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ABSTRACT

For the first time, the linear and nonlinear vibrations of composite rectangular sandwich plates with various
geometric patterns of lattice core have been analytically examined in this work. The plate comprises a lattice core
located in the middle and several homogeneous orthotropic layers that are symmetrical relative to it. For this
purpose, the partial differential equations of motion have been derived based on the first-order shear deformation
theory, employing Hamilton’s principle and Von Kármán’s nonlinear displacement-strain relations. Then, the
nonlinear partial differential equations of the plate are converted into a time-dependent nonlinear ordinary
differential equation (Duffing equation) by applying the Galerkin method. From the solution of this equation,
the natural frequencies are extracted. Then, to calculate the non-linear frequencies of the plate, the non-linear
equation of the plate has been solved analytically using the method of multiple scales. Finally, the effect of some
critical parameters of the system, such as the thickness, height, and different angles of the stiffeners on the linear and
nonlinear frequencies, has been analyzed in detail. To confirm the solution method, the results of this research have
been compared with the reported results in the literature and finite elements in ABAQUS, and a perfect match is
observed. The results reveal that the geometry and configuration of core ribs strongly affect the natural frequencies
of the plate.

KEYWORDS
Free vibration; composite sandwich plate; lattice core; galerkin method; Duffing equation; multiple scales method

Nomenclature

tp Plate thickness, m
tc Core thickness, m
tr Rib thickness, m
h Structure thickness, m
u, v, w Displacements, m
x, y, z Cartesian coordinates
a, b Dimensions of rectangular sandwich plate, m
ac, bc Dimensions of a core element, m
As Stiffener cross-section, m2
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nx The number of complete cells in the x-direction
ny The number of complete cells in the y-direction
cf Percentage of incomplete cell coefficient
Mij Moment resultants of stress components, N
Nij Force resultants of stress components, Nm−1

K Shear correction factor
εij Normal strain components
γij Shear strain components
εl Strain component along the length of the stiffener
εt Strain component in the direction of the width of the stiffener
σij Stress components, Pa
t Time, sec
El, Ec Young’s modulus of core, Pa
Ei Young’s modulus of layers, Pa
Gc Shear modulus of core, Pa
Gij Shear modulus of layers, Pa
I(x) Second moment of mass per unit lateral area, kg/m2

