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ABSTRACT

With the rapid advancement of visual generative models such as Generative Adversarial Networks (GANs) and
stable Diffusion, the creation of highly realistic Deepfake through automated forgery has significantly progressed.
This paper examines the advancements in Deepfake detection and defense technologies, emphasizing the shift from
passive detection methods to proactive digital watermarking techniques. Passive detection methods, which involve
extracting features from images or videos to identify forgeries, encounter challenges such as poor performance
against unknown manipulation techniques and susceptibility to counter-forensic tactics. In contrast, proactive
digital watermarking techniques embed specific markers into images or videos, facilitating real-time detection and
traceability, thereby providing a preemptive defense against Deepfake content. We offer a comprehensive analysis of
digital watermarking-based forensic techniques, discussing their advantages over passive methods and highlighting
four key benefits: real-time detection, embedded defense, resistance to tampering, and provision of legal evidence.
Additionally, the paper identifies gaps in the literature concerning proactive forensic techniques and suggests future
research directions, including cross-domain watermarking and adaptive watermarking strategies. By systematically
classifying and comparing existing techniques, this review aims to contribute valuable insights for the development
of more effective proactive defense strategies in Deepfake forensics.
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DCGAN Deep Convolutional GAN
WGAN Wasserstein GAN
PGGAN Progressive Growing of GAN
STGAN Style Transfer Generative Adversarial Network
STU Selective Transfer Unit
DCT Discrete Cosine Transform
DWT Discrete Wavelet Transform
CNN Convolution Neural Network
AF Artificial Fingerprinting
EDA-AF Enhanced Digital Artificial Fingerprinting
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity Index
LPIPS Learned Perceptual Image Patch Similarity
MSE Mean Squared Error
FID Frechet Inception Distance
ACC Accuracy
BER Bit Error Rate
TP True Positives
FP False Positives
LFW Labeled Faces in the Wild
CelebA CelebFaces Attributes
FFHQ Flickr Faces High Quality
FS Face Swapping
FAE Facial Attribute Editing
FR Face Reenactment
FG Face Generation

1 Introduction

Artificial Intelligence Generated Content (AIGC) technologies have resulted in the widespread
proliferation of Deepfake technology [1]. Deepfake is an image synthesis technique that creates con-
vincing fake faces by transferring identity information between original and target faces or by altering
attributes of target [2,3]. This technology was initially employed primarily in entertainment software
and film production. However, it poses significant potential threats. For instance, Deepfake videos
targeting national leaders can quickly spread across domestic and international online platforms,
generating widespread public concern and potentially influencing public sentiment. Furthermore,
Deepfake technology can be used to alter critical speeches of prominent figures, which may have
far-reaching implications for a nation’s political, diplomatic, and military dynamics. Beyond political
and military ramifications, Deepfake-generated audio and video content severely undermines societal
trust, disrupting the daily lives and work of individuals. In response, researchers have been actively
developing Deepfake detection and defense technologies. They employ various technical approaches to
reliably detect and label Deepfake content, aiming at preventing the spread of malicious information,
and have achieved notable results [4,5].

Early defense technologies primarily rely on passive detection methods, which extract information
or features from facial images or videos to identify the forged content. These methods are categorized
into image-level [6–10] and video-level [11–15] detection techniques. Image-level detection focuses on
identifying inconsistencies in spatial and frequency domains, analyzing both local and global cues
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to detect alterations in facial images. Deepfake images often show noticeable discrepancies from
their surrounding context, making these methods effective for spotting tampering. Conversely, video-
level detection techniques assess temporal inconsistencies across different timescales, allowing for a
more thorough analysis to determine if a Deepfake video has been manipulated. Despite their high
accuracy, passive detection methods face several challenges. They perform poorly when confronted
with unknown facial manipulation techniques. Additionally, these methods require large datasets,
which results in low computational efficiency. They are also vulnerable to counter-forensic techniques
that can eliminate forgery traces and to adversarial noises that can degrade detection accuracy.
Furthermore, passive detection methods are reactive and cannot prevent the advanced spread of forged
facial images or videos, and their results lack robust evidence to validate facial forgery [16–20].

Furthermore, Deepfake technology is advancing towards greater realism and more sophisticated
adversarial capabilities. However, detection methods have not kept pace with these advancements,
resulting in inadequate performance for practical applications. To tackle this problem, researchers have
proposed proactive digital watermarking methods for Deepfake detection. The core idea is to embed
specific digital watermarking into images or videos before they are shared online, which facilitates
authenticity verification and traceability, thus providing a preemptive defense. Compared with the
passive detection methods, proactive digital watermarking offers four key advantages [21–24]: (1) It
allows information owners to detect the forged data in real time and respond promptly, providing a
proactive defense, whereas passive detection usually identifies the forgery only after the information
has been disseminated. (2) Digital watermarking functions as an embedded defensive measure to detect
and track the unauthorized use of data. (3) The watermarking is designed to be challenging to detect
and remove, making it difficult for attackers to alter or tamper with the data without detection. (4)
Digital watermarking acts as a technical security measure that can provide substantial legal evidence
in intellectual property disputes and data security compliance cases.

There has been no comprehensive analysis or summary of proactive forensic techniques for
Deepfake based on digital watermarking in the literature. We seek to eliminate this gap by providing a
detailed review. It begins with an overview of the research background, including common Deepfake
generation techniques and digital watermarking methods. The paper then summarizes and categorizes
existing proactive forensic techniques based on digital watermarking. It also discusses widely used
datasets and evaluation methods. Finally, the paper addresses the challenges faced by these forensic
techniques and suggests future research directions. This review offers valuable insights for developing
more effective proactive defense strategies in Deepfake forensics. While existing studies have explored
the application of digital watermarking techniques in deepfake detection, this paper provides a more
comprehensive perspective by systematically classifying and comparing existing techniques. We not
only evaluate the effectiveness of these techniques in practical applications but also deeply analyze
their limitations. Furthermore, this paper proposes new perspectives for future research directions,
especially in the areas of cross-domain watermarking techniques and adaptive watermarking strategies,
which have not been fully explored in existing research.

2 Deepfake and Digital Watermarking
2.1 Deepfake Generation

Deepfake generation technologies mainly include Variational Autoencoders (VAEs) [25,26],
GANs [27,28], and diffusion models [29,30]. These methods have progressed substantially, achieving
high-quality content. In the literature, there are four primary types of Deepfake technologies: face
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generation [31], face swapping [32–34], face attribute editing [35–38], and face reenactment [39–
41]. Face generation employs GANs to create realistic but non-existent human faces, encompassing
features like facial structure, hair, and posture. Face swapping replaces one person’s face with another
in images or videos. Facial attribute editing alters specific features. Face reenactment transfers
expressions from one face to another. Face swapping and face reenactment are currently the most
prevalent. However, they also pose significant risks and ethical issues due to their potential for misuse.

