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ABSTRACT

App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve
their products. Automating the analysis of these reviews is vital for efficient review management. While traditional
machine learning (ML) models rely on basic word-based feature extraction, deep learning (DL) methods, enhanced
with advanced word embeddings, have shown superior performance. This research introduces a novel aspect-
based sentiment analysis (ABSA) framework to classify app reviews based on key non-functional requirements,
focusing on usability factors: effectiveness, efficiency, and satisfaction. We propose a hybrid DL model, combining
BERT (Bidirectional Encoder Representations from Transformers) with BiLSTM (Bidirectional Long Short-Term
Memory) and CNN (Convolutional Neural Networks) layers, to enhance classification accuracy. Comparative
analysis against state-of-the-art models demonstrates that our BERT-BiLSTM-CNN model achieves exceptional
performance, with precision, recall, F1-score, and accuracy of 96%, 87%, 91%, and 94%, respectively. The significant
contributions of this work include a refined ABSA-based relabeling framework, the development of a high-
performance classifier, and the comprehensive relabeling of the Instagram App Reviews dataset. These advance-
ments provide valuable insights for software developers to enhance usability and drive user-centric application
development.
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ML Machine Learning
DL Deep Learning
SRs Software Requirements
FRs Functional Requirements
NFRs Non-Functional Requirements
SRS Software Requirements Specifications
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ABSA Aspect-Based Sentiment Analysis, used to analyze sentiments associated
with specific aspects

BERT Bidirectional Encoder Representations from Transformers, a language
model for NLP tasks

CNN Convolutional Neural Network, used for extracting local features in text
classification

LSTM Long Short-Term Memory network, a type of RNN that captures sequen-
tial dependencies

BiLSTM Bidirectional Long Short-Term Memory, captures context from both for-
ward and backward directions

BERT-BiLSTM-CNN Proposed hybrid model combining BERT, BiLSTM, and CNN for compre-
hensive text classification

1 Introduction

Requirements engineering is a human-centered process in software development that involves
eliciting, analyzing, specifying, and validating software requirements (SRs). SRs play a crucial role
in guiding the development of a software system and are typically categorized into two main types:
Functional requirements (FRs) and non-functional requirements (NFRs). FRs define the software’s
behavioral aspects, specifying what the system should do. NFRs, on the other hand, cover quality
attributes that the system must possess, such as availability, performance, usability, security, scalability,
and more [1]. Identifying NFRs early in the development process is essential for accelerating progress
and reducing future modification costs. Additionally, prioritizing NFRs ensures the final application
meets desired quality standards, resulting in a better user experience [1,2].

Among NFRs, usability holds particular importance. The ISO 9241-11 standard defines usability
as “the extent to which a product can be used by specified users to achieve specified goals with
effectiveness, efficiency, and satisfaction in a specified context of use” [3].

When evaluating software usability, the following key factors are typically assessed:

1. Effectiveness (Completeness): This measures a user’s ability to accurately and thoroughly
complete a task within a given context [3]. Completeness, as a component of effectiveness,
ensures the system meets all defined requirements and provides comprehensive functionality
to address user needs.

2. Efficiency (Correctness): This evaluates the resources required for a user to achieve a goal
accurately and completely [4]. Correctness focuses on the internal accuracy and error-free
operation of the system, emphasizing resource optimization and waste minimization [3].

3. Satisfaction (Rating): This refers to the absence of discomfort and the overall positive experi-
ence users have with the product. User ratings serve as a key indicator, reflecting satisfaction
with the software’s effectiveness and its ability to meet user needs.

Usability plays a pivotal role in determining the quality of software applications. By enhancing
user satisfaction, reducing errors and frustrations, and improving both effectiveness and efficiency,
usability drives adoption and retention. Organizations that prioritize usability throughout the devel-
opment process are more likely to deliver high-quality applications that meet user expectations and
foster positive user experiences.

App reviews are valuable resources for eliciting user requirements, playing a crucial role in shaping
software design and future releases. These reviews provide developers with essential insights into users’
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needs and preferences [1]. Incorporating feedback from app reviews is key to engaging new users and
improving retention rates. As a result, app reviews have become one of the most important sources of
information for developers during the maintenance phase.

Martens et al. categorize reviews into four main maintenance tasks: bug reports, feature requests,
user experience, and ratings [5]. Similarly, Guzman et al. identify seven categories of maintenance feed-
back, including bug reports, feature strengths, feature shortcomings, user requests, praise, complaints,
and usage scenarios [6]. Users not only provide star ratings but also offer detailed reviews that include
feature requests, bug reports, and their overall experiences with the application [7,8]. By analyzing and
classifying these reviews, developers can gain insights that improve software quality and identify gaps
in features [9].

Intelligence-based techniques, including machine learning (ML), deep learning (DL), and data
mining, have become prevalent in analyzing and classifying app reviews. Much of the research has
focused on sentiment analysis, classifying reviews into predefined sentiment categories—typically
positive, negative, or neutral [10]. It is also common practice to classify app reviews into SRs [10].
However, recent studies indicate that NFRs have received limited attention and are often inadequately
understood or considered during development.

To our knowledge, classifying app reviews based on usability factors—such as effectiveness,
efficiency, and satisfaction—using metrics like completeness, correctness, and ratings has not been
thoroughly explored. Furthermore, no studies have focused on sentiment analysis-based classification
of these usability factors. Using a structured classification approach, such as aspect-based sentiment
analysis (ABSA), could help developers, requirements engineers, and product maintenance teams more
effectively identify, prioritize, and address usability issues. This approach would ultimately improve
product quality and enhance user satisfaction over time.

ABSA is an advanced technique that goes beyond traditional sentiment analysis by focusing on
specific aspects or components of an entity. While traditional sentiment analysis provides an overall
sentiment polarity for an entire text, ABSA identifies and analyzes the sentiment associated with
distinct aspects or features mentioned within the text. ABSA is widely applied across various domains,
including social media monitoring, market research, and brand management, where it offers valuable
insights into customer opinions and feedback. These insights enable organizations to make data-driven
decisions to enhance their products and services.

The ABSA process typically involves two main steps: 1) Aspect Identification: Identifying the
specific aspects or features being discussed in the text, and 2) Sentiment Classification: Determining
the sentiment polarity (positive or negative) associated with each identified aspect. ML and DL models
are commonly employed for ABSA, often trained on labeled datasets that link specific aspects to
sentiment polarities.

While app reviews provide rich feedback for developers, existing methods primarily focus on
general sentiment analysis or functional requirements, often neglecting non-functional usability
metrics critical for user satisfaction. Despite advancements in sentiment analysis, the classification
of app reviews based on usability metrics remains underexplored.