ρ, ρreal Density, kg/m3

υ Poisson’s ratio
ω Frequency, rad s−1

ω∗ Nonlinear frequencies, rad s−1

ε Non-dimensional parameter

1 Introduction

During the last decades, the high demands in aerospace, marine, and automotive industries
geared research to improve the mechanical properties of structures. Improvements are directed
towards enhancing strength-to-weight ratio and stiffness-to-weight ratio, as well as energy absorp-
tion, corrosion, and moisture absorption resistance. Lattice composite structures have raised much
attention concerning designers and engineers. Researchers have made significant strides in examining
the dynamic responses of the lattice-reinforced and sandwich structures in vibrational analysis.
Hemmatnezhad et al. [1] studied the vibration response of lattice-stiffened composite cylindrical
shells by applying first-order shear deformation theory and compared their results with 3D ABAQUS
simulations. Zhang et al. [2], based on the third-order shear deformation theory and Von Kármán
type strain relations, developed nonlinear free vibration equations of anisogrid-core sandwich plates.
Rahnama et al. [3] investigated the vibrational characteristics of lattice sandwich truncated conical
shells and validated their theoretical models by ABAQUS simulations and experimental modal
tests. Wu et al. [4] investigated the free vibration of the beams, having periodic lattice-truss cores,
while applying Bernoulli-Euler and Timoshenko beam theories to optimize fundamental frequency
and unit cell mass. Finally, Googolth et al. [5] conducted a numerical analysis of free vibration in
thin rectangular plates using ANSYS, comparing their findings with exact Levy-type solutions for
validation. In buckling analysis, extensive research has been conducted to understand the stability
and load-bearing behavior of lattice and sandwich composite structures. Kidane et al. [6] proposed
an analytical model for calculating the global buckling load of lattice-stiffened composite cylindrical
shells; their findings were further advanced with experimental validation. Kanou et al. [7] investigated
isogrid composite lattice cylindrical structures subjected to axial and pressure loads; some critical
failure modes included are local rib and global buckling. Shatov et al. [8], using finite element analysis,
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conducted a study on the buckling of sandwich cylindrical shells with composite lattice cores subjected
to hydrostatic pressure, giving special attention to the effect of spiral rib count and orientation on
the buckling mode. Zarei et al. [9] have presented a smeared stiffener method for analyzing global
buckling in the case of laminated sandwich conical shells with lattice cores. They confirm that this
method is effective using the 3D finite element model. Shahgholian-Ghahfarokhi et al. [10,11] have
applied the vibration correlation technique to predict buckling loads in both iso-grid core sandwich
plates and axially loaded composite lattice sandwich cylinders structures, presenting experimental
results showing less than 5% deviation. This research has significant practical implications, as it can
be used to design more efficient and reliable structures. For instance, it can help design lightweight yet
sturdy aerospace structures. In combined (analytical and numerical) methods, several researchers have
advanced hybrid approaches for enhanced accuracy in the structural analysis of composite lattices.
Wodesenbet et al. [12] improved the smeared method by modeling the buckling on an iso grid stiffened
composite cylinder by assessing the contribution of the stiffeners and their validation against the
comprehensive 3D finite element model. Totaro et al. [13] presented an analytical and numerical
optimization technique for estimating minimum weight in composite lattice shell structures under axial
compression. Their technique significantly reduced weight compared to conventional approaches.
Researchers have explored innovative designs in lattice cores’ material and structural design to enhance
vibration, buckling, and load response performance. Gholizadeh Eratbeni et al. [14] designed a lattice
truss core glass fiber sandwich panel and investigated its vibration performance by experimental and
numerical analysis, presenting good agreement among the results. Vasiliev et al. [15] presented, for
the first time, the state-of-the-art anisogrid composite lattice structures, describing strength-to-weight
efficiency, design procedures, and application experience in aerospace flight missions. Ramu et al. used
finite element methods to analyze isotropic thin plates [16], and the results obtained were compared
with exact solutions. It was found that there was a good correlation, and thus, the method’s
reliability was verified. In the optimization and efficiency of vibrational performance, researchers
such as Wang et al. [17] contributed much to optimizing the dynamic response characteristics of
lattice sandwich plates. They used an improved (FSDT) and a hybrid Grey Wolf Optimization and
Particle Swarm Optimization (GWO-PSO) algorithm, thus ensuring multi-objective optimization, this
balanced high natural frequencies with a minimum value of displacement and mass. In advanced
vibrational and structural analysis techniques, several researchers have employed innovative methods
to enhance the accuracy and understanding of vibrational behavior in composite structures with
lattice cores. Shahgholian Ghahfarkhi et al. [18] considered free vibration in composite sandwich
cylindrical shells with lattice cores and detected natural frequencies much larger than that of no
stiffened shells. Taati et al. [19–21] have proposed and validated a model to analyze nonlinear
vibrations in sandwich plates comprising pyramidal truss cores on an elastic foundation. They studied
the nonlinear vibrations of multilayered sandwich plates under fluid flow and proved that the new
impermeability condition significantly affects pressure distribution. They further investigated the
buckling and vibration of sandwich cylindrical shells subjected to external airflow, concluding that the
piston theory is insufficient for very long, thin shells. Shahgholian-Ghahfarokhi et al. [22–24] proposed
the buckling analytical models for composite shells with lattice cores by reducing the complicated
geometry of the core to the equivalent solid forms for efficient analysis and further comparing with
the finite element. Researchers like Amoozgar et al. [25] investigated the influence brought about by
initial curvature and the shape of the lattice core on the vibrational characteristics of sandwich beams,
and their results showed that core shape and density ratio are possible factors that will most highly
affect dynamic behavior. Zhang et al. [26] studied nonlinear vibrations in lattice sandwich beams with
pyramidal truss cores; the combined effects of the thermal environment, load, and core configuration
on dynamic responses have been considered. Liu et al. [27] applied homogenization to the vibrational
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response of pyramid lattice sandwich plates, studying the parameters of the lattice core responsible
for frequency and resonance. Further advancements include Chai et al. [28], who gave a theoretical
framework for the vibrations in sandwich plates with pyramidal truss cores, investigating the influence
of geometrical and material properties on the vibrational behavior. Yousefi et al. [29] presented
a procedure to calculate the natural frequencies and mode shapes for laminated angle-ply plates,
considering variable fiber orientation and lamination sequence. Phuong et al. [30] studied the nonlinear
vibration and buckling of reinforced composite panels with inclined stiffeners under the influence of
thermal environments. They further validated their analysis by comparing it with the Runge-Kutta
analysis. Minfang et al. [31] investigated random vibration characteristics in lattice sandwich panels.
The core parameters affect the most critical structural response metric, the displacement’s power
spectral density (PSD).

