Per-Node FF layer in Fig. 3c performs 1 × 1 convolution to fuse multi-dimensional features for
each node.
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Figure 3: Structure of the Residual Graph Convolution (RGC) module. (b) and (c) represent the
detailed GCN Unit and Per-Node FF layer in (a),

⊙
represents the element-wise product operation,

⊗ represents the matrix multiplication operation

RGC is combined with the simplified Hourglass architecture to construct the Hourglass-GCN
as our 3D pose estimation network. In Fig. 4, Hourglass-GCN processes three scales of multi-
view skeleton graphs to extract local-to-global scale and shallow-to-deep level skeleton semantic
information and view correlations efficiently. High-to-low and low-to-high processes of the Hourglass-
GCN are symmetrical. Hourglass-GCN is composed of graph convolution, graph pooling, graph
upsampling, and skip connection components which are all designed to be concise. The graph pooling
layer transforms large scales of skeleton graphs into small scales of graphs to obtain local-to-global
graph representation. The first graph pooling layer pools the trunk and limb nodes separately. The
second pooling layer pools the five nodes obtained above in each view of skeleton graph. Skip layer
performs the element-wise sum operation between graph features at the same scale to preserve low-
level graph spatial information.

Skip layer
RGC module
Graph pooling
Graph upsampling
1x1 conv

Figure 4: Network architecture of the Hourglass-GCN which processes three scales of multi-view
skeleton graphs
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2.4 Loss Function

When training Hourglass-GCN, the loss function consists of the 3D pose loss LP and symmetry
loss LS. In Eq. (4), LP is defined as the mean square error of the estimated and ground truth 3D joint
positions, where j̃m

p and jm
p represent the estimated and ground truth 3D joint position of joint m in

view P.

In Eq. (5), LS measures the difference between corresponding bone pairs in the left and right body
parts to make generated 3D poses structurally reasonable, where Bb

P is the length of bone b in the left
body in view P and r (b) is the corresponding right bone. The final loss function L defined in Eq. (6)
is taken as the linear combination of LP and LS, where λP = 1 and λS = 0.01.

LP =
∑P

p=1

∑M

m=1

∥∥∥j̃m
p − jm

p

∥∥∥
2

2
(4)

LS =
∑P

p=1

∑
b

∥∥Bb
p − Br(b)

p

∥∥2

2
(5)

L = λPLP + λSLS (6)

3 Experiments

In this section, datasets and implementation details for training and evaluating the 3D pose
estimation network are introduced first, then ablation studies on some components of our model are
conducted. Finally, the results of our method are compared with some existing methods.

3.1 Dataset

Human3.6M Dataset. Human3.6M [44] is one of the largest datasets for 3D pose estimation,
containing 3.6 million images captured from four different camera views. There are eleven subjects
consisting of five women and six men performing fifteen typical activities in the indoor environment,
such as discussion, talking on the phone, walking, and eating. S1, S5, S6, S7 and S8 are used for
training and S9, S11 are used for testing. Ground truth 3D joint positions are recorded by the Vicon
Motion Capture System, and the ground truth 2D joint positions of each human instance and camera
parameters are also included in this dataset. The pose of each instance contains 17 specific joints. Most
work adopts the mean per joint position error (MPJPE) between the estimated and ground truth 3D
joint position as the performance evaluation index in millimeters (mm).

MPI-INF-3DHP. MPI-INF-3DHP [45] is a large 3D pose dataset containing more than 1.3
million frames deriving from four male and four female subjects taken from different views. Subjects
perform diverse actions in indoor and outdoor scenes. Test set contains about 3000 frames from 6
subjects. Image sequences of two subjects and training sets are from indoor scenes with green screens,
the other two sequences are from indoor scenes without green screens, the remaining two sequences
are from outdoor scenes. The Percentage of Correct Keypoints (PCK) within 150 mm and the Area
Under the Curve (AUC) are common test metrics.

3.2 Implementation Details

In our experiments, node features of the input graph were fed into a batch normalization layer to
keep data distribution consistent. Our model was implemented under the PyTorch framework, which
was trained for 200 epochs using Adam optimizer with a batch size of 256. The learning rate was
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initially set to 0.0005 and was reduced by 0.95 times after each epoch with a decay rate reduced by 0.5
times after every five epochs. All experiments were conducted on one GeForce GTX 1080 GPU with
CUDA 9.0.