This study addresses this gap by leveraging advanced hybrid deep learning models to analyze and
classify app reviews effectively. This research introduces a novel ABSA framework for classifying app
reviews based on key usability metrics: Effectiveness (measured by completeness), efficiency (measured
by correctness), and satisfaction (measured by rating). ABSA allows for a deeper understanding of
sentiment by analyzing reviews at the level of specific usability features. This insight is invaluable for
businesses aiming to improve their products, manage reputation, tailor marketing campaigns, and
make informed decisions based on customer feedback.



952 CMC, 2025, vol.82, no.1

The study also compares various state-of-the-art DL models, including bidirectional encoder
representations from transformers (BERT) and hybrid architectures combining BERT with recurrent
neural networks (RNNs) and convolutional neural networks (CNNs), to determine the most effective
approach for ABSA classification of app reviews.

This research aims to answer the following research question (RQ):

RQ: Can DL models, particularly hybrid architectures combining BERT with RNNs and/or
CNNs, deliver a high-performing ABSA classifier for app reviews based on usability factors and their
corresponding metrics?

The major contributions in this research are as follows:

• Advanced Usability Insights: This study introduces the ABSA relabeling framework based on
usability metrics, providing valuable insights into user experiences. This framework enables
software developers and requirements engineers to make informed decisions to enhance app
functionality and user satisfaction.

• Advancements in Usability Classification: A high-performance ABSA classifier is proposed by
integrating BERT with BiLSTM and CNN layers. This hybrid model outperforms existing
methods, offering a powerful tool for developers focusing on user-centric application devel-
opment.

• Comprehensive ABSA Dataset Relabeling: The Instagram App Reviews dataset [11] has been
extensively relabeled with aspect labels tied to specific usability metrics and sentiment polarities.
This enriched dataset provides new opportunities for research and practical applications in
sentiment and usability analysis.

The remainder of this paper is organized as follows: Section 2 provides a comprehensive review
of existing research on NFR classification derived from SRSs and app reviews. Section 3 outlines the
methodology, highlighting the key components and the rationale behind the study. Section 4 presents
and discusses the results. Finally, Section 5 concludes the paper and offers insights into its limitations
and potential directions for future research.

2 Related Work

This section reviews the existing literature on the classification of NFRs derived from SRSs and
app reviews.

2.1 Classification of NFRs from SRSs

Kurtanovic et al. [12] developed a supervised ML algorithm using support vector machine (SVM),
achieving a precision of 93% and a recall of 90% in identifying NFR classes. A systematic review [13]
highlighted both the challenges and benefits of using ML for security-related NFR identification,
revealing that supervised learning (SL) is the most widely used ML approach, appearing in 17 studies
(71%). SVM was found to be the most popular ML algorithm overall.

In the evaluation of security requirements, one study [14] found high accuracy rates for both
supervised and unsupervised ML algorithms. Long short-term memory (LSTM) networks achieved
the highest accuracy rate (84%) among unsupervised algorithms, while the Boosted Ensemble algo-
rithm performed best among supervised methods, reaching 80% accuracy. When comparing word
embeddings, a study [15] concluded that FastText is a promising model, achieving the highest F1-score
of 92.8%.
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Another study [16] proposed an enhanced method for classifying NFRs, utilizing a CNN-based
multi-label classifier to automatically categorize stakeholder requirements into different NFR classes.
This method aimed to minimize misclassification and improve NFR management. In [17], a two-
phase DL system was implemented to classify SRs as either FRs or NFRs. The two-phase system
demonstrated greater robustness, achieving 95.7% accuracy in the binary classification phase and
93.4% accuracy in the NFR/FR multiclass classification phase.

A different approach was proposed in [18], where a method for automating the extraction of
requirement sentences from SRS documents was developed using natural language processing (NLP).
The study achieved precision values ranging from 64% to 100% and recall values from 64% to 89%,
indicating the effectiveness of the technique. Additionally, a comparative analysis of ML methods
in [19] showed that a CNN-based approach achieved a remarkable 99% accuracy on the PROMISE
dataset. Haque et al. [20] developed an automated methodology for NFR classification, comparing
different feature extraction methods and ML algorithms. Among the classifiers, the SGD SVM
achieved the best results, with precision, recall, F1-score, and accuracy of 0.66, 0.61, 0.61, and 0.76,
respectively. Notably, the TF-IDF feature extraction technique at the character level outperformed
other methods. In [21], Fahmi et al. compared ML techniques for identifying NFRs statements in
SRS documents. The SVM approach consistently outperformed others, with an average accuracy rate
of 96%. Another study [22] found that using TF-IDF followed by logistic regression (LR) produced
the best performance in classifying SRs, with an F-measure of 0.91 for binary classification, tying
with SVM. For NFR classification, the F-measure was 0.74, and for general classification, it was
0.78. Shreda et al. [23] analyzed feature extraction methods and classification algorithms for NFRs,
concluding that the CNN approach outperformed traditional ML methods, achieving a precision of
92%, compared to 87% for traditional ML techniques. Rahman et al. [24] applied an RNN-LSTM
model to classify NFRs, achieving a recall of 71.5%, precision of 71.7%, F1-score of 70%, and accuracy
of 71.5%, demonstrating strong performance in NFR classification. Baker et al. [25] utilized a CNN
model for NFR classification, achieving high performance with precision ranging from 82% to 94%,
recall from 76% to 97%, and F-scores between 82% and 92%.

In [26], Khayashi et al. explored the use of DL methods for classifying SRs using the PURE
dataset. While emphasizing the need to enhance the accuracy and efficiency of the sorting process in
computer systems, the study did not provide a comprehensive comparison of different techniques,
nor did it delve deeply into real-world challenges. The paper introduced a key approach called
science-informed deep learning (ScIDL), which integrates scientific knowledge with DL techniques.
In [27], the authors compared and evaluated the effectiveness of NLP and ML techniques in software
engineering. They concluded that these techniques offer a viable solution for supporting system
analysts during requirement elicitation, achieving precision and recall metrics exceeding 95%. A study
in [28] proposed a transfer learning approach, where XLNet outperformed other models, reaching
an accuracy, precision, recall, and F1-score of 0.91489. The work presented in [29] introduced a
supervised categorization approach, obtaining accuracy rates between 85% and 98% in the security,
performance, and usability domains. In [30], the authors compared various methods and concluded
that multinomial naive Bayes was the most practical option, delivering excellent precision, recall, and
execution time. Finally, in [31], the authors explored feature extraction methods and supervised ML
algorithms, proposing three combinations that achieved recall and precision values above 0.90, along
with fast execution times.

In [32], Rahman et al. proposes an approach to classify NFRs in SRS documents. This approach
leverages pre-trained word embedding models to extract relevant features, which are then fed into
various neural network architectures, including RPCNN, RPBiLSTM, RPLSTM, and RPANN. The
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findings demonstrate that integrating pre-trained GloVe models with RPBiLSTM yields the highest
performance, achieving an average AUC score of 96%, along with a precision of 85% and recall
of 82%. In [33], Saroth et al. proposed a multi-label classification approach for categorizing NFRs
into product, process, and external factors. They develop four ML algorithms—LR, SVM, DT,
and K Nearest Neighbor—as well as LSTM model for classification. The results indicate that the
LSTM model performs best, achieving an accuracy of 99.69%, making it highly effective for NFR
classification.