2.1.1 Face Generation

Face generation seeks to create images of non-existent individuals. Most underlying networks
are GANs and their variants. By exploiting the adversarial interaction between the generator and
discriminator, GANs can closely mimic the characteristics of real samples. GANs are inspired by
the “zero-sum game” concept in game theory, a method that learns data distributions through
adversarial interaction. The generative model generates samples from a given random variable, while
the discriminative model predicts whether the data samples belong to the real training set. Both
models improve their capabilities through adversarial training, with the ideal state being that the
generative model can produce samples indistinguishable from real. The training process of GANs
is illustrated in Fig. 1. Popular GANs used for generating synthetic faces include Deep Convolutional
GAN (DCGAN) [42], Wasserstein GAN (WGAN) [43], Progressive Growing of GAN (PGGAN)
[44], StyleGAN [31], and StyleGAN2 [28]. Examples of face synthesis results from different GAN
techniques are shown in Fig. 2, demonstrating highly realistic and detailed images.

Figure 1: Training process of GAN

2.1.2 Face Swapping

Face swapping involves exchanging facial features between two individuals, allowing for an
identity switch. This process uses the original person’s image to replace the entire head of the target
person while preserving other attributes. This technique enables the original individual to appear in
different contexts. The face swapping workflow based on deep generative models is illustrated in Figs. 3
and 4. During model training, images or videos of person A and person B are collected. Preprocessing
steps such as face extraction, cropping, and alignment are performed. Two weight-sharing encoders,
Encoder A and Encoder B, are then trained to extract shared facial attributes from faces A and
B. Independent decoders, Decoder A and Decoder B, are subsequently trained to reconstruct each
person’s unique facial information. In the identity exchange phase, Encoder B encodes the attributes
of Person B, and Decoder A reconstructs the image of person B, showing person A’s appearance with
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person B’s identity. Post-processing, including image fusion and video composition, is then applied.
Fig. 5 shows the flowchart of the FaceSwap operation.

Figure 2: Generated images from different face synthesis techniques

Figure 3: Training phase of face swapping using deep generative models

Figure 4: Inference stage of face swapping using deep generative models

2.1.3 Face Attribute Editing

Face attribute editing entails altering specific facial features, such as hair color, skin color, gender,
age, or adding glasses. Face attribute editing refers to generating new faces with the desired attributes.
Arbitrary attribute editing is primarily achieved through a combination of an encoder, a decoder, and
a GAN. Liu et al. [45] proposed a Style Transfer Generative Adversarial Network (STGAN) model.
This model focuses on the differences between attribute vectors rather than treating the entire attribute
vector as a class label. The STGAN employs a U-Net-like network structure for its generator, which
is instrumental in enhancing image quality and attribute manipulation capabilities. A key innovation
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in this architecture is the use of Selective Transfer Unit (STU) operations during the skip connections.
These STU operations adaptively select and modify encoder features before concatenating them with
decoder features, thereby optimizing the transfer of relevant information and improving the overall
performance of the network. This approach effectively adds a hard decoupling effect to generator, as
illustrated in Fig. 6.

Figure 5: Flowchart of the FaceSwap operation

Figure 6: Overall structure of STGAN

2.1.4 Face Attribute Editing

Face reenactment transfers one person’s facial expressions and postures to another, preserving
their original identity. This process enables the modified face to maintain the appearance of the target
individual but display the expressions and postures of another person. When combined with specific
audio content, it allows the target individual to exhibit expressions and perform actions that do not
reflect their true emotions. The facial reenactment workflow based on deep generative models is
illustrated in Fig. 7. First, key facial points of the target individual A are extracted and input into
an image translation model to reconstruct A’s expressions and movements. Next, facial points from
the original individual B are used as input to drive the model’s expression transfer, resulting in a
face that combines A’s features with B’s expressions. Finally, image blending and video synthesis are
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performed as necessary during post-processing. Fig. 8 shows the method of Face2Face. Face2Face is a
pioneering real-time face reenactment method that allows for the dynamic transfer of facial expressions
from one person to another in videos. This technology leverages deep learning to capture and
analyze facial movements and expressions with high accuracy. In the context of deepfake detection,
Face2Face represents a significant advancement in the field, as it can be used to both generate and
detect manipulated facial expressions in real-time. By understanding the underlying mechanisms of
Face2Face, researchers and developers can devise more effective strategies for identifying deepfakes
and preserving the authenticity of visual content.

Figure 7: Basic principles of face reenactment using deep generative models

Figure 8: Method of Face2Face

2.2 Digital Watermarking

The Digital Watermarking technique covertly embeds information into digital media to authen-
ticate and protect intellectual property and content integrity. In the context of images, it comes
in several forms: spatial watermarking, which adjusts pixel values in the spatial domain [46,47];
frequency watermarking, which modifies information in the frequency domain [48,49]; and hybrid
watermarking, which integrates both spatial and frequency methods [50]. Watermarking approaches
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can be categorized into three types based on their resistance to attacks: robust, fragile, and semi-
fragile. The robust watermarking [51,52] is engineered to withstand various attacks and common
signal processing operations, maintaining the original content’s integrity even after redistribution or
modification. In contrast, the fragile watermarking [53] is highly sensitive, and even minor changes can
compromise the authentication system, making them ideal for detecting tampering. The semi-fragile
watermarking [54,55] combines the advantages of both robust and fragile types. This watermarking
can endure normal signal processing during network transmission but reveal tampering if the image
is maliciously altered. Fig. 9 presents the general flowchart of watermarking.

Figure 9: General flowchart of watermarking

Many digital watermarking methods have been proposed, embedding watermark information
into both the spatial and frequency domains of images and videos. In spatial domain watermarking,
watermarks are embedded directly into pixel values using techniques like block-based embedding
or least significant bit modification. In frequency domain watermarking, watermarks are embedded
by altering coefficients from transformations such as Discrete Cosine Transform (DCT) or Discrete
Wavelet Transform (DWT). However, traditional methods face notable limitations in terms of robust-
ness vs. fragility, invisibility, and the balance between capacity and quality, necessitating ongoing
improvements. Furthermore, current watermark embedding and extraction techniques largely rely on
manual design.