Additionally, Hashemi et al. [32] examined the nonlinear vibrational characteristics of in-plane
bidirectional functionally graded (IBFG) plates with temperature-dependent properties for the first
time, which could be useful in studying resonance dynamics. For the first time, Li et al. [33]
applied the Rayleigh-Ritz approach to the vibration analysis of plates with cutouts, obtaining greater
computational efficiency using the independent coordinate coupling method (ICCM).

Qian et al. [34] applied the Meshless Local Petrov-Galerkin method to analyze three-dimensional
electrodynamic deformations in rectangular plates by calculating transverse shear and normal defor-
mations and validating the results. Finally, Nazari et al. [35] applied Meshless Local Petrov-Galerkin
and artificial neural networks to conduct the natural frequency analysis of sandwich rectangular plates,
changing the core-to-thickness ratio and volume fraction index.

Limited studies have been done on the vibration behavior of composite sandwich structures with
lattice cores and their construction, especially regarding the effects of various core angles, stiffener
density, and complex geometries on rectangular sandwich plates. This study investigates four core
models, introducing models (a) and (c) with newly calculated stiffness matrices. These models have
been analyzed for the first time. Meanwhile, models (b) and (d) represent anisogrid and isogrid
structures. Also, the values of models (b) and (c) stiffness matrices are equal, and their geometric forms
differ. Linear and nonlinear frequencies are determined by calculating stiffness matrices for different
geometric patterns of the core based on first-order shear deformation theory and the equivalent
stiffness method.

Using Hamilton’s principle, equations of motion for the nonlinear case are derived, and the
Galerkin method is applied to convert these into a time-dependent Duffing equation. In the last
step, linear and non-linear frequencies with simply supported boundary conditions were extracted
by solving the linear state of the Duffing equation and using the multiple scale method for the
non-linear state of the Duffing equation, respectively. Finally, the effect of key parameters of the
system, such as the thickness, height, and different angles of the stiffeners on the natural frequencies,
have been analyzed in detail. Due to the lack of sufficient resources to compare the data directly,
the results of this research have been compared with studies that used the Levy solution method.
Due to the boundary conditions and relative simplicity, Levy’s method is one of the valid methods
for analyzing rectangular plates with simply supported boundary conditions. However, the Galerkin
method has more advantages than the Levy method, including greater flexibility in modeling complex
geometries, higher accuracy in solving differential equations using high-order polynomials, and better
performance in parallel computations. Also, Levy’s method has limitations in certain boundary
conditions that Galerkin’s method is free from, such as wholly closed or free edges on all sides, which
cannot solve these boundary conditions. Also, model (a) results with an angle of 30 degrees and the
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number of divisions (N/2 = 10) are compared with the results of finite element analysis in ABAQUS
software and show good accuracy.

2 Mathematical Modeling

Fig. 1 shows a composite rectangular sandwich plate composed of a lattice composite core with
different geometric patterns. The plate is made of a lattice core located in the middle and several
homogeneous orthotropic layers that are symmetrical relative to it. Besides, the fiber direction of layers,
except for the core, have a phase difference angle of 90 degrees relative to each other. The direction of
the coordinate axes is shown in the Fig. 1.

Figure 1: Rectangular sandwich plate with lattice core

Fig. 2 displays the geometry and configuration of the various patterns of lattice stiffeners. Four
models of lattice stiffeners are considered according to Fig. 2. Figs. 1 and 2 were drawn using CATIA
and Inventor software.