In [34], Rahman et al. proposed a DL framework for automating the classification of NFRs
in SRS documents. The framework aims to address the limitations of traditional ML approaches,
which often rely on manual feature extraction. By leveraging DL techniques, the proposed framework
automatically extracts features from the text data, leading to improved performance. The results
demonstrate that the DReqANN model outperformed alternative models, achieving precision between
81% and 99.8%, recall between 74% and 89%, and F1-scores between 83% and 89%. In [35],
García et al. specifically focused on enhancing the classification of NFRs using a CNN. It highlights
the significance of preprocessing techniques, sampling strategies, and the use of pre-trained word
embedding models such as FastText, GloVe, and Word2Vec. The best performance was achieved with
the Word2Vec + CNN combination, which yielded a recall of 0.88, precision of 0.90, and an F1-
score of 0.88. Table 1 summarizes the key findings from the preceding studies on classifying NFRs
from SRSs.

Table 1: Summary of related work on classifying NFRs from SRSs

Ref. NFR Usability attributes METHOD Best meth. RESULT Accuracy

Usability Other Sat. Corr. Comp. ML DL Precision Recall F1

[12] � � � � � � SVM 93% 90% — —

[13] � � SVM — — — 71%

[14] � � � LSTM — — — 84%

[15] � � SVM, NB, and LR — — 92.8% —

[16] � � � � � � CNN — — — 70%

[17] � � � LSTM, BiLSTM, GRU, and
CNN

— — — 93.4%

[18] � � � NLP 64%–100% 64%–89% — —

[19] � � CNN — — — 94%

[20] � � SGD SVM 0.66 0.61 0.61 0.76

[21] � � SVM — — — 96%

[22] � � SVM — — 0.91 —

[23] � � � CNN 92% — — —

[24] � � � � RNN-LSTM 71.7% 71.5% 70% 71.5%

[25] � � � CNN 82%–94% 76%–97% 82%–92% —

[26] � � � ScIDL — — — —

[27] � � Multinomial NB, SVM, LR, and
DT

95% 95% — —

[28] � � � XLNet 0.914 0.914 0.914 0.914

[29] � � � Supervised categorization
approach

— — — 85%–98%

[30] � � � Multinomial Naive Bayes — — — —

[31] � � � SVM with TF-IDF, LR with POS
and BoW, and MNB with BoW

0.92 0.90 — —

[32] � � � GloVe & RPBiLSTM 85% 82% — —

[33] � � � LSTM — — — 99.69%

[34] � � DReqANN 81%–99.8% 74%–89% 83%–89% —

[35] � � � Word2Vec + CNN 88% 90% 88% —

Note: Sat: Satisfaction, Corr: Correctness, Comp: Completeness.
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2.2 Classification NFRs from App Reviews

In one study, a combination of four classification techniques—bag-of-words (BoW), term
frequency-inverse document frequency, Chi-square, and AUR-BoW—was utilized alongside three
machine learning algorithms (naive Bayes, J48, and Bagging). The findings indicate that using AUR-
BoW with Bagging achieved the highest F-measure of 71.8%, with a precision of 71.4% and a recall
of 72.3% [36].

Another research paper [37] proposed a method called AUG-AC, which enhances requirement
classification in app reviews by utilizing app changelogs. The experimental results demonstrated that
the AUG-AC approach improved the accuracy of requirement classification, achieving a precision of
0.656, a recall of 0.678, and an F-measure of 0.652.

In another study by Aslam et al. [38], a CNN-based approach for classifying app reviews was
introduced. This method incorporates both textual and non-textual information, including sentiment
analysis and reviewer history. The results showed significant improvements: average recall increased
from 69.40% to 93.94%, average precision rose from 75.72% to 95.49%, and the F-measure increased
from 72.41% to 94.71%.

Another research effort [39] explored the use of app changelogs to categorize requirements in app
reviews, highlighting that SVM is the most widely used technique for NFR classification. The study
found that supervised learning outperforms unsupervised learning, achieving over 70% accuracy.

Additionally, a study [40] demonstrated that the SVM algorithm, in combination with TF-IDF
feature extraction, exhibited the best performance for classifying Functional Requirements (FRs),
achieving precision and recall rates of 0.92 and 0.93, respectively.

A paper employing text mining techniques to extract and classify NFR descriptions into nine
categories found that the Naive Bayes classifier provided the most accurate predictions for all types
of NFRs except one. AUC (Area Under the Curve) is a performance measurement for classification
models at various threshold settings. Specifically, it refers to the area under the Receiver Operating
Characteristic (ROC) curve, which plots the true positive rate against the false positive rate. The AUC
value ranges from 0 to 1: An AUC of 1 indicates perfect model performance, where the model can
perfectly distinguish between the positive and negative classes. The highest AUC values were reported
for the types “A”, “LF”, “L”, “MN”, “O”, “PE”, “SC”, and “US”, with scores of 0.97, 0.83, 0.97,
0.95, 0.81, 0.86, 0.88, and 0.77, respectively [41].

Dave’s study [42] utilized the TF-IDF technique alongside various machine learning algorithms
(SVM, SGD, RF) and NLP methods to accurately identify SRs. The SGD algorithm achieved the
highest accuracy of 83%.

A hybrid BERT-RCNN model introduced in another study demonstrated superior classification
performance by leveraging BERT for word embeddings and combining BiLSTM and CNN layers.
The BERT-RCNN approach achieved precision, recall, and F1-scores of 0.90, 0.87, and 0.88,
respectively [43].

In a different study [44], the loop-matching classification technique (LMC) achieved a precision of
74.2%, a recall rate of 82.5%, and an F-measure of 78.1% for categorizing user comments into NFRs.

Moreover, a study [45] presented a shallow ARTIFICIAL NEURAL NETWORK (ANN) for
NFR classification, which achieved higher accuracy compared to existing approaches using evolution-
ary algorithms and decision tree classifiers. The results indicated that the ANN technique achieved a
precision of 0.469, a recall rate of 0.471, an F-measure of 0.458, and an accuracy of 0.590.
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The authors in [46] addressed the need for extracting NFRs from app reviews in mobile app
stores through a two-phase approach. The first phase involved qualitative analysis of 6000 app reviews
using binary relevance (BR) classification, incorporating features such as text preprocessing, sentiment
scores, and app categories. Results indicated that 40% of the reviews expressed NFRs, with different
app categories showing distinct types of NFRs. In the second phase, an optimized dictionary-based
multi-label classification approach was developed, achieving an average precision of 70% and an
average recall of 86% in identifying NFRs from 1100 reviews. This study demonstrated the effectiveness
of capturing NFRs from app reviews and suggested integrating this information into the design and
development workflow of mobile applications to enhance overall quality.