Recently, CNN-based neural network watermarking has emerged as an end-to-end solution,
replacing manually designed embedding processes with neural network-based encoding. In this
method, an encoder inputs an image and a watermark to produce a watermarked image, while a
decoder extracts the watermark from it. These encoders and decoders are trained on a dataset of
images. For instance, frameworks like StegaStamp [56] and HiDDeN [51] have demonstrated effective
watermarking that can robustly conceal and transmit data, ensuring that the embedded information
remains recoverable despite various physical and digital distortions. Furthermore, specialized water-
marking techniques [57,58] have been developed for large-scale image generation models, such as stable
diffusion models.

3 Proactive Forensics Techniques Based on Digital Watermarking
3.1 Classification

The concept of proactive forensic techniques for Deepfake detection was initially introduced
by Yu et al. [59], who utilized image steganography to embed Artificial Fingerprinting (AF). This
approach ensures that the fingerprints can be transferred from the training data to the generated
model, aiding in the identification and tracking of forged outputs. Following this, Yu et al. [60]
developed a model fingerprinting method using multiple generators with distinct fingerprints to detect
and trace generated samples. Kim et al. [61] further proposed a model tracing technique involving a
user-specific model retrained with a parameterized secret key, which helps trace the forged content
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back to the user’s model. However, these methods often struggle with ensuring the robustness of
the embedded fingerprints, which are susceptible to distortions from image processing. To enhance
robustness, Liao et al. [62] introduced adversarial learning strategies Enhanced Digital Artificial
Fingerprinting (EDA-AF) to simulate various distortion conditions, improving the resilience of both
artificial and model fingerprints. Fig. 10 illustrates the methods of AF and EDA-AF. AF is a technique
where unique digital fingerprints are embedded into the training data of generative models, allowing
the generated outputs to be traced back to their source model. EDA-AF is an advanced version of AF
that incorporates adversarial learning to enhance the robustness of the embedded fingerprints against
various image distortions and manipulations, ensuring the fingerprints remain detectable even in the
presence of aggressive attacks aimed at obfuscating the watermarks. Together, these proactive forensic
techniques lay a strong foundation for future research.

Figure 10: Illustrations of AF and EDA-AF method

Digital watermarking offers distinct advantages for proactive evidence collection against Deep-
fake due to its characteristics of invisibility, robustness, and traceability. As a result, many researchers
have focused on developing digital watermarking techniques for Deepfake detection, leading to signif-
icant advancements. As illustrated in Fig. 11, this process involves embedding watermark information
into images or videos with faces before they are uploaded to online platforms. This preemptive measure
enables effective tracing and authenticity verification, even if users create convincing Deepfake.
Watermark information can be categorized by strength into robust, fragile, and semi-fragile types.
The watermarking process can target different image regions: the face region, the background, or
the entire image. Techniques for embedding and extracting watermarking include traditional methods
and neural network-based approaches. Digital watermarking for proactive Deepfake detection can be
categorized into three defense strategies: robust watermarking techniques, semi-fragile watermarking
techniques, and dual-watermarking techniques. Each category will be briefly reviewed.
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Figure 11: Schematic of the proactive forensic framework for Deepfake based on digital watermarking

3.2 Proactive Forensics Techniques Based on Robust Watermarking

Proactive forensics technology using robust watermarking embeds watermark information into
the original image, ensuring any modifications cause a mismatch between the embedded data and
the visible content. Various methods exist within this framework. For instance, Wang et al. [63]
developed FakeTagger, which uses the embedded message content to enhance facial security and
privacy, as illustrated in Fig. 12. This method embeds the information within the victim’s image
and recovers it after deepfaked media are generated, allowing detection of manipulations by GANs.
Wang et al. also identified three main challenges: (1) generalizing across different forgery types
and recovering embedded information from unseen forgeries; (2) maintaining robustness against
conventional image operations; (3) concealing the embedded information. While FakeTagger is
effective in embedding and recovering messages, it is limited to the inference phase and does not
influence the forgery model itself, which may lead to the misclassification of genuine images subjected
to post-processing. To overcome these limitations, Sun et al. [64] introduced FakeTracer, a model
that embeds sustainable and erasable traces into facial images using autoencoders. Before uploading
images or videos to social networks, users can embed specific traces into their content. Deepfake
models trained on such content will incorporate sustainable traces while disregarding the erasable
ones. The presence of these traces can be effectively detected, thereby providing a robust mechanism
for identifying forged content and offering substantial protection against Deepfake manipulations.

To ensure semantic-level protection for facial images and prevent impersonation through identity
manipulation, Zhao et al. [65] introduced a watermarking mechanism. This approach embeds a
watermark as an anti-counterfeiting label within facial identity features through two main steps:
watermark injection and verification, as shown in Fig. 13. The watermark is intricately integrated
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with facial identity features, making it sensitive to manipulation while robust against common image
modifications such as resizing and compression. However, this technique requires a high-intensity
watermark to ensure effective detection. To further protect facial image and video owners’ rights,
Lin et al. [66] developed an end-to-end self-encoding method known as SIDT (Source-ID-Tracker),
inspired by data hiding principles. This technique enables implicit embedding of the original facial
image into Deepfake results without noticeable visual changes. It integrates the entire original facial
image into the target face and uses a distortion simulation layer to mimic social media’s lossy
channels, meeting the high perceptual quality and embedding capacity requirements for traceability
and forensics. Similarly, Shen et al. [67] proposed FHnet, a proactive facial hiding network designed
to protect facial features. This network extracts and encodes facial components using information
hiding techniques, embedding them within the remaining background. This allows for full recovery of
the original face, unaffected by variations from different face-swapping algorithms, thereby providing
better generalization.

Figure 12: Illustrations of FakeTagger

Figure 13: Illustrates of the proactive forensics method based on identity watermarking

Furthermore, Wang et al. [68] developed the first robust identity-aware watermarking framework.
This framework is designed to detect Deepfake facial swaps while also tracking their sources. It
integrates identifying semantics related to the image content into the watermark and employs an
unpredictable, irreversible chaotic encryption system to ensure the confidentiality of the watermark.
However, this approach has limitations in detecting facial reproduction operations that alter expres-
sions and poses while preserving the facial identity. To address these limitations, Zhang et al. [69]
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introduced the dual defense, a novel proactive defense method based on robust adversarial watermark-
ing. This technique embeds a robust adversarial watermark into the facial image in a single process,
disrupting Deepfake models and enabling copyright tracking. As face-swapping technology evolves,
models based on GANs and diffusion processes are becoming more common, making it essential not
just to verify authenticity but also to understand image origins. Wu et al. [70] explored the interplay
between proactive watermark injection and passive detection, noting that pre-injected watermarking
can interfere with detection processes, leading to an increase in false negatives where watermarked fake
images are misclassified as real. Then, they proposed AdvMark, a harmless proactive forensic scheme
that uses adversarial fine-tuning to convert robust watermarking into adversarial watermarking. This
method aims at improving both the traceability of watermarked images and their detectability.