3.3 Ablation Studies

3.3.1 Influence of the Number of Views in the Graph

To explore the influence of the number of views in our constructed graph on 3D pose estimation,
the number of views was set to one, two, three, and four, and experiments were conducted, respectively.
The seventh, sixth, and fifth categories of neighborhood nodes in the four-view graph were gradually
excluded with the view number decreasing from four to one. Table 1 shows the MPJPE of estimated
3D poses and the inference rate on a desktop computer with Intel(R) Core (TM) i7-7700 CPU @
3.60 GHz when the number of views takes different values. With the number of views increasing
from one to three, MPJPE is reduced from 51.55 to 30.55 mm, indicating that skeleton graphs with
more views contain richer pose information and view correlations to be beneficial to pose estimation
accuracy. When the view number changed from three to four, the pose error is reduced by only 0.9 mm,
meaning that the pose information and view correlations are close to saturation. Moreover, the increase
in the view number leads to the increased computational complexity of the model. The inference rate
decreases from 59 frames/s to 18 frames/s. To balance the estimation accuracy and inference rate, the
number of views was set to three in subsequent experiments.

Table 1: MPJPE and rate of inferencing 3D poses when the number of views in the graph takes different
values

One view Two views Three views Four views

MPJPE (mm) 51.55 40.27 30.55 29.65
Inference rate (frames/s) 59 45 27 18

3.3.2 Influence of the Types of Edges Contained in the Graph

To prove the effectiveness of a constructed skeleton graph, three variants of the three-view skeleton
graph were designed: a) A graph with no edge; b) A graph with the skeleton-edge; c) A graph with
the skeleton-edge and symmetry-edge. Experiments were conducted with graphs containing different
types of edges. Since pose errors of extremity joints are relatively larger than those of the other joints,
Table 2 shows pose errors of the hand and ankle joints and MPJPE to observe the influence of
various edges on pose estimation. When the graph contains no edge, pose errors of the hand and
ankle joints are larger than the errors in the graph with edges. Graph with no edge degenerates into
a set of discrete nodes, meanwhile, corresponding graph convolutional operation transforms into
ordinary convolution operation which cannot model joint correlations explicitly. With the skeleton-
edge adding to the graph, MPJPE is reduced from 38.22 to 33.96 mm to verify the promotion of
skeleton structure information between physically connected joints to pose estimation. With the
symmetry-edge added subsequently, MPJPE is reduced by 0.81 mm. Skeleton symmetry has few
constraints on pose estimation because of the weak symmetry of most human poses. Addition of the
view-edge reduce MPJPE by 2.6 mm, indicating that extracting explicit correlations between the same
nodes from different views completely fuse multi-view pose information.
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Table 2: Pose errors of the hand and ankle joints and MPJPE when there are different types of edges
in the graph

No edge Skeleton-edge Skeleton-edge &
Symmetry-edge

Skeleton-edge &
Symmetry-edge & View-edge

Left hand 48.48 44.47 44.11 38.61
Right hand 56.08 53.12 50.65 45.38
Left ankle 54.46 46.31 45.84 41.13
Right ankle 56.25 47.78 46.78 42.20
MPJPE 38.22 33.96 33.15 30.55

To explore the effect of various edges on pose estimation intuitively, Fig. 5 shows the normalized
correlation weights between the center nodes (take right elbow and left knee joints for example) and
their neighborhood nodes in three variants and proposed three-view skeleton graph. In Fig. 5a, center
nodes are affected by themselves since there are no edges in the graph. In Fig. 5b, addition of two
skeleton-edges makes the weight associated with the right elbow node itself reduce from 1 to 0.292,
indicating that adjacent joints contain more pose information than the center joint itself. In Fig. 5c,
correlation weights represented by the symmetry-edge are 0.215 and 0.229, which are smaller than the
other weights, confirming that the symmetry of limb joints is not strong in human poses. In particular,
joints with a higher degree of freedom have weaker symmetry constraints. In Fig. 5d, weights of the
newly added view-edge are larger than those of most other edges, indicating the significant relevance
between the same joints in different views, hence explicit view correlations are critical for multi-view
3D pose estimation.

3.3.3 Influence of the Diversity of Correlation Weights between Nodes

To validate the influence of the diversity of correlation weights between nodes in the graph
convolutional operation on 3D pose estimation, a variant of the graph convolutional operation
proposed in Section 2.2 was designed that neighborhood nodes were divided into three categories
including the nodes connected to the center node through the skeleton-edge, symmetry-edge and view-
edge to represent different correlation weights. In addition, all pairs of neighboring nodes shared
the same correlation weight in the baseline graph convolution. Based on Eq. (2) in Section 2.2,
neighborhood nodes in the three-view skeleton graph were divided into six categories. In Eq. (3), when
modeling the correlations between neighboring nodes in each of the six categories, adaptive weights
were assigned to 51 nodes in the three-view graph, so 306 kinds of weights were learned to represent
correlations between nodes.