A study [47] introduced multi-label active learning as a solution for classifying mobile app reviews.
Using the MAREVA algorithm and RF classifier, they achieved a high F-measure score of 0.75. Recent
research indicates a growing interest in applying machine learning techniques to categorize NFRs, with
SVMs emerging as the most commonly used technique. Supervised learning approaches generally yield
better results than unsupervised learning methods, with accuracy rates exceeding 70% [48].

In [49], Yahya et al. focus on detecting and classifying NFRs—specifically usability, reliability,
performance, and supportability—in user reviews of mobile apps. The authors propose a hybrid
DL model that combines recurrent neural network (RNN) and long short-term memory (LSTM)
architectures to effectively analyze textual reviews in Arabic. They conducted experiments using
various ML classifiers and DL models, including artificial neural networks (ANN) and bidirectional
LSTM. The results indicate that the hybrid model outperformed all other models, achieving a
remarkable F1-score of 96%.

In [50], Kaur et al. proposed a transfer learning approach using BERT to classify multi-label app
reviews into four NFR categories: Dependability, Performance, Supportability, and Usability. The
proposed model outperforms traditional machine learning techniques such as binary relevance and
keyword-based approaches. By leveraging BERT’s pre-trained language understanding capabilities,
the model achieves an F1-score of 0.74, demonstrating its effectiveness in classifying NFRs from user
reviews.

In [51], Rahman et al. investigated algorithmic hybridization, a technique that combines multiple
machine learning algorithms to enhance performance by leveraging their individual strengths. The
study proposes a framework that integrates Long Short-Term Memory (LSTM) and Bidirectional
LSTM (BiLSTM) networks with Artificial Neural Networks (ANN) to classify NFRs into categories,
specifically focusing on maintainability, operability, performance, security, and usability. To address
the challenge of limited labeled NFR data, the authors compare the performance of their integrated
model against standalone LSTM and BiLSTM models. Using two datasets containing 1000 NFRs, the
experimental results demonstrate the effectiveness of the proposed hybrid approach. The BiLSTM-
ANN model achieved superior performance with precision, recall, and F1-score values of 0.8, 0.78,
and 0.78, respectively. Table 2 summarizes the key findings from these studies related to the extraction
of NFRs from app reviews.

Table 2: Summary of related work on the classification NFRs from app reviews
Ref. NFR Usability attributes METHOD Best meth. RESULT Accuracy

Usability Other Sat. Corr. Comp. ML DL Precision Recall F1

[36] � � � AUR-BoW with Baggin 71.4% 72.3% 71.8% —
[37] � � � AUG-BoW 0.656 0.678 0.652 —
[38] � � CNN 95.49% 93.94% 94.71% —
[39] � � � SVM — — — 70%
[40] � � � SVM + TF-IDF 0.92 0.93 0.92 —

(Continued)
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Table 2 (continued)

Ref. NFR Usability attributes METHOD Best meth. RESULT Accuracy

Usability Other Sat. Corr. Comp. ML DL Precision Recall F1

[41] � � AUC — — — —
[42] � � � SGD — — — 83%
[43] � � BERT-RCNN 0.90 0.87 0.88 —
[44] � � LMC 74.2% 82.5% 78.1% —
[45] � � � ANN 0.469 0.471 0.458 0.590
[46] � � BR + dictionary-based

multi-label classification
70% 86% — —

[47] � � MAREVA + RF — — 0.75 76%
[48] � � � � � � SVM — — — 70%
[49] � � � � � � SVM — — 96% —
[50] � � � � � � � MNoR-BERT — — 0.74% —
[51] � � BiLSTM-ANN 80% 78% 78% —

Note: Sat: Satisfaction, Corr: Correctness, Comp: Completeness.

2.3 Research Gap

Despite significant progress in classifying app reviews, there remains a notable gap in the liter-
ature regarding the classification of app reviews based on usability factors, specifically effectiveness,
efficiency, and satisfaction, within the context of ABSA. These usability factors are widely recognized
as key contributors to software quality [52]. By effectively classifying app reviews according to these
factors, developers can gain valuable insights into user experiences and identify areas for improvement,
ultimately enhancing app development. This research addresses this gap by providing the ABSA
framework that accurately classifies app reviews based on the identified usability factors: effectiveness
(measured by completeness), efficiency (measured by correctness), and satisfaction (measured by
rating).

3 Research Methodology

This section outlines the methodology employed for classifying app reviews within the framework
of ABSA for usability metrics. Fig. 1 presents a visual representation of this methodology.

Figure 1: Research methodology
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The process begins with the careful collection of an appropriate app review dataset, taking into
account both the volume of samples and the variety of review types. Next, the dataset is specifically
labeled for ABSA classification. Following this, the data undergoes preprocessing to ensure it is
correctly formatted for subsequent analysis. Once the data is thoroughly prepared, the focus shifts
to developing and training classification models. These models are rigorously evaluated, with their
performance analyzed to identify the most effective model for ABSA classification of usability metrics
derived from app reviews. A detailed breakdown of each step is presented in the following subsections.

3.1 Dataset Collection

The Instagram App Reviews dataset was selected for this research due to its comprehensive nature
and diversity. It consists of app reviews from the Google Play Store, providing valuable insights into
user sentiment and satisfaction.

The dataset spans from 12 September 2018, to 27 July 2023, and includes three columns:

• Reviews: The text content of app reviews.
• Ratings: The star ratings assigned by users.
• Dates: The dates on which the reviews were submitted.

The dataset was collected by scraping reviews from the Google Play Store and encompasses a total
of 209,956 reviews, which are publicly available on Kaggle [11]. The latest update was recorded on 29
July 2023. This dataset offers a robust foundation for analyzing user experiences and preferences.

For this research, a subset of 5000 reviews was extracted from the dataset. This sample size
was chosen to provide a diverse and representative sample of usability feedback while maintaining
computational feasibility. This number ensures the inclusion of sufficient variation in sentiment
polarity and usability aspects, facilitating effective model training and evaluation.

Fig. 2 showcases a sample from the Instagram App Reviews dataset before it was labeled according
to the ABSA framework.