While these methods enhance forensic capabilities for detecting Deepfake content, they have
notable limitations under complex attack scenarios. A key limitation is their dependence on robust
assumptions about Deepfake generation, which often requires high-intensity watermarking for effec-
tive detection. Additionally, proactive forensic methods based on robust watermarking may not
generalize well to unseen datasets and can struggle with new forgery techniques, limiting their overall
effectiveness.

3.3 Proactive Forensic Techniques Based on Semi-Fragile Watermarking

The proactive forensics technique using semi-fragile watermarking is robust against conventional
signal attacks like compression and minor adjustments. However, it is susceptible to malicious
manipulations like Deepfake, which can compromise the watermark and jeopardize image integrity.
Yang et al. [71] introduced the FaceGuard framework, employing a neural network-based semi-
fragile watermarking method. This framework employs an encoder to merge a facial image with a
watermark, creating a watermarked image. A decoder then processes this image to extract a binary
vector representing the watermark. Although FaceGuard is resilient to common image post-processing
techniques, it struggles with Deepfake operations, limiting its effectiveness in detecting forged images.
Notably, it can only authenticate images with detectable traces, failing to differentiate between
authentic and synthetic images. In contrast, Neekhara et al. [72] developed the FaceSigns framework,
which embeds semi-fragile watermarking specifically in facial regions. This method renders the
embedded information irretrievable in Deepfake without needing a Deepfake-specific training dataset.
However, it only confirms absence of a watermark and cannot verify if the video has been altered.
Beuve et al. [73] introduced WaterLo, an end-to-end model featuring a local semi-fragile watermark, as
shown in Fig. 14. WaterLo embeds the watermark across the entire image, allowing for the detection of
modified areas where the watermark has been removed from the facial region, while remaining visible
elsewhere. It also includes a compression module to enhance robustness against compression-related
attacks.

Semi-fragile watermarking can indicate whether an image or video is authentic or forged, but it
tends to be unstable when subjected to common image processing operations. Furthermore, semi-
fragile watermarking cannot trace the source of the target image, complicating the creation of a
complete evidence chain in forensic investigations of Deepfake-related cybercrimes. This issue is
critical because it is essential not only to address the forgery but also to obtain information about the
source material. Thus, tracking the original target image and performing detection tasks are crucial
for maintaining the integrity of the evidence.
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Figure 14: Authentication based on semi-fragile watermarking

3.4 Proactive Forensic Techniques Based on the Dual Watermarking

Single-function deep watermarking methods fall short of meeting the needs of proactive forensics.
The robust watermarking is so resilient that it can be accurately extracted from both the original
and Deepfake images. Furthermore, even when an image is manipulated, the source information
remains intact. Conversely, fragile watermarking can reveal if the content has been maliciously
altered but cannot provide information about the original image’s source after manipulation, as
the watermark cannot be reliably extracted post forgery. This makes it challenging to differentiate
between forged images and those without embedded watermarking. To address both challenges, an
intuitive approach is to embed robust and fragile watermarking. This method might require additional
segmentation models, which could introduce prior knowledge and make the watermarking more
detectable. To tackle these challenges, Liu et al. [74] presented the BiFPro, which combines fragile and
robust watermarking techniques for comprehensive facial data protection in Deepfake applications.
Wu et al. [75] proposed a deep separable watermarking method called SepMark, as illustrated in
Fig. 15. This framework introduces a new paradigm where a single embedding process through an
encoder enables the extraction of watermarking with varying robustness levels using robust and fragile
decoders. Zhang et al. [76] developed EditGuard, a multifunctional proactive forensics method. They
framed tampering localization and copyright protection as a joint image bit-steganography problem,
using a serial encoding and parallel decoding structure.

Figure 15: (Continued)
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Figure 15: Deepfake detection and traceability based on depth-separable watermarking

3.5 Summary of this Section

This section reviews prevalent proactive forensic methods based on various criteria, including
algorithm types, publication years, embedding regions, information formats, watermarking functions,
and key characteristics, as outlined in Table 1. Methods that use robust watermarking can enhance
the detection of Deepfake content to a certain degree. Nonetheless, these methods face significant
challenges in complex attack scenarios.

Table 1: Proactive forensic techniques for Deepfake based on digital watermarking

Task type Mode Year Embedded area Form of
information

Stage of
action

Application

Proactive
forensics
based on
robust
watermarking

AF [59] 2021 Entire image Fingerprints Training Detection,
Traceability

FakeTagger 2021 Facial region Binary
sequence
watermark

Inference Detection,
Traceability

EDA-AF 2022 Entire image Fingerprints Training Detection,
Traceability

FakeTracer 2022 Facial region Binary
sequence
watermark

Training Detection

SIDT 2022 Facial region Image
watermark

Inference Traceability

PDIW 2023 Facial region Binary
sequence
watermark

Inference Detection

FHnet 2024 Background Image
watermark

Training Traceability

(Continued)



CMC, 2025, vol.82, no.1 87

Table 1 (continued)

Task type Mode Year Embedded area Form of
information

Stage of
action

Application

RIPW 2024 Facial region Image
watermark

Training Detection,
Traceability

Dual defense 2024 Facial region Binary
sequence
watermark

Training Detection,
Traceability

AdvMark 2024 Facial region Image
watermark

Inference Detection,
Traceability

Proactive
forensics
based on
semi-fragile
watermarking

FaceGuard 2021 Facial region Binary
sequence
watermark

Inference Detection

FaceSigns 2023 Facial region Binary
sequence
watermark

Training Detection

WaterLo 2023 Entire image Image
watermark

Inference Detection

Proactive
forensics
based on dual
watermarking

BiFPro 2023 Facial region Image
watermark

Inference Detection,
Traceability

SepMark 2023 Facial region Binary
sequence
watermark

Inference Detection,
Traceability

EditGuard 2024 Entire image Binary
sequence
watermark

Training Detection,
Traceability

They rely on robust assumptions about Deepfake generation, necessitating high-intensity water-
marking for effective detection. Furthermore, these methods often lack the ability to generalize when
confronted with unknown forgery techniques, particularly with unfamiliar datasets. On the other
hand, proactive forensic methods that employ semi-fragile watermarking are useful for determining
whether an image or video is authentic or forged based on the watermark’s presence. However, these
methods may become unstable when exposed to common image processing operations. Additionally,
the semi-fragile watermarking does not facilitate the tracing of the source of the victim’s images.
Methods utilizing dual watermarking offer the advantage of performing both source tracing and
Deepfake detection. However, the interaction between the two watermarkings can negatively impact
each other, potentially leading to a decrease in visual quality.