When the diversity of correlation weights increases from 1 to 306, trends of the hand and ankle
joint pose estimation errors and the average error are shown in Fig. 6. Errors decrease continuously
as the diversity of weights increases. The average error is reduced by about 33% when the diversity
increases from 1 to 306, indicating that more diverse correlation weights between nodes can extract
more elaborate skeleton structure information and view correlations which are beneficial to multi-view
3D pose estimation.
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Figure 5: Normalized correlation weights between two joints and their neighborhood nodes in three
variant graphs and proposed three-view skeleton graph. To avoid clutter lines, only the edges of the
right elbow and left knee joints in one view are shown in (a)–(d), with different colors of solid lines
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Diversity of correlation weights

Po
se

 e
st

im
at

io
n 

er
ro

r (
m

m
)

20

30

40

50

60

70

80

1 3 6 306

Left hand
Right hand
Left ankle
Right ankle
Average

Figure 6: Pose estimation errors of the hand and ankle joints and the average error of all joints when
the diversity of correlation weights between nodes in the three-view skeleton graph is 1, 3, 6, and 306

Fig. 7 intuitively shows the influence of the diversity of correlation weights on the pose estimation.
In Fig. 7a, correlation weights between the center nodes and six categories of neighborhood nodes
are the same, so weights are all one-sixth. In Fig. 7b, sums of the correlation weights represented by
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three skeleton-edges, one symmetry-edge, and two view-edges are 0.429, 0.239, and 0.332, respectively.
The skeleton-edge plays a more important role than the view-edge and the symmetry-edge. In Fig. 7c,
different correlation weights are assigned to three skeleton-edges, where the weight (0.143) of the third
category of neighborhood node is bigger than the weight (0.130) associated with the second category,
indicating that the neighborhood node whose path to the root node is longer is more relevant to the
center node. Different weights represented by two view-edges confirm that the left knee joints in the
other two views contain different amounts of pose information about the joint in the main view. In
Fig. 7d, correlation weights related to the left knee node are entirely different from those related to the
right elbow node. Nodes in the graph have different characteristics, which should be distinguished to
obtain elaborate graph representation.
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Figure 7: Normalized correlation weights between the center nodes (take the right elbow and left
knee joint for example) and their neighborhood nodes. (a)–(d) respectively follow the baseline graph
convolution operation, the variant, and two graph convolutional proposed in Section 2.2. Different
colors of edges represent different weights

3.3.4 Influence of the Configurations of Hourglass-GCN

To explore the influence of several hyperparameters on the performance of Hourglass-GCN, a
comparison of test errors on Human3.6M under different configurations is listed in Table 3. As can
be seen, MPJPE decreases by 1.83 mm when the number of RGC modules contained in Hourglass-
GCN increases from 4 to 6. However, increasing the number of RGC to 8 and 10 results in an increase
in MPJPE from 30.55 to 30.75 and 30.92 mm, respectively. When the combination of node feature
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dimensions of three scales of multi-view skeleton graphs is (128, 256, 512), the model achieves the best
performance. Increasing the dimensions to (192, 384, 768) or reducing them to (64, 128, 256) results in a
performance degradation of 0.16 and 1.53 mm, respectively. Appropriate graph convolution depth and
graph feature width are necessary to obtain discriminant graph representation to avoid underfitting
and overfitting. Value change of batch size has a slight impact on MPJPE, and a batch size of 128
yields the best performance.

Table 3: MPJPEs on Human3.6M test set under various configurations of Hourglass-GCN

Number of RGC Graph feature dimensions Batch size MPJPE (mm)

4 (128, 256, 512) 128 32.38
6 (128, 256, 512) 128 30.55
8 (128, 256, 512) 128 30.75
10 (128, 256, 512) 128 30.92
6 (128, 256, 512) 256 30.67
6 (128, 256, 512) 64 30.60
6 (192, 384, 768) 128 30.71
6 (64, 128, 256) 128 32.08

3.3.5 Influence of the 3D Pose Estimation Network Structure

To demonstrate the superiority of proposed Hourglass-GCN, four variants were designed: (1)
ResGCN in Fig. 8a that stacked several RGC modules to perform on the origin-scale graph; (2)
MSGCN in Fig. 8b that utilized RGC modules to process multiple scales of skeleton graphs in the
high-to-low process and applied none graph convolution operation in the upsampling process; (3)
HourglassGCN-NoSkip that represented the Hourglass-GCN without skip layer; (4) HourglassGCN-
NoFF that represented the Hourglass-GCN without Per-Node FF layer. Four variants and Hourglass-
GCN respectively process three-view skeleton graphs to estimate 3D poses, obtained test errors on
Human3.6M are shown in Table 4.