Figure 2: Sample from instagram app reviews dataset before ABSA-based labeling

3.1.1 Dataset Distribution and Visualization

To visualize the dataset’s structure, the distribution of key usability metrics—completeness,
correctness, and satisfaction—was plotted using a histogram. As shown in Fig. 3, this visual repre-
sentation illustrates the distribution across these categories, highlighting both positive and negative
feedback for each metric. The histogram reveals a balanced distribution within each category, with
comparable counts for positive and negative feedback. However, when examining the distribution
across categories, there is a noticeable skew towards user satisfaction, with 2594 reviews, followed by
correctness with 930 reviews, and completeness with 527 reviews. This distribution reflects real-world
user behavior, where users typically prioritize expressing satisfaction, followed by identifying errors,
and finally commenting on the app’s completeness.
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Figure 3: Distribution of usability metrics in the dataset: completeness, correctness, and satisfaction

3.1.2 Dataset Splitting

The dataset was partitioned using a combination of a 70:30 split and 10-fold cross-validation.
Initially, the data was randomly divided into a training set (70%) for model training and a test set
(30%) for evaluating the model on unseen data. The training set was then further split into 10 equal
folds to facilitate cross-validation and identify the optimal model configuration.

This combined approach maximizes data utilization and enhances model robustness by mitigating
overfitting, reducing bias, and providing a more accurate estimate of performance. Such techniques
are standard practices in machine learning and deep learning to ensure the development of reliable
and effective models.

3.2 Dataset Labeling Process

The labeling process was carried out by three experts with backgrounds in software engineering
and user experience. Their expertise ensured a comprehensive understanding of usability factors
relevant to applications. The experts systematically reviewed each app review to identify key usability
aspects and their corresponding sentiment polarities (positive or negative) using the following method-
ology:

1. Develop Labeling Guidelines: To ensure consistency and reliability, clear and comprehensive
guidelines were created. These guidelines specified the criteria for labeling each review and
included:

1.1 Usability Aspects Identification Guidelines: The guidelines detailed how to identify
aspects related to key usability factors: Effectiveness (measured by Completeness), Effi-
ciency (measured by Correctness), and Satisfaction (measured by Rating) [52].
1.2 Sentiment Polarities Assignment Guidelines: Each usability factor was associated with
specific sentiment polarities. The guidelines outlined the criteria for determining whether
sentiment was positive or negative for each factor.
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2. Provide Illustrative Examples: To assist experts in applying the guidelines, illustrative exam-
ples for each usability factor with corresponding sentiment polarities were included. These
examples served as practical references, ensuring a standardized approach during the labeling
process.

3. Solve Inter-Rater Variations: To enhance inter-rater reliability, all reviews were labeled inde-
pendently by the three reviewers. Any discrepancies were resolved through discussion and
voting.

By following this structured and well-defined labeling methodology, the reliability and validity of
the dataset labeling process were enhanced.

3.2.1 Guidelines for Identifying Aspects and Sentiments Related to Effectiveness, as Measured by
Completeness, in App Review Labeling

Definition: Effectiveness refers to the degree to which an app achieves its intended purpose, with
Completeness as a metric indicating whether the app includes all necessary features and functions as
expected [53].

Labeling Process

1. Identify Aspect:
• Look for mentions of features, functions, or overall capabilities of the app, specifically

addressing whether the review discusses the app’s ability to meet user needs in terms of
completeness.

• Consult the guideline rules detailed in Table 3 to understand how to accurately identify
the effectiveness factor.

• Refer to the keywords in Table 4 to aid in the accurate identification of the effectiveness
factor.

2. Sentiment Analysis:
• Consult the guideline rules detailed in Table 3 to understand how to classify the

sentiments expressed by users regarding the effectiveness factor of the application.
• Refer to the keywords in Table 4 to assist in the accurate classification of sentiment

related to the effectiveness factor.
• Determine the sentiment expressed towards the app’s completeness and assign a senti-

ment label based on the tone:
– Positive: The review indicates satisfaction with the completeness of features.
– Negative: The review indicates dissatisfaction due to missing features or function-

ality.

Examples of Reviews and Labels

Review: “The app has all the features I need for photo editing; it’s very comprehensive!”

Label: Aspect: Effectiveness

Metric: Completeness

Sentiment: Positive

Review: “While the app is helpful, I find it lacking in some areas”.

Label: Aspect: Effectiveness

Metric: Completeness

Sentiment: Negative
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Table 3: Guideline rules for identifying and categorizing the effectiveness aspect and its associated
sentiment from app reviews

Aspect Sentiments

Positive Negative

Effectiveness (Completeness) If the review highlights aspects
of efficiency, high quality, or
excellent service.

If the review points out
missing features or
functionalities that hinder
the app’s effectiveness.

If the review mentions that the
app includes all necessary
features or functions that meet
user needs.

If the review expresses
frustration over a lack of
options or inadequate
functionality.

If the review mentions that the
app effectively assists users in
achieving their goals or
completing tasks.

If the review reflects issues
with accuracy, poor
service, or complexity.

If the review mentions
failures in completing
tasks, incomplete steps, or
low quality.

Table 4: Keywords for identifying and categorizing the effectiveness aspect and its associated sentiment
from app reviews

Aspects Sentiments

Positive Negative

Effectiveness (Completeness) Enhance, completed tasks,
successfully completed, steps
complete, productivity, speed,
faster, expertise, improvement,
quickly, high quality, low cost,
more efficient, reduce costs,
better serve, easy, small steps,
clear, accuracy, effective, task
completion, accuracy
(performance).

Unenhanced, uncomplete
tasks, completion failed,
steps incomplete, less
productivity, delay, slower,
less experience, problems,
slow, low quality, high
costs, less efficient,
expensive costs, bad server,
complex, long steps,
unclear, inaccurate.
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3.2.2 Guidelines for Identifying Aspects and Sentiments Related to Efficiency, as Measured by Correct-
ness, in App Review Labeling

Definition: Efficiency refers to how well an app performs its tasks in terms of speed and resource
utilization, while Correctness indicates whether the app functions as intended without errors or issues
[53].

Labeling Process

1. Identify Aspect:
• Look for mentions of the app’s performance in executing tasks accurately and quickly.

Focus on whether the review addresses the correctness of the app’s functionalities.
• Consult the guideline rules detailed in Table 5 to understand how to accurately identify

the efficiency factor.
• Refer to the keywords listed in Table 6 to aid in the accurate identification of the

efficiency factor.
2. Sentiment Analysis:

• Consult the guideline rules in Table 5 to understand how to accurately classify the
sentiments expressed by users regarding the efficiency factor of the application.

• Refer to the keywords detailed in Table 6 for assistance in classifying sentiment related
to the efficiency factor.

• Determine the sentiment expressed towards the app’s efficiency and correctness, and
assign a sentiment label based on the tone:

– Positive: The review indicates satisfaction with the app’s speed and accuracy.
– Negative: The review indicates dissatisfaction due to errors or slow performance.

Table 5: Guideline rules for identifying and categorizing the efficiency aspect and its associated
sentiment from app reviews

Aspects Sentiments

Positive Negative

Efficiency (Correctness) If the review includes words or
phrases that indicate the
product’s functionality is
operating as expected.

If the review includes words or
phrases that suggest issues or
problems with the product’s
core features.