4 Model Evaluation Results
4.1 Evaluation Metrics

As outlined in previous sections, proactive forensic methods using digital watermarking aim at
achieving two key objectives: the proactive detection of Deepfake attacks and the authentication of
the provenance of facial images. Consequently, evaluating these forensic models typically involves
assessing the visual quality of watermarked facial images, the efficacy of Deepfake detection, and
the robustness of provenance verification.
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4.1.1 Visual Quality Assessment Metrics

To evaluate the fidelity of watermarked facial images, four primary metrics were employed.
These metrics include two conventional measures: Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index (SSIM) [77]. Additionally, two metrics based on features extracted by deep learning
models were utilized: Learned Perceptual Image Patch Similarity (LPIPS) [78] and Frechet Inception
Distance (FID) [79]. They are described as follows:

(1) PSNR is a widely utilized metric for evaluating image quality, with higher values indicating
lower distortion and superior quality. PSNR is measured in decibels (dB), and specific ranges of
values correspond to different levels of image quality. A PSNR value above 40 dB suggests that the
image quality is nearly visually identical to the original image. Values between 30 and 40 dB indicate
acceptable levels of distortion, while values between 20 and 30 dB reflect poor quality. Values below
20 dB signify severe distortions. Despite its widespread use, PSNR has limitations and is typically
employed to assess image quality relative to the maximum signal and background noise. For an original
image I of size m × n and a noisy image K, the mean squared error (MSE) is defined as:

MSE = 1
mn

m−1∑

i=o

n−1∑

j=o

[I(i, j) − K(i, j)]2 (1)

Building on this, the formula for calculating PSNR is defined as follows:

PSNR = 10 log10

MAXI
2

MSE
(2)

where MAXI represents the value pixel value in the original image I .

(2) SSIM quantifies the similarity of structural information in images as perceived by human eyes,
providing a more accurate representation of visual perception. SSIM evaluates images based on three
primary components: luminance, contrast, and structure. For a reference image I of size m × n and a
noisy image K, SSIM is defined as follows:

SSIM = (2μIμK + C1)(2σIK + C2)

(μ2
I + μ2

K + C1)(σ 2
I + σ 2

K + C2)
(3)

The term μI and μK represents the average pixel values of images I and K , calculated using the
following formula:

μI = 1
mn

m∑

i=1

n∑

j=1

[I(i, j)] (4)

The variance of the pixel values of images I and K is represented by σ 2
I and σ 2

K , and its calculation
formula is as follows:

σ 2
I = 1

mn − 1

m∑

i=1

n∑

j=1

[I(i, j) − μi]
2 (5)

The covariance of σIK represent the pixels in images I and K:

σIK = 1
mn − 1

m∑

i=1

n∑

j=1

[I(i, j) − μI ] [K(i, j) − μK ] (6)
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Additionally, C1 and C2 are two parameters calculated as C1 = (D1L)2 and C2 = (D2L)2, where C1

and C2 are set to 0.001 and 0.003. The value of L is related to the image type, which is set to 255 as the
images used in the experiment are of type uint8.

(3) LPIPS, known as perceptual loss, quantifies perceptual similarity between image patches. This
metric evaluates differences between two images by guiding the generator to learn the inverse mapping
from generated images to the ground truth, thereby emphasizing perceptual similarity. Compared to
conventional metrics such as PSNR and SSIM, LPIPS better reflects human visual perception. A
lower LPIPS value indicates higher similarity between images, while a higher value denotes greater
dissimilarity. The calculation method is as follows:

d(x, x0) =
∑

l

1
HlWl

∑

h,w

∥∥wi � (ŷl
hw − ŷl

0hw)
∥∥

2
(7)

In this context, the output from the original image x is referred to as the forged output, whereas the
output from the watermarked image x0 is termed the forged output after watermark embedding. The
distance between x and x0 is denoted d, l corresponds to a specific layer in the feature stack extracted
by the neural network. The features produced by this layer are represented as ŷl and ŷl

0, where Hl and
Wl denote the height and width of the feature map, respectively. The vector wl scales the number of
activated channels, and � stands for the element-wise product.

(4) FID is a metric used to evaluate the distance between two sets of samples in feature space.
Initially, features are extracted using the Inception network. These features are then modeled using a
Gaussian distribution. The distance between these Gaussian distributions is subsequently computed
to determine the FID value. A lower FID value indicates a smaller distance between the sample sets,
which in turn reflects higher sample quality. The calculation method is as follows:

d2((μ, ε), (μw, εw)) = |μ − μw|2 + tr(ε + εw − 2(εεw)
1/2) (8)

In this context, μ and μw represent the means of the two samples, while ε and εw denote
theirrespective covariances.

4.1.2 Performance Evaluation Metrics

To evaluate the performance of the model in detecting Deepfake, one key metrics are utilized:
accuracy (ACC). ACC is used to evaluate the accuracy of predictions, represents the percentage of
samples that are correctly predicted out of the total number of samples. The calculation method for
accuracy is as follows:

ACC = TP
TP + FP

(9)

Here, TP (True Positives) refers to the number of samples that are correctly predicted as the
positive class. FP (False Positives) refers to the number of samples that are incorrectly predicted as
the positive class.

4.1.3 Performance Evaluation Metrics for Traceability

To evaluate the traceability performance of the model, the primary evaluation metric employed
is the average bit error rate (BER). This metric quantifies the percentage of altered bits caused by
noise and interference during transmission, relative to the total number of bits in the received data
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stream. Specifically, the BER is determined by comparing the binary watermark sequence extracted
from the watermarked image with the originally embedded watermark information. A smaller value
signifies fewer transmission errors and greater robustness. Suppose that the embedded watermark is
ω ∈ {0, 1}B×L and the extracted watermark is w̃ ∈ {0, 1}B×L. Then BER is computed as follows:

BER(ω, w̃) = 1
R

× 1
L

×
B∑

i=1

L∑

j=1

∣∣ωi×j − w̃i×j
∣∣ × 100% (10)

And the bitwise accuracy is defined as:

Bitwiseaccuray(ω, w̃) = 1 − 1
R

× 1
L

×
B∑

i=1

L∑

j=1

∣∣ωi×j − w̃i×j
∣∣ (11)

4.2 Datasets

In the study of proactive forensics techniques for Deepfake, researchers primarily use standard
facial image and video datasets for training, testing, and evaluating Deepfake forensic algorithms.
Table 2 summarizes the commonly used datasets.