Model (a) Model (b) Model (c) Model (d)

Figure 2: Various patterns of lattice stiffeners

In Fig. 2a, first, an analytical model for calculating the angular stiffness force of stiffeners is
presented. Then the same procedure is repeated for the stiffeners of the other three models. A unit
cell is considered the same in the four models to compare the longitudinal and transverse dimensions.
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Also, the angles of cross ribs in the first model φ°, −φ°, 0°, and 90° and in the second and third models
φ°, −φ° and 0° and in the fourth model φ°, −φ° are considered. Calculating the overall stiffness of
the reinforced sandwich plate requires obtaining the equivalent stiffness matrices to the plate and the
stiffeners. Therefore, the stiffness matrices of the sandwich plate and stiffeners should be calculated,
as well as their contribution to calculating the total stiffness. For this purpose, it is first necessary to
calculate the equivalent stiffness matrices to the tensile, coupling, and bending plates (respectively,
matrices A, B, D). The smeared method is used to find the equivalent stiffness components of the
reinforced sandwich plate. The reinforcing smeared method is a method in which the structure of
the sandwich plate and stiffeners is reduced to an equivalent layer plate. The reinforcing smeared
method is an approach in which the structure of the sandwich plate and its stiffeners is modeled as an
equivalent continuous layer. In this method, the mechanical properties of the stiffeners are distributed
over the sandwich plate, treating it as a uniform and homogeneous layer. This simplifies and unifies
the structural analysis.

2.1 Angular Model Analysis

To obtain the analytical model, it is first necessary to introduce a unit cell of the reinforcing
sandwich plate. The unit cell is selected in such a way that by repeating it, the whole lattice structure can
be produced from a reinforcing shape. To obtain the stiffness matrix components, equivalent stiffness
components to this unit cell can be obtained and extended to the whole model of the reinforced
sandwich plate because the whole lattice structure is obtained from the repetition of a unit cell.
To calculate the contribution of stiffeners to the total stiffness of the reinforced sandwich plate,
the confrontation of the force and moment between the sandwich plate and the stiffeners should
be analyzed. Then the stiffness matrices of the whole reinforced sandwich plate by overlapping the
stiffness components of the sandwich plate and the stiffeners based on the volume ratio of each
obtained. Due to finding the equivalent matrices A, B, and D of the sandwich plate and stiffeners, the
compatibility equations should be a function of the strains and curvatures of the middle plate of the
sandwich plate. In reinforcing strips, due to their small cross-section against the longitudinal section,
the transverse modulus of the stiffener strips vs. the longitudinal modulus is omitted. Therefore here,
it is assumed that the ribs can only withstand the axial force. Also, the following hypotheses should be
considered in this analytical modeling:

1. The modulus of tensile elasticity of stiffeners in the direction perpendicular to the ribs should
be much less than their longitudinal modulus. Also, the Transverse section dimensions of
stiffeners are selected very small compared to their longitudinal dimensions so that it can be
assumed that the stiffeners can withstand only axial force.

2. The strain is the same across the cross-section of the stiffeners and as a result, the stress is
distributed evenly across the cross-section.

3. The force of action and reaction between the sandwich plate and the stiffeners is of shear force.

2.2 Force Analysis in a Unit Cell

The strains and curvatures of the middle plate of the sandwich plate, respectively, by ε0
x, ε0

y, ε0
xy

and k0
x, k0

y, k0
xy are introduced. Therefore, the strains related to the inner surface of the sandwich plate,

which is the location of confrontation between the sandwich plate and the stiffeners, are calculated
from Eq. (1). Since the stiffeners are connected to the skin at this interface while the inner surface of
the sandwich plate is in contact with the location of the sandwich plate with stiffeners, the strains of
the sandwich plate and the stiffeners are equal at this level.
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εx = ε0
x + kx

(
tp

2

)

εy = ε0
y + ky

(
tp

2

)

εxy = ε0
xy + kxy

(
tp

2

)
(1)

where tp is the thickness of the inner surface of the sandwich plate. Since the strains calculated from
Eq. (1), are the high-level strains of the stiffeners on the geometric system. So, they have to strain in
parallel with the system converted to the longitudinal direction of the stiffeners. The strain components
and changing the curvature of the middle plate of the sandwich plate respectively by ε0

x, ε0
y, ε0

xy and
k0

x, k0
y, k0

xy are considered. Strains at the location of the inner layer where the junction of the plate and
the stiffeners are expressed using the first-order shear deformation theory of the plates and according
to Eq. (1). Since the ribs have been attached to the inner surface of the plate at the junction, the strain
of the stiffeners is the same. By multiplying these strains in the conversion matrix, according to Eq. (2),
the strains in the longitudinal and transverse directions of the stiffeners are obtained. In this regard,
εl, εt and εlt respectively are: the strain in the direction of the stiffeners, the strain perpendicular to the
axis of the stiffeners, and the shear strain.⎡
⎣εl