If the review contains terms that
suggest the app is easy to use
and performs tasks correctly.

If the review mentions bugs,
errors, or crashes that affect
the app’s functionality.

If the review highlights
consistency in the app’s
performance without errors

If the review highlights that
the app is non-engaging or
fails to capture user interest
due to performance issue.
If the review highlights that
the app is non-engaging or
fails to capture user interest
due to performance issue.
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Table 6: Keywords for Identifying and categorizing the efficiency aspect and its associated sentiment
from app reviews

Aspects Sentiments

Positive Negative

Efficiency (Correctness) Few bugs, few errors, quickly
perform tasks, easy to use,
engaging, effective, clean and
intuitive design, seamless, more
enjoyable, correct tasks,
easiness.

More bugs, more errors,
slow, hard, non-engaging,
non-effective, not clear, not
seamless.

Examples of Reviews and Labels

Review: “The app runs smoothly and processes my requests accurately every time”.

Label: Aspect: Efficiency

Metric: Correctness

Sentiment: Positive

Review: “I often encounter errors when trying to save my work; it’s very frustrating”.

Label: Aspect: Efficiency

Metric: Correctness

Sentiment: Negative

3.2.3 Guidelines for Identifying Aspects and Sentiments Related to Satisfaction, as Measured by Rating,
in App Review Labeling

Definition: Satisfaction refers to how pleased users are with an app, while rating serves as a metric
indicating users’ overall evaluations, often represented through star ratings or numerical scores [53].

Labeling Process

1. Identify Aspect:
• Look for mentions of overall user satisfaction with the app. This includes direct

references to the user’s satisfaction based on their rating, as well as implied satisfaction
derived from their experiences.

• Consult the guideline rules detailed in Table 7 to understand how to accurately identify
the satisfaction factor.

• Refer to the keywords outlined in Table 8 to aid in the accurate identification of the
satisfaction factor.

2. Sentiment Analysis:
• Consult the guideline rules detailed in Table 7 to understand how to classify the

sentiments expressed by users regarding the satisfaction factor of the application.
• Refer to the keywords provided in Table 8 to assist in accurately classifying the sentiment

related to the satisfaction factor.
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• Determine the sentiment expressed towards the app’s satisfaction and rating, and assign
a sentiment label based on the tone:

– Positive: The review indicates a high level of satisfaction or enjoyment.
– Negative: The review indicates dissatisfaction or disappointment.

Table 7: Guideline rules for identifying and categorizing the satisfaction aspect and its associated
sentiment from app reviews

Aspects Sentiments

Positive Negative

Satisfaction (Rating) If the review contains
affirmative statements about the
user experience.

If the review contains clear
statements of dissatisfaction

If the review contains
descriptors that indicate a
pleasant user experience.

If users indicate they have
stopped using the app or are
considering uninstalling it.

If the review includes a
recommendation to others.

If the review expresses that the
app fails to engage the user.

If the rating is 5, 4, or 3, the user
is completely satisfied with the
app.

If the rating is poor, 1 or 2

Table 8: Keywords for identifying and categorizing the satisfaction aspect and its associated sentiment
from app reviews

Aspects Sentiments

Positive Negative

Satisfaction (Rating) User satisfaction, enjoyable, attention
(engagement), pleasurable, exciting,
entertaining, motivating, challenging,
enhancing sociability, enhancement of
understanding, supporting creativity,
cognitively stimulating, fun, cutesy,
gratifying, rewarding, emotionally
fulfilling, experience, good, favorite,
the best, helpful, perceived enjoyment,
interest.

Unsatisfying, boring,
unpleasant, frustrating,
annoying, gimmicky,
childish, confusing, bad,
patronizing.

Examples of Reviews and Labels

Review: “I absolutely love this app! It makes my life so much easier”.

Label: Aspect: Satisfaction

Metric: Rating
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Sentiment: Positive

Review: “I’m not very happy, I expected more from this app”.

Label: Aspect: Satisfaction

Metric: Rating

Sentiment: Negative

Fig. 4 showcases samples from the Instagram App Reviews dataset after being labeled using the
ABSA framework. The labels highlight the sentiment associated with the identified key usability
factors, which include effectiveness (measured by completeness), efficiency (measured by correctness),
and satisfaction (measured by the assigned rating).

Figure 4: Sample from instagram app reviews dataset after ABSA-based labeling

3.3 Dataset Preprocessing

To ensure that the review text is clean, consistent, and well-suited for subsequent analysis and
modeling, the following preprocessing pipeline was implemented:

First: Text Cleaning

• Lowercasing: All review text was converted to lowercase for consistency.
• Removal of Punctuation: All punctuation marks were removed.
• Removal of Stop Words: Common words (such as “the,” “and,” and “is”) that carried little

semantic meaning were removed.

Second: Text Normalization

Stemming technique was used to transform the words in the review text to their root forms.

Third: Word Tokenization

The review text was split into tokens using word-based tokenization.

3.4 Developing Classification Models

This research aims to identify the most effective model architecture for categorizing app reviews
based on their alignment with key usability factors, as evaluated using the corresponding usability
metrics within the ABSA framework. To achieve this, the study explores advanced hybrid DL model
architectures, with the BERT model serving as the foundational base for embedding textual features.
BERT was selected for its groundbreaking capabilities in the field of NLP. Its bidirectional contextual
understanding allows for nuanced interpretation of language, while its robust generalization from
extensive pre-training on large datasets enhances its effectiveness. Furthermore, BERT’s flexibility
for fine-tuning and its state-of-the-art performance across a variety of NLP tasks solidify its position
as a leading choice in the domain.

The hybrid DL models explored in this research include BERT as a baseline, BERT paired
with CNNs (BERT-CNN), BERT paired with LSTM networks (BERT-LSTM), BERT paired with
bidirectional LSTM networks (BERT-BiLSTM), and BERT paired with both BiLSTM and CNN
(BERT-BiLSTM-CNN). A detailed explanation of each model is provided below:
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1. BERT-Base: The BERT model was implemented using the TensorFlow framework, featuring
a robust architecture designed for effective ABSA. It begins with an input layer that processes
tokenized review text, accompanied by attention masks that differentiate valid tokens from
padding. The core of the model is the BERT layer, utilizing the TFBertForSequenceClassifi-
cation architecture, initialized with pretrained weights from the “bert-base-uncased” variant.
This layer effectively processes the input to generate rich contextual embeddings. The output
embeddings are then passed through a fully connected layer, followed by a log softmax
output layer that generates log probabilities for each usability factor, facilitating multi-class
classification.