Table 2: Public datasets for proactive forensics

Dataset Type Year Scale Link

LFW Image 2008 13,233 http://vis-www.cs.umass.edu/lfw/
(accessed on 10 September 2024)

CASIA-WebFace Image 2014 494,414 http://www.cbsr.ia.ac.cn/english/
CASIA-WebFace-Database.html
(accessed on 10 September 2024)

CelebA Image 2015 202,599 http://mmlab.ie.cuhk.edu.hk/
projects/CelebA.html (accessed on
10 September 2024)

CelebA-HQ Image 2017 30,000 https://github.com/tkarras/
progressive_growing_of_gans
(accessed on 10 September 2024)

VGGFace2 Image 2018 33,000,000 https://www.robots.ox.ac.uk/&#
x007E;vgg/data/vgg_face2/
(accessed on 10 September 2024)

FFHQ Image 2019 70,000 https://github.com/NVlabs/ffhq-
dataset (accessed on 10 September
2024)

FaceForensics++ Video 2019 Real 1000
Fake 4000

https://github.com/ondyari/
FaceForensics (accessed on 10
September 2024)

CelebAMask-HQ Image 2020 30,000 https://github.com/switchablenorms/
CelebAMask-HQ (accessed on 10
September 2024)

(Continued)
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Table 2 (continued)

Dataset Type Year Scale Link

Celeb-DF Video 2020 Real 590
Fake 5639

https://github.com/yuezunli/celeb-
deepfakeforensics (accessed on 10
September 2024)

(1) Labeled Faces in the Wild (LFW) dataset [80] is a benchmark for face recognition, consisting of
13,233 images from natural scenes. It presents challenges due to variability in pose, lighting, expression,
age, and occlusion. Some images include multiple faces; only the central face is used as the target, while
others are considered background noise. The dataset covers 5749 individuals, with most having a single
image. Images are mostly in color, sized at 250 × 250 pixels, with a few in black and white.

(2) The CASIA-WebFace dataset [81], developed by the Institute of Automation at the Chinese
Academy of Sciences, comprises 494,414 images representing 10,575 identities. It features diverse faces
across ages, genders, ethnicities, and expressions, with challenging lighting and pose conditions. The
high-quality images make it suitable for algorithm training and evaluation.

(3) The CelebA (CelebFaces Attributes) dataset [82], provided by The Chinese University of
Hong Kong, includes 202,599 images of 10,177 identities. Each image provides a face bounding box,
coordinates for five facial landmarks, and labels for 40 attributes, useful for attribute editing.

(4) The CelebA-HQ dataset [83] is an enhanced version of CelebA, containing 30,000 high-
resolution face images in resolutions of 256 × 256, 512 × 512, and 1024 × 1024 pixels.

(5) The VGGFace2 dataset [84] includes 3.31 million images of 9131 identities, each represented
by multiple images. It covers a wide range of poses, ages, and ethnicities, minimizing noise.

(6) The FFHQ (Flickr-Faces-High-Quality) dataset [31] contains 70,000 high-quality PNG
(Portable Network Graphics) images of faces, each at a resolution of 1024 × 1024 pixels. It features
diverse age, ethnicities, and rich facial attributes including gender, skin tone, expression, hairstyle, and
accessories.

(7) The CelebAMask-HQ dataset [85] contains over 30,000 images at 512 × 512 resolution,
annotated with 19 attribute features covering facial components and decorative items.

(8) The Faceforensics++ dataset [86] comprises 1000 real videos sourced from YouTube, featuring
frontal faces with a resolution of 480p or higher. Additionally, it includes 4000 Deepfake videos pro-
duced using four different techniques: Face2Face, FaceSwap, Deepfakes, and NeuralTextures. These
Deepfake videos are available in three different compression levels: uncompressed (C0), compression
rate 23 (C23), and compression rate 40 (C40).

(9) The Celeb-DF dataset [87], created for Deepfake detection, includes 590 celebrity videos from
YouTube and 5639 high quality Deepfake videos, featuring a range of ages, ethnicities, and genders,
with face resolutions of 256 × 256 pixels.

4.3 Model Performance Analysis

To illustrate the key designs and performance of various proactive forensic algorithms tailored to
different requirements and scenarios, this study selects several representative algorithms for replication

https://github.com/yuezunli/celeb-deepfakeforensics
https://github.com/yuezunli/celeb-deepfakeforensics
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and comparative experiments. The proposed method is implemented using the PyTorch deep learning
framework with a batch size of 50 on an NVIDIA GTX 3090 GPU platform.

4.3.1 Evaluation of Deepfake Detection

To evaluate the effectiveness of the digital watermarking-based proactive forensics method for
Deepfake detection, we initially selected 50,000 authentic facial images from the CelebA and CelebA-
HQ datasets. Among these, 35,000 images were used for training, 10,000 for validation, and 5000 for
testing. We then generated 1000 counterfeit facial images with each of the four Deepfake methods
described in Section 3, resulting in a total of 4000 counterfeit images for the test set. The Deepfake
methods used were Face Swapping (FS), Facial Attribute Editing (FAE), Face Reenactment (FR), and
Face Generation (FG). All images were resized to 256 × 256 pixels. Four representative algorithms
were selected for comparative analysis, ensuring a consistent experimental setup for training and
testing. The results of Deepfake detection performance across different algorithms are shown in
Table 3. The findings reveal that detection performance was generally better on the CelebA-HQ
dataset compared to the CelebA dataset. Notably, the SepMark detection method achieved an average
detection rate of 97.69% on the CelebA dataset and an average accuracy of 98.38% on the CelebA-
HQ dataset. Unlike conventional passive detection methods, the proactive forensics approach converts
the challenge of detecting Deepfake in an open world into a digital watermark detection and matching
problem. This method consistently demonstrated superior performance, with an average detection rate
exceeding 90% across all scenarios.