The test error of ResGCN is larger than the other networks. It is difficult to extract global and
multi-scale graph features for ResGCN which only processes the single-scale skeleton graph. The
error of MSGCN is 1.37 mm larger than that of the Hourglass-GCN because MSGCN neglects the
upsampling process, thus not utilizing deep-level skeleton semantic information at multiple scales.
Errors of HourglassGCN-NoSkip and HourglassGCN-NoFF are respectively 1.21 and 1.53 mm
larger than that of the Hourglass-GCN. Since accurate graph spatial information is partially lost
during the downsampling process, skip layers transfer the spatial information from shallow layers to
deep layers. Besides, Per-Node FF layer fuses the multi-dimensional features of each node to generate
deeper graph node features.
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Figure 8: Variants of the Hourglass-GCN. (a) ResGCN; (b) MSGCN

Table 4: MPJPEs of four network variants and proposed Hourglass-GCN on Human3.6M test set

Network architecture MPJPE (mm)

ResGCN 33.89
MSGCN 31.92
HourglassGCN-NoSkip 31.76
HourglassGCN-NoFF 32.08
Hourglass-GCN 30.55

3.4 Quantitative Comparison with Existing Methods

Table 5 shows the quantitative comparison of our method with some existing 3D pose estimation
methods on Human3.6M. MPJPEs of GCN-based monocular methods are generally smaller than
common monocular methods, which is an inspiration to introduce skeleton structure information into
the multi-view 3D pose estimation to improve the estimation accuracy. The average MPJPE of existing
multi-view methods is 33.3 mm, confirming that fusing multiple views of pose information evidently
improves the pose accuracy when compared with monocular methods. When the view number is
four, our method achieves the minimum error of 29.4 mm, which is 3.9 mm smaller than the average
error of multi-view methods. This progress is owing to constructing a multi-view skeleton graph and
learning adaptive correlation weights between nodes to completely fuse multi-view pose information
and extract elaborate skeleton features.

Table 6 shows the comparison with some existing methods on MPI-INF-3DHP. It can be observed
that multi-view methods outperform monocular methods on account of richer pose information and
view correlation features provided by multi-view model input. In comparison to the best performing
multi-view method, our model exhibits relative improvements of 0.43% and 8.7% in terms of the PCK
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and AUC metrics on MPI-INF-3DHP, respectively, indicating that combining skeleton priors with
multi-view pose information is effective in improving the pose estimation accuracy.

Table 5: MPJPE between the estimated and ground truth 3D poses of different kinds of existing
methods and our method on Human3.6M, V represents the number of views in the graph, methods
marked by ∗ are based on GCNs. Best in bold, second best underlined

MPJPE Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait Walk. Walk WalkT. Avg
Monocular methods

Wehrbein et al. [5] 52.4 60.2 57.8 57.4 65.7 74.1 56.2 59.1 69.3 78.0 61.2 63.7 67.0 50.0 54.9 61.8
Xu et al. [6] 47.1 52.8 54.2 54.9 63.8 72.5 51.7 54.3 70.9 85.0 58.7 54.9 59.7 43.8 47.1 58.1
Li et al. [7] 43.8 48.6 49.1 49.8 57.6 61.5 45.9 48.3 62.0 73.4 54.8 50.6 56.0 43.4 45.5 52.7
Zhao et al.∗ [25] 45.2 50.8 48.0 50.0 54.9 65.0 48.2 47.1 60.2 70.0 51.6 48.7 54.1 39.7 43.1 51.8
Li et al.∗ [24] 47.9 50.0 47.1 51.3 51.2 59.5 48.7 46.9 56.0 61.9 51.1 48.9 54.3 40.0 42.9 50.5
Zou et al.∗ [26] 45.4 49.2 45.7 49.4 50.4 58.2 47.9 46.0 57.5 63.0 49.7 46.6 52.2 38.9 40.8 49.4
Lin et al.∗ [35] – – – – – – – – – – – – – – – 48.6