2. BERT-CNN: This model integrates a BERT layer with Convolutional Neural Network (CNN)
components for effective text classification. It starts with an input layer and a BERT layer, sim-
ilar to those in the BERT-Base model. The output is then passed through a 2D convolutional
layer with 13 feature maps and a kernel size of (3, 768), followed by batch normalization and
ReLU activation. Max pooling reduces the dimensionality, and dropout is applied to mitigate
overfitting. The pooled output is flattened and fed into a fully connected layer that maps to
the specified number of classes. Finally, a log softmax output layer generates log probabilities
for each class, facilitating multi-class classification tasks.

3. BERT-LSTM: This model combines a BERT layer with an LSTM layer for effective text
classification. Similar to the BERT-Base architecture, it begins with an input layer and atten-
tion masks that represent tokenized sentences, followed by the BERT layer. The contextual
embeddings produced by the BERT layer are then passed to an LSTM layer, which processes
the input with a hidden size of 128, utilizing two layers without bidirectionality. A dropout
layer with a rate of 0.1 helps prevent overfitting. The output from the last time step of the
LSTM is fed into a fully connected layer that maps to the specified number of classes, followed
by a log softmax output layer that produces log probabilities for each class. This architecture
effectively captures sequential dependencies in text.

4. BERT-BiLSTM: The architecture of this model closely resembles that of BERT-LSTM, with
a notable distinction: the LSTM layer is configured for bidirectionality, allowing the model
to process input sequences in both forward and backward directions, capturing contextual
information from both the past and the future. The output from the BiLSTM layer is passed
through a fully connected layer, followed by a log softmax output layer that produces log
probabilities for each class, enabling effective multi-class classification. This enhancement
improves the model’s ability to understand nuances in text.

5. BERT-BiLSTM-CNN: This model architecture combines the strengths of BERT, BiLSTM,
and CNN layers for enhanced text classification. It begins similarly to the BERT-Base model,
with an input layer and attention masks that feed into the BERT layer, generating rich
contextual embeddings. These embeddings are then processed by a BiLSTM layer to capture
contextual information from both past and future sequences. The output from the BiLSTM is
subsequently fed into a CNN layer, where a ReLU activation function introduces non-linearity
to extract local features from the sequence. Following the CNN layer, batch normalization is
applied to stabilize and accelerate training, while max pooling reduces the dimensionality of the
feature maps. To mitigate overfitting, a dropout layer is applied after the pooling layer. Finally,
the model includes a fully connected layer that maps the pooled features to the specified number
of classes, followed by a log softmax output layer that generates log probabilities for each
class. This comprehensive architecture leverages the strengths of BERT, BiLSTM, and CNN,
making it particularly effective for complex tasks such as sentiment analysis and sequence
classification.
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The architecture of the BERT-BiLSTM-CNN model, identified as the best-performing model in
Section 4, is illustrated in Fig. 5, highlighting its key components.

Figure 5: Architecture of the BERT-BiLSTM-CNN model

Fig. 5 illustrates the architecture of the BERT-BiLSTM-CNN model, showcasing the sequential
flow from input text tokenization to the final classification output. Key components include the BERT
layer for contextual embedding, the BiLSTM layer for capturing sequential dependencies, the CNN
layer for feature extraction, and the fully connected layer for classification.

3.5 Performance Metrics

Evaluating classification models for usability metrics in app reviews requires a combination of
key performance metrics: accuracy, precision, recall, and F1-score. Together, these metrics provide a
comprehensive understanding of the model’s ability to classify sentiments associated with usability
factors, including effectiveness, efficiency, and satisfaction.

• Accuracy measures the overall rate of correct classifications and provides a general sense
of reliability. However, it can be misleading for imbalanced datasets, which are common in
sentiment classification tasks.

• Precision evaluates the proportion of true positive predictions out of all predicted positives,
reflecting the model’s ability to minimize false positives.

• Recall measures the proportion of true positives out of all actual positives, ensuring that critical
sentiments are not missed.

• The F1-score, as the harmonic mean of precision and recall, balances these metrics and is
particularly effective in handling imbalanced datasets.
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These metrics collectively offer a robust and interpretable measure of classifier performance,
guiding the selection of models capable of reliably capturing nuanced sentiments in app reviews.
Naser et al. [54] and Botchkarev [55] emphasize their importance in applications like app review
classification, where detecting sentiment polarity across diverse usability factors is critical.

Presented below are the formulas corresponding to these metrics:

Accuracy = (TP + TN)

(TP + TN + FP + FN)
(1)

Recall = TP
(TP + FN)

(2)

Precision = TP
(TP + FP)

(3)

F1 − score = 2
(

Precision × Recall
Precision + Recall

)
(4)

where:

• TP (True Positive): Correctly predicted positive cases.
• TN (True Negative): Correctly predicted negative cases.
• FP (False Positive): Incorrectly predicted positive cases.
• FN (False Negative): Incorrectly predicted negative cases.

4 Results and Discussion

The results of evaluating various hybrid DL architectures, summarized in Table 9 and visually
represented in Fig. 6, reveal important insights into their performance. Although the BERT-Base
model achieved a high precision score of 0.86, its low recall of 0.55 indicates significant challenges
in identifying relevant sentiments within the reviews. This suggests that, despite its capabilities, BERT-
Base may not be sufficiently fine-tuned for the nuances of the ABSA framework in app review
classification, highlighting the need for hybrid approaches to enhance its effectiveness.

Table 9: Results of the hybrid DL models evaluated in this study

Model Precision Recall F1-score Accuracy

BERT-Base 0.86 0.55 0.67 0.77
BERT-CNN 0.78 0.78 0.78 0.78
BERT-LSTM 0.76 0.74 0.75 0.74
BERT-BiLSTM 0.76 0.78 0.77 0.78
Proposed model: BERT-BiLSTM-CNN 0.96 0.87 0.91 0. 94

In contrast, all dual hybrid models that paired BERT with a single DL architecture—namely,
BERT-CNN, BERT-LSTM, and BERT-BiLSTM—demonstrated promising results, particularly in
recall. This improvement indicates their enhanced ability to capture relevant instances compared to
standalone models. Each hybrid model achieved F1-scores around 0.75, showcasing their effectiveness
in balancing precision and recall. However, their performance still fell short of that achieved by the
trio hybrid model, BERT-BiLSTM-CNN.
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Figure 6: Visualization of the performance of hybrid DL models

The BERT-BiLSTM-CNN hybrid model emerged as the standout performer, achieving impressive
metrics: a precision of 0.96, a recall of 0.87, an F1-score of 0.91, and an accuracy of 0.94. This
model’s ability to integrate BERT’s contextual embeddings with the sequential processing capabilities
of BiLSTM and the feature extraction power of CNNs allows it to capture both global context and
local patterns in app reviews, resulting in a more comprehensive understanding of user sentiment.

To evaluate the efficacy of the ABSA-based methodology and the hybrid architecture, the
proposed BERT-BiLSTM-CNN model was analytically compared against state-of-the-art app review
classification models that categorize reviews based on NFRs. These models typically classify reviews
into primary NFR types or granular metrics, such as bug reports, feature requests, and user experi-
ences, offering valuable insights for defining NFRs.