Table 3: Detection accuracy of different models for Deepfake detection (%)

Method CelebA CelebA-HQ

FS FAE FR FG Average FS FAE FR FG Average

AF 85.22 88.88 90.56 100 91.16 88.79 90.23 92.32 100 92.83
FakeTagger 94.86 91.25 95.32 92.81 93.56 96.80 93.12 96.22 93.85 94.99
PDIW 97.50 88.00 90.23 91.56 91.82 99.02 89.50 92.34 93.18 93.51
SepMark 98.22 94.50 98.46 99.60 97.69 99.00 95.56 99.15 99.80 98.38

4.3.2 Evaluation of Traceability Forensics

The traceability performance of the digital watermark-based proactive forensics method was
evaluated using an experimental setup akin to that described in Section 4.3.1. This evaluation focused
on comparing watermark information extracted from forged faces with that embedded in original
faces. Detailed traceability results for various algorithm models are presented in Table 4. The results
indicate that the five representative algorithms exhibit superior traceability performance on the
CelebA-HQ dataset compared with their detection performance on the CelebA dataset. The RIPW
(Robust identity perceptual watermark) method shows an average traceability error rate of 3.50% on
the CelebA dataset and 2.42% on the CelebA-HQ dataset. Overall, the proactive forensics approach
demonstrates strong traceability performance, with average error rates generally below 10%.

In our experiments, we aimed to compare the performance of different watermarking techniques,
which included both image watermark information (SIDT, FHnet, RIPW) and binary sequence
watermark information (FakeTagger, SepMark). To make these methods comparable, we standardized
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the evaluation metrics and the experimental conditions for all techniques. Specifically, for the image
watermark methods, we converted the embedded watermarks into a binary format for consistency
in analysis. This involved a thresholding process where the watermarked images were binarized
to create a binary sequence that could be compared against the binary watermarks embedded by
FakeTagger and SepMark. To ensure fairness in the comparison, we also normalized the watermark
detection sensitivity and robustness across all methods. This was achieved by adjusting the watermark
strength and the detection algorithms to ensure that the binary sequences and image watermarks were
detectable under the same set of conditions. Additionally, we ensured that the watermark extraction
process was blind to the type of watermark, meaning that the same extraction algorithm was applied to
both types of watermarks, allowing for a direct comparison of detection accuracy and robustness. By
standardizing the evaluation process in this manner, we were able to compare the performance of the
different watermarking techniques on an equal footing, providing a comprehensive analysis of their
effectiveness in detecting and tracing deepfakes.

Table 4: Traceability performance of different models (%)

Method CelebA CelebA-HQ

FS FAE FR FG Average FS FAE FR FG Average

FakeTagger 5.45 12.11 5.14 7.12 7.45 3.20 11.00 3.80 6.20 6.05
SIDT 8.68 6.79 7.45 9.77 8.17 7.48 5.88 6.34 7.42 6.78
SepMark 13.82 10.25 9.78 8.44 10.57 11.44 9.84 9.12 7.58 9.50
FHnet 4.20 3.78 4.22 5.44 4.41 3.50 2.88 4.02 4.56 3.74
RIPW 3.14 2.44 3.66 4.58 3.50 1.98 1.88 2.68 3.14 2.42

4.3.3 Evaluation of Visual Quality

In practical applications, proactive watermarking methods should minimize their impact on
image quality after watermark embedding. To evaluate the effects of various proactive watermarking
methods on visual quality, we selected 5000 real face images from both the CelebA and CelebA-HQ
datasets. watermarking was embedded into the original images using different algorithm models. For
each pair of images (original and watermarked), we measured the PSNR, SSIM, and LPIPS. Results,
detailed in Table 5, show that the watermarked images from existing methods retain high visual quality,
with PSNR values exceeding 30 dB, SSIM values above 0.9, and most algorithms achieving LPIPS
scores below 0.1.

Table 5: Visual quality performance of the model across different datasets

Method CelebA CelebA-HQ
PSNR (dB)↑ SSIM↑ LPIPS↓ PSNR (dB)↑ SSIM↑ LPIPS↓

AF 36.93 0.965 0.0526 30.69 0.915 0.0556
EDA-AF 35.57 0.960 0.1022 36.56 0.922 0.1206
SIDT 33.01 0.968 0.0301 38.81 0.972 0.0202
PDIW 33.32 0.945 0.0802 34.25 0.956 0.0318

(Continued)
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Table 5 (continued)

Method CelebA CelebA-HQ
PSNR (dB)↑ SSIM↑ LPIPS↓ PSNR (dB)↑ SSIM↑ LPIPS↓

FHnet 39.56 0.958 0.0116 40.97 0.984 0.0158
RIPW 40.25 0.982 0.0331 45.38 0.994 0.0362
Dual defense 32.31 0.918 0.2101 36.20 0.922 0.2550
FaceSigns 35.43 0.962 0.0882 39.99 0.889 0.0838
BiFPro 39.56 0.985 0.0203 40.86 0.986 0.0108
SepMark 38.51 0.958 0.0028 38.56 0.933 0.0080

We observed that the performance on the CelebA-HQ dataset is generally better than that on the
CelebA dataset. This can be attributed to several factors. Firstly, the CelebA-HQ dataset consists of
higher resolution images, which provide more detailed facial features. The increased clarity allows
our digital watermarking techniques to embed more robust and distinct watermarks that are less
susceptible to being obscured by compression or other forms of image degradation. Secondly, the
CelebA-HQ dataset, with its larger and more diverse collection of faces, offers a more comprehensive
training ground for our models. This diversity helps in enhancing the generalizability of our techniques,
leading to improved performance in detecting deepfakes. Lastly, the CelebA-HQ dataset benefits from
a more sophisticated annotation process, which aligns well with the proactive forensic techniques
that rely on precise facial attribute manipulation and authentication. The higher quality annotations
facilitate more accurate watermark embedding and extraction, contributing to the better performance
observed.

4.3.4 Evaluation of Robustness

To evaluate the robustness of various methods and verify the effectiveness of proactive forensic
techniques in detecting digital watermarking under different image and model perturbations, we
simulated four types of image disturbances: additive Gaussian noises, Gaussian blurring, JPEG (Joint
Photographic Experts Group) compression, and central cropping. For additive Gaussian noise, the
standard deviation ranged from 0.0 to 0.5 with a step size of 0.1055. The Gaussian blurring kernel
size varied from 0.0 to 15 with a step size of 1.6. For JPEG compression, the quality factors were
from 100 to 10 with a decrement of 10. For resizing and cropping, images were initially cropped to
dimensions ranging from 64% to 128% of the original size, with a step size of 10%, and then resized
to 128 × 128 pixels. Each sequence of watermarked images underwent these operations to generate
the corresponding processed images. Different proactive forensic methods were then employed to
detect the watermarking in these processed images. Detection accuracy was assessed by comparing the
decoded binary sequence with the original input sequence, measuring bit accuracy. Fig. 16 summarizes
the experimental results under these conditions. The results indicate that the accuracy of digital
watermark detection decreases monotonically with increasing levels of perturbation. For smaller
disturbances, the decline in detection accuracy is relatively gradual.