εt

εlt

⎤
⎦ =

⎡
⎣ C2 S2 SC

S2 C2 −SC
−2SC 2SC C2 − S2

⎤
⎦
⎡
⎣ εx

εy

εxy

⎤
⎦ (2)

where in this regard, C = cos∅, S = sin∅, and ∅ is the longitudinal direction angle of the stiffener
with the X -axis. According to hypothesis (1), the effects of strain perpendicular to the rib εt and shear
strain εlt are neglected. Therefore, the sentence including longitudinal strain εl shown in the following
equation is obtained from the transfer relation calculated in Eq. (2).

εl = C2εx + S2εy + SCεxy (3)

with axial strains of stiffeners, the axial forces acting on each unit cell are easy to calculate. The force
exerted on each rib is obtained from Eq. (4) according to Fig. 3, which shows one of the single cells
of the model (a), with length ac and height bc. In this regard, εli, As, and El respectively are the axial
strains, a cross-section of the stiffener, and the modulus of elasticity of each stiffener.

F1 = AsElεl1 = AsEl

(
C2εx + S2εy − SCεxy

)
F2 = AsElεl2 = AsEl

(
C2εx + S2εy + SCεxy

)
F3 = AsElεl3 = AsEl

(
εy

)
F4 = AsElεl4 = AsEl (εx) (4)
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Figure 3: Forces diagram on a unit cell

By summing up the forces obtained in the directions x, y according to Eq. (5) and placing Eqs. (1)
and (4) in them, the sum of the forces acting on the stiffeners in the x, y directions according to Eq. (6)
is obtained.

Fx = F1 cos ∅ + F2 cos ∅ + 2F4

Fy = F1 sin ∅ + F2 sin ∅ + 2F3

Fxy = F2 cos ∅ − F1 cos ∅ (5)

Fx = AsElC
(
C2εx + S2εy − SCεxy

) + AsElC
(
C2εx + S2εy + SCεxy

) + 2AsEl (εx)

= AsEl[
(
2C3 + 2)εx + 2S2Cεy

)
Fy = AsElS

(
C2εx + S2εy − SCεxy

) + AsElS
(
C2εx + S2εy + SCεxy

) + 2AsEl

(
εy

)
= AsEl

(
2SC2εx + (2S3 + 2)εy

)
Fxy = AsElC

(
C2εx + S2εy + SCεxy

) − AsElC
(
C2εx + S2εy − SCεxy

)
= AsEl

(
2SC2εxy

)
(6)

Also, by dividing these forces on their corresponding edge in the unit cell, the results of the force
according to Eq. (7a) for model (a) are obtained.
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Nx = AsEl

ac

[(
2C3 + 2

)
ε0

x + (2C3 + 2)kx

(
tp

2

)
+ 2S2Cε0

y + 2S2Cky

(
tp

2

)]

Ny = AsEl

bc

[
2SC2ε0

x + 2SC2kx

(
tp

2

)
+ (

2S3 + 2
)
ε0

y + (
2S3 + 2

)
ky

(
tp

2

)]

Nxy = AsEl

bc

[
2SC2ε0

xy + 2SC2kxy

(
tp

2

)]
(7a)

ac = 2a
N

, bc = ac

tan∅
(7b)

As can be seen, the values ac and bc are obtained from Eq. (7b). Besides (N/2) is half the number
of rib cells along the length of the plate.

2.3 Moment Analysis in a Unit Cell

The shear force between the plate and stiffeners generates moments. These moments are equal to
the force multiplied by half the thickness of the plate and rib. Fig. 4 shows how these moments are
generated by shear force F . This moment can be divided into two parts Mp and Ms which represent
the moment generated in the plate and the stiffener, respectively.