This comparative analysis addresses the lack of existing research on classifying app reviews
using usability factors within the ABSA framework. Table 10 presents the results of this analysis,
visually represented in Fig. 7. The findings demonstrate that the proposed model, despite the increased
complexity of the ABSA classification framework, consistently outperforms existing methods across
all evaluation metrics, including precision, recall, F1-score, and accuracy.

Table 10: Comparative performance of the proposed models across metrics

Ref. Method Precision Recall F1 Accuracy

[31] AUR-BoW with Baggin 0.714 0.723 0.718 —
[32] AUG-BoW 0.656 0.678 0.652 —
[33] CNN 0.9549 0.9394 0.9471 —
[34] SVM — — — 0.70
[35] SVM + TF-IDF 0.92 0.93 0.92 —
[36] AUC — — — —

(Continued)
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Table 10 (continued)

Ref. Method Precision Recall F1 Accuracy

[37] SGD — — — 0.83
[38] BERT-RCNN 0.90 0.87 0.88 —
[39] LMC 0.742 0.825 0.781 —
[40] ANN 0.469 0.471 0.458 0.590
[41] BR + dictionary-based

multi-label classification
0.70 0.86 — —

[42] MAREVA + RF — — 0.75 0.76
[43] SVM — — — 0.70
Proposed model BERT-BiLSTM-CNN 0.96 0.87 0.91 0. 94

Figure 7: Visualization of the comparative performance of the proposed models across metrics

Table 10 further highlights the superior performance of the BERT-BiLSTM-CNN model, which
achieves an F1-score of 91% and an accuracy of 94%. This performance is attributed to its hybrid archi-
tecture, combining BERT’s contextual embeddings with BiLSTM’s sequential learning capabilities and
CNN’s efficient feature extraction. In contrast, traditional machine learning models, such as Random
Forest and Logistic Regression, underperform due to their reliance on manual feature engineering,
limiting their ability to process complex textual data. Similarly, standalone BiLSTM or CNN models,
while effective in some areas, lack the contextual richness provided by pre-trained embeddings like
BERT, reducing their ability to capture nuanced sentiments and usability aspects.

These findings emphasize the importance of hybrid architectures in tackling the complexities of
ABSA, particularly in domains where usability metrics are critical. However, limitations remain in
terms of computational cost and reliance on labeled datasets, which may hinder scalability.
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Notably, the BERT-BiLSTM-CNN model significantly surpasses traditional machine learning
models, such as SVM, ANN, AUR-BoW with bagging, and LMC. Compared to other deep learning
models, the hybrid architecture also demonstrates superior performance. However, in comparison
to the CNN model proposed in [33], the results are comparable in terms of precision, though the
model in [33] achieves better recall. This discrepancy may stem from the inherent complexity of ABSA
classification and the multimodal approach employed in [33], which enhances the CNN model’s ability
to capture a broader range of features.

The primary research question in this study aimed to evaluate the effectiveness of the proposed
hybrid deep learning architecture (BERT-BiLSTM-CNN) in classifying app reviews based on usability
metrics within the ABSA framework. The results clearly demonstrate that the BERT-BiLSTM-CNN
model significantly outperforms other configurations, achieving a precision of 96%, recall of 87%, F1-
score of 91%, and accuracy of 94%. These metrics highlight the model’s ability to accurately capture
user sentiments and usability feedback, addressing the research question by confirming the efficacy
of hybrid architectures in sentiment analysis. Furthermore, the superior performance of the model
validates the feasibility of using such advanced techniques for improving user-centric application
development.

5 Conclusions

This research successfully identifies and evaluates advanced hybrid deep learning models for
classifying app reviews based on usability metrics within the ABSA framework. The proposed BERT-
BiLSTM-CNN model outperformed other models and state-of-the-art techniques, achieving precision
of 96%, recall of 87%, F1-score of 91%, and accuracy of 94%. These results emphasize the advantages
of hybrid architectures in sentiment analysis, providing a robust foundation for future advancements.

The insights derived from this research are invaluable for organizations seeking to refine their
products and services. By adopting the ABSA framework and leveraging the BERT-BiLSTM-CNN
model, businesses can gain a deeper understanding of user sentiments associated with specific usability
factors. This knowledge enables targeted improvements in app features, driving higher user satisfaction
and long-term customer loyalty. However, scalability challenges and computational demands may
impact real-world implementation, requiring further optimization.

The BERT-BiLSTM-CNN model demonstrated superior performance, achieving a precision of
96%, recall of 87%, F1-score of 91%, and accuracy of 94%. This model surpassed other configurations,
including BERT-CNN, BERT-LSTM, and BERT-BiLSTM. These results underscore the model’s
capability to effectively balance precision and recall, ensuring comprehensive coverage of both positive
and negative sentiments related to usability factors. While these results are promising, some challenges
and limitations need to be addressed for broader applicability.

Despite these promising results, potential limitations include scalability challenges when applied
to larger datasets or across diverse languages. Additionally, the model’s reliance on labeled data can
restrict adaptability to new domains where labeled data may be limited or unavailable. Furthermore,
real-time processing demands may require significant computational resources, potentially increasing
deployment costs.

Future research could focus on enhancing the BERT-BiLSTM-CNN model’s performance by
integrating additional layers, such as attention mechanisms or transformer-based enhancements, to
improve its ability to handle complex and nuanced app reviews. Expanding the dataset to include
app reviews from diverse platforms—such as social media, e-commerce websites, and industry-specific
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feedback systems—could further improve the model’s generalizability and robustness. These advance-
ments would address scalability challenges and optimize the model for real-world applications, making
it adaptable to a broader range of user feedback scenarios.

To ensure clarity and accessibility, Table 11 outlines the metrics applied to evaluate model
performance and usability factors, ensuring a comprehensive understanding of their relevance.

Table 11: List of metrics and their definitions

Metric Definition

Model performance metrics Accuracy The proportion of correct predictions (TP and TN)
out of all predictions

Perception The proportion of true positives out of all predicted
positive cases; TP/(TP+FP)

Recall The proportion of true positives out of all actual
positives; TP/(TP + FN)

F1-score Harmonic mean of precision and recall, providing a
balanced metric: 2 ∗ (Precision ∗
Recall)/(Precision+Recall)

Usability factors metrics Completeness Metric for Effectiveness, indicating how fully an
app meets user needs

Correctness Metric for Efficiency, reflecting the accuracy and
reliability of an app’s performance

Rating Metric for Satisfaction, representing user ratings or
scores

In conclusion, this study introduces a robust hybrid deep learning model for classifying app
reviews within the ABSA framework. This approach not only enhances the ability to analyze user
feedback but also provides a practical tool for improving app design, boosting customer satisfaction,
and fostering long-term user engagement.
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