CMC, 2025, vol.82, no.1 95

Figure 16: Robustness evaluation with Gaussian noises, Blurring, JPEG compression and Central
cropping

5 Challenges

(1) Assessment criteria for proactive forensics. In response to the risks posed by deepfake
content, researchers have proposed various proactive forensic methods from different perspectives.
However, the absence of a standardized benchmark for fair comparison of these methods has led
to potentially misleading results, which presents a significant challenge. In particular, inconsistencies
in data processing modules lead to varied data inputs for forensic detection models. Additionally,
there are notable differences among experimental setups and a lack of standardization in evaluation
strategies and metrics. The absence of publicly available source code for many methods further hinders
the reproducibility and comparability of their reported results.

(2) The issue of robustness in proactive forensics. Images are often utilized in deepfake creation,
but the watermark information embedded in these images can be lost during online distribution and
is particularly vulnerable to removal during the deepfake generation process. Hence, watermarks for
proactive evidence collection in deepfakes must not only retain traditional robustness against noise and
compression but also possess enhanced resilience against deep learning-based generation techniques.
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Although current watermarking methods demonstrate some robustness, their effectiveness can be
limited when confronted with advanced generation technologies and novel attack methods.

(3) The practical issues of proactive forensics. Proactive forensic techniques typically depend
on sophisticated deep learning models, which require substantial computational resources for both
training and inference. For instance, developing an end-to-end deep digital watermark embedding and
extraction network involves processing large datasets during the training phase, leading to significant
time consumption and resource inefficiency. In scenarios demanding real-time or near-real-time
feedback, such as on social media platforms, the detection methods must operate swiftly. However,
complex forensic models often struggle to meet these time constraints, resulting in delays that can
negatively impact user experience. Moreover, while existing proactive forensic models may be effective
in detecting specific types of forgeries, their performance can vary across different types, limiting their
applicability in diverse contexts. As deepfake technology continues to advance, new forgery techniques
regularly emerge, necessitating frequent updates to existing models to keep pace with these evolving
threats.

6 Future Prospects

(1) Establish a comprehensive benchmark for proactive forensics. To enhance the calibration of
existing proactive forensic techniques for Deepfake and to foster future innovative developments,
establishing a comprehensive benchmark is essential for creating a unified platform for proactive
Deepfake forensics. Firstly, implementing a standardized data processing module will ensure consis-
tency across input data, thereby minimizing the time required for data processing and evaluation.
Secondly, developing a modular training and testing framework will allow for direct comparisons
among different proactive forensic algorithms, facilitating a clearer understanding of their relative
performance. Lastly, introducing a unified evaluation scheme will improve the transparency and
reproducibility of performance assessments, providing a more reliable basis for evaluating and
advancing forensic techniques.

(2) Design an adaptive and cross-domain collaborative proactive forensics model. To enhance
the robustness of proactive evidence collection for Deepfake, future research should prioritize the
development of an image watermarking model utilizing GANs. This model should be capable of
autonomously identifying optimal locations and strengths for watermark embedding while preserving
image quality. Additionally, it should integrate noise layers to simulate scenarios such as compression
and Deepfake generation. These improvements will enhance the extractor’s accuracy in handling
both the conventional lossy processing and Deepfake scenarios, thereby bolstering the algorithm’s
robustness.

(3) Optimize the model structure and design a lightweight model. Current researches on proactive
forensics for Deepfake detection primarily focuses on the effectiveness of the methods, with less
emphasis on the efficiency of forensic models. To enhance the efficiency of these models, research
should be directed towards several key fields: designing lightweight models, applying model com-
pression techniques, utilizing multi-scale data processing, and enabling feature reuse. Implementing
an end-to-end optimization framework can significantly boost model performance, making it better
suited for real-time applications. Specifically, optimizing digital watermark embedding and extraction
techniques will result in more efficient algorithms for watermark insertion and decoding, ensuring
that these processes do not substantially increase computational complexity. This approach will help
balance the effectiveness of proactive forensic methods with their operational efficiency, facilitating
their practical application in dynamic environments.
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(4) Ethical Considerations. The application of digital watermarking for deepfake detection raises
ethical questions, particularly concerning privacy and the potential for misuse of such technology.
It is crucial to ensure that watermarking techniques are designed and implemented in a way that
respects user privacy and does not infringe upon civil liberties. This section discusses the measures
taken to address these concerns and the ethical framework guiding the development and deployment
of our digital watermarking methods. Moving forward, it is imperative that the development of digital
watermarking techniques for deepfake detection continues to prioritize ethical considerations. Future
work will focus on enhancing privacy measures and developing international standards for the ethical
use of such technology.

(5) In addition to advancing digital watermarking techniques, the future of deepfake detection lies
in the development of hybrid approaches that leverage the strengths of both passive detection methods
and proactive watermarking. Such hybrid methods could provide a more robust defense mechanism by
combining the real-time detection capabilities of passive methods with the traceability and authenticity
verification offered by watermarking. One promising direction is the integration of passive detection
algorithms that analyze inconsistencies in facial images or videos with watermarking techniques that
embed unique identifiers into the media. This dual approach could enhance the accuracy of deepfake
detection while also providing a means to trace the origin of the manipulated content.

7 Conclusions

This survey provides a thorough review of proactive forensic techniques for Deepfake, with a par-
ticular emphasis on digital watermarking. With the advancement of Deepfake technology, significant
societal challenges have emerged, and existing research predominantly addresses passive detection
of counterfeit content. However, these approaches often encounter issues with generalizability and
robustness in practical applications. In contrast, digital watermarking presents a promising alternative.
The paper systematically categorizes proactive forensic techniques into three primary types: robust
watermarking, semi-fragile watermarking, and dual watermarking. It provides a thorough discussion
of the technical principles, implementation methods, and the strengths and limitations of various
algorithms, complemented by experimental results demonstrating model performance. This paper
examines the challenges of proactive forensics in dealing with Deepfake and suggests future research
directions. It highlights the need for improvements in generalization, robustness, and the development
of multimodal detection technologies to effectively address the dynamic challenges posed by evolving
Deepfake technology. Based on an indepth analysis and evaluation of existing technologies, we propose
several new directions for future research. Firstly, the development of cross-domain watermarking
techniques will allow us to detect deepfakes more effectively across different media types and
application scenarios. Secondly, adaptive watermarking strategies can dynamically adjust the strength
of watermarks based on the importance and sensitivity of the content, achieving better performance
and security. These research directions not only address the shortcomings of existing technologies but
also have the potential to advance the field of deepfake detection.
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