Figure 4: Moments created by the shear force between the plate and the stiffener

Fig. 5 shows, one of the single cells of model (a), with length ac and height bc under the moments
on the unit cell, which follow the same procedure as in the force analysis for the unit cell, the results
of the moments at the edge of the unit cell are obtained as follows:

Mx = M1 cos ∅ + M2 cos ∅ + 2M4

My = M1 sin ∅ + M2 sin ∅ + 2M3

Mxy = M2 sin ∅ − M1 cos ∅ (8)
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Figure 5: Moments diagram on a unit cell

In this regard, M1, M2, M3, M4 are the moments given on the plate, respectively, due to the forces
F1, F2, F3, F4 which are obtained by multiplying these forces at half the thickness of the plate. By
substituting the values related to these moments using Eq. (1) and dividing the values obtained by
the length of the corresponding edges in the unit cell, the moment results are obtained as follows:

Mx = AsEltp

2ac

[
(2C3 + 2)ε0

x + (2C3 + 2)kx

(
tp

2

)
+ 2S2Cε

0
y + 2S2Cky

(
tp

2

)]

My = AsEltp

2bc

[
2SC2ε0

x + 2SC2kx

(
tp

2

)
+ (

2S3 + 2
)
ε0

y + (
2S3 + 2

)
ky

(
tp

2

)]

Mxy = AsEltp

2bc

[
2SC2ε0

xy + 2SC2kxy

(
tp

2

)]
(9)

2.4 Reinforcing Stiffness Matrix

Eqs. (7a) and (9) show the effect of reinforcing force and moment on the stiffened core sandwich
plate, respectively. These equations are shown as a matrix in Eq. (10). superscript ‘S’ indicates the force
and moment caused by the stiffener of the core. The components of the force and moment matrices
are functions of the mid-plane strain and curvatures obtained from the analysis of the reinforcement
force and moment.
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⎡
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In Eq. (10), the coefficient matrix is introduced by the reinforcement stiffness matrix (Ss) and its
components are represented by As

ij, Bs
ij, Ds

ij are given as follows:

[Ss] =
[

As Bs

Bs Ds

]
= AsEl

⎡
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

At first glance, the stiffness matrix resulting from Eq. (11) seems asymmetric. For example, the
values of As

ij are not equal to As
ji. However, it can be shown that due to the geometric relationships

between these components ‘ac’, ‘bc’, sin∅, and cos∅ are equal. It is also observed that the components
of the Bs

ij matrix are symmetric, regardless of the force and moment analysis of the unit cell. This topic
matches the laminate theory well and confirms that the initial assumptions have been considered.

Also, diagrams of force and moment for models (b), (c), (d), and their stiffness matrices are
mentioned in Figs. A1 and A2.
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3 Equations of Motion

The geometric schematic of the structure with length a, width b, and height h consists of a few
orthotropic layers. The middle layer is a lattice composite layer that is assumed to be orthotropic,
and the remaining layers are orthotropic, too. On the other hand, in reinforcing strips, due to their
small cross-section against the longitudinal section, the transverse modulus of the stiffener strips vs.
the longitudinal modulus is omitted. Therefore, it is assumed that the ribs can only withstand the axial
force. For this reason, the middle layer isotropic is considered. Meanwhile, the distribution of matter
is symmetrical according to Fig. 1. Based on the first shear deformation theory, the components of
the displacement field u, v, w at each point of the plate in the direction of the x, y, z axes are obtained
from the following relations:

u (x, y, z, t) = u0 (x, y, t) + z∅x (x, y, t)

v (x, y, z, t) = v0 (x, y, t) + z∅y (x, y, t)

w (x, y, z, t) = w0 (x, y, t) (12)

where in Eq. (12), the components u0, v0, w0 are the amount of arbitrary point displacements on the
middle plane of the plate along the x, y, z axes. Also, the variables u, v, and w, respectively, represent the
displacement components of each point along the mentioned axes, and the components ∅x,∅y express
the rotation of normal vectors on transverse sections around the y-axis and the x-axis, respectively.

The Von Kármán nonlinearity strains displacement relations by assuming large deformations are
expressed as follows:

εxx = ∂u0

∂x
+ 1

2

(
∂w0

∂x

)2

+ z
∂∅x

∂x

εyy = ∂v0

∂y
+ 1

2

(
∂w0

∂y

)2

+ z
∂∅y

∂y

γxy =
(

∂u0

∂y
+ ∂v0

∂x
+ ∂w0

∂x
∂w0

∂y

)

γxz =
(

∂w0

∂x
+ ∅x

)

γyz =
(

∂w0

∂y
+ ∅y

)
(13)

It is necessary to explain that the geometry studied in this research consists of four orthotropic
layers and an isotropic core, which are symmetrical concerning the core. Also, the fibers of the first
layer have a phase difference of 90-degrees compared to the second layer. Therefore, the equations of
the plate have been extracted for one layer. These equations have been used according to the limits of
integration and applying the variables of each layer.

The governing equations based on the first-order shear deformation theory are extracted from
Eq. (14) using the principal Hamilton as follows:∫ t

0

(δU + δV + δK) dt = 0, δV = 0 (14)
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where δU , δV , and δK represent the strain energy, external force work, and kinetic energy, respectively,
which are expressed as follows:

δU =
(∫

�0

{∫ hi
2

− hi
2

[σxx

(
δε(0)

xx + zδε(1)

xx

) + σyy

(
δε(0)

yy + zδε(1)

yy

) + σxy

(
δγ (0)

xy + zδγ (1)

xy

)

+ σxzδγ
(0)

xz + σyzδγ
(0)

yz ]dz

}
dxdy

)
(15a)

δK =
(∫

�0

∫ hi
2

− hi
2

ρ0

[(
u̇0 + z∅̇x

) (
δu̇0 + zδ∅̇x

) + (
v̇0 + z∅̇y

) (
δv̇0 + zδ∅̇y

) + ẇ0
˙δw0

]
dzdxdy

)
(15b)

By substituting Eq. (15) in Eq. (14) and integrating along the thickness the result is as follows:∫ t

0

{∫
�0

[
Nxxδε

(0)

xx + Mxxδε
(1)

xx + Nyyδε
(0)

yy + Myyδε
(1)

yy + Nxyδγ
(0)

xy + Mxyδγ
(1)

xy + Qxδγ
(0)

xz

+ Qyδγ
(0)

yz − I0 (u̇0δu̇0 + v̇0δv̇0 + ẇ0δẇ0)

− I1

(
∅̇xδu̇0 + ∅̇yδv̇0 + δ∅̇xu̇0 + δ∅̇yv̇0

) − I2

(
∅̇xδ∅̇x + ∅̇yδ∅̇y

) ]
dxdy

}
dt

= 0 (16)

where (Nxx, Nyy, Nxy), (Mxx, Myy, Mxy),
(
Qx, Qy

)
, (I0, I1, I2) are the force and moment resultants, trans-

verse forces and mass inertia moments, respectively. The force and moment resultants, transverse forces
and mass inertia moments in terms of stress components in the direction of thickness are defined as
follows:

⎧⎨
⎩

Nxx

Nyy

Nxy

⎫⎬
⎭ =

⎡
⎣A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤
⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u0

∂x
+ 1

2

(
∂w0

∂x

)2

∂v0

∂y
+ 1

2

(
∂w0

∂y

)2

∂u0

∂y
+ ∂v0

∂x
+ ∂w0

∂x
∂w0

∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

+
⎡
⎣B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤
⎦
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂∅x

∂x
∂∅y

∂y
∂∅x

∂y
+ ∂∅y

∂x

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(17a)

⎧⎨
⎩

Mxx

Myy

Mxy

⎫⎬
⎭ =

⎡
⎣B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤
⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u0

∂x
+ 1

2

(
∂w0

∂x

)2

∂v0

∂y
+ 1

2

(
∂w0

∂y

)2

∂u0

∂y
+ ∂v0

∂x
+ ∂w0

∂x
∂w0

∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

+
⎡
⎣D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤
⎦
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂∅x

∂x
∂∅y

∂y
∂∅x

∂y
+ ∂∅y

∂x

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(17b)

{
Qy

Qx

}
= K

[
A44 A45

A45 A55

]⎧⎪⎪⎨
⎪⎪⎩

∂w0

∂y
+ ∅y

∂w0

∂x
+ ∅x

⎫⎪⎪⎬
⎪⎪⎭ (18)
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I0, I1, I2 =
∫ −h2

−h3

ρ0

(
1, z, z2

)
dz +

∫ −h1

−h2

ρ0

(
1, z, z2

)
dz +

∫ h1

−h1

ρc

(
1, z, z2

)
dz +

∫ h2

h1

ρ0

(
1, z, z2

)
dz

+
∫ h3

h2

ρ0

(
1, z, z2

)
dz) (19)

where K is the shear stress correction factor and its amount is equal to 5/6.

The stress-strain relations based on the first- shear deformation theory is given as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σxx

σyy

τyz

τxz

τxy

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q44 0 0
0 0 0 Q55 0
0 0 0 0 Q66

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εxx

εyy

γyz

γxz

γxy

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(20)

where stiffness coefficients Qij
k for multilayer orthotropic are defined as follows:

Q11
k = E1

k

1 − ν12
kν21

k
, Q12

k = ν12
kE1

k

1 − ν12
kν21

k
, Q22

k = E2
k

1 − ν12
kν21

k

Q16
k = Q26

k = 0

Q66
k = G12

k, Q44
k = G23

k, Q55
k = G13

k (21)

To derive the Q components of matrices A, B, and D for the core, it is assumed that the sandwich
plate is symmetric, leading to zero components for matrix B. Additionally, based on Vasiliev’s method
in Reference [36], the Q components of matrices A and D are considered equivalent in the core.
Therefore, by applying relation (11) and the designated formula Aij = Qij × tc, the Q components
of matrices A and D can be determined from relation (22) by dividing the stiffness matrix components
in relation (11) by the core thickness.

Therefore, the core Qij matrix for model (a) is as follows, and the core matrices of the rest of the
models are given in Appendices (A3) and (A4).

Qcore = AsEc

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2C3 + 2
actc

2S2C
actc

0 0 0 0

2C2S
bctc

2S3 + 2
bctc

0 0 0 0

0 0
2C2S
bctc

0 0 0

0 0 0
2C3 + 2

actc

2S2C
actc

0

0 0 0
2C2S
bctc

2S3 + 2
bctc

0

0 0 0 0 0
2C2S
bctc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)
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By eradicating δu0, δv0, δw0 of Eq. (16) using calculus of variations, the general form of equations of
motion for 2D-case of rectangular plate based on the first-order shear deformation theory is extracted
as follows:
∂Nxx

∂x
+ ∂Nxy

∂y
= I0

∂2u0

∂t2
+ I1

∂2∅x

∂t2

∂Nxy

∂x
+ ∂Nyy

∂y
= I0

∂2v0

∂t2
+ I1

∂2∅y

∂t2

∂Qx

∂x
+ ∂Qy

∂y
+ ∂

∂x

(
NXX

∂w0

∂x
+ NXy

∂w0

∂y

)
+ ∂

∂y

(
NXy

∂w0

∂x
+ Nyy

∂w0

∂y

)
= I0

∂2w0

∂t2

∂Mxx

∂x
+ ∂Mxy

∂y
− Qx = I2

∂2∅x

∂t2
+ I1

∂2u0

∂t2

∂Mxy

∂x
+ ∂Myy

∂y
− Qy = I2

∂2∅y

∂t2
+ I1

∂2v0

∂t2
(23)

The equations of motion (23) can be expressed in terms of displacements u0, v0, w0, φx, φy by
substituting the force and moment resultants and transverse forces from Eqs. (17) to (19) for a
homogeneous plate as follows:

A11

(
∂2u0

∂x2
+ ∂w0

∂x
∂2w0

∂x2

)
+ A12

(
∂2v0

∂y∂x
+ ∂w0

∂y
∂2w0

∂y∂x

)
+

A66

(
∂2u0

∂y2
+ ∂2v0

∂x∂y
+ ∂2w0

∂x∂y
∂w0

∂y
+ ∂w0

∂x
∂2w0

∂y2

)
= 0 (24a)

A66

(
∂2u0

∂y∂x
+ ∂2v0

∂x2
+ ∂2w0

∂x2

∂w0

∂y
+ ∂w0

∂x
∂2w0

∂y∂x

)
+

A12

(
∂2u0

∂x∂y
+ ∂w0

∂x
∂2w0

∂x∂y

)
+ A22

(
∂2v0

∂y2
+ ∂w0

∂y
∂2w0

∂y2

)
= 0 (24b)

KA55

(
∂2w0

∂x2
+ ∂∅x

∂x

)
+ KA44

(
∂2w0

∂y2
+ ∂∅y

∂y

)
+ ∂

∂x

(
Nxx

∂w0

∂x
+ Nxy

∂w0

∂y

)

+ ∂