Multi-view methods

Luvizon et al. [9] 31.0 33.0 41.0 34.0 41.0 37.0 37.0 51.0 56.0 43.0 44.0 37.0 33.0 42.0 32.0 39.0
Huang et al. [18] 26.8 32.0 25.6 52.1 33.3 42.3 25.8 25.9 40.5 76.6 39.1 54.5 35.9 25.1 24.2 37.5
Gordon et al. [10] – – – – – – – – – – – – – – – 31.7
Qiu et al. [19] 28.9 32.5 26.6 28.1 28.3 29.3 28.0 36.8 42.0 30.5 35.6 30.0 28.3 30.0 30.5 31.2
He et al. [20] 29.0 30.6 27.4 26.4 31.0 31.8 26.4 28.7 34.2 42.6 32.4 29.3 27.0 29.3 25.9 30.4
Remelli et al. [14] 27.3 32.1 25.0 26.5 29.3 35.4 28.8 31.6 36.4 31.7 31.2 29.9 26.9 33.7 30.4 30.2

Ours∗

V = 1 48.0 50.2 48.9 51.9 53.2 61.7 48.8 48.1 59.3 67.0 52.4 48.2 55.6 38.8 41.2 51.6
V = 2 35.0 38.9 36.5 37.9 41.8 45.2 35.2 39.0 51.4 58.1 40.8 37.7 41.6 32.4 32.6 40.3
V = 3 27.0 30.2 28.0 28.3 33.2 32.9 27.3 28.5 36.7 39.0 31.9 28.3 32.8 27.1 27.1 30.6
V = 4 26.2 30.2 25.6 27.7 31.7 33.2 26.2 27.2 34.3 37.8 30.1 27.5 32.8 25.2 25.4 29.4

Table 6: Comparison with existing methods on MPI-INF-3DHP using PCK and AUC as evaluation
metrics. V represents the number of views of the model input. Best in bold, second best underlined

Method PCK AUC

Chen et al. [12] (V = 1) 87.9 54.0
Zheng et al. [13] (V = 1) 88.6 56.4
Wu et al. [8] (V = 4) 91.2 55.0
Li et al. [11] (V = 4) 92.9 56.1
Ours (V = 3) 93.3 61.3



CMC, 2025, vol.82, no.1 187

3.5 Qualitative Results of Hourglass-GCN

To evaluate the pose estimation performance of our model intuitively, qualitative 3D pose
estimation results of some images in the Human3.6M test set are shown in Fig. 9. Three-view
synchronized images are input into our model to estimate multi-view 3D poses. For simplicity, only
the 3D poses corresponding to the middle-view images are displayed in the last two rows of Fig. 9.
Estimated 3D skeleton graphs have high similarity with the target skeleton graphs. 3D positions of
some occluded joints in the image can be estimated accurately on account of the precise skeleton
structure and view correlation information. We also explored some instances with failure poses. The
right two columns of Fig. 9 show failure cases from the “Sitting Down” action in Human3.6M. As can
be seen, under some circumstances of severe occlusion or unusual human poses, estimated poses have
low similarity with the target poses.

View 1

View 2

View 3

Target 3D poses

Estimated 3D poses

Figure 9: Qualitative results of our method on the Human3.6M test set. The first three rows list
synchronized images from three views, and the last two rows display the ground truth and estimated
middle-view 3D poses

4 Conclusion

In this paper, to fuse skeleton priors and view correlations to tackle the occlusion problem in multi-
view 3D pose estimation, estimated multi-view 2D poses are designed into a multi-view skeleton graph.
Different correlation weights are assigned to different categories of neighborhood nodes and further
assigned to each node in the graph to make graph convolution operation mine elaborate skeleton
graph features. Based on the proposed graph convolution operation, a Residual Graph Convolution
module is designed as the basic module of a symmetric and concise Hourglass-GCN as our 3D pose
estimation network to process three scales of multi-view skeleton graphs for extracting local-to-global
scale and shallow-to-deep-level skeleton features efficiently. Experimental results on the Human3.6M



188 CMC, 2025, vol.82, no.1

and MPI-INF-3DHP datasets indicate that our method outperforms existing methods in 3D pose
estimation accuracy and estimates 3D positions of some occluded joints accurately. The limitation of
our method is that temporal information is not exploited to further tackle the occlusion problem. The
performance of our method can potentially be improved by adding the long-term temporal consistency
between frames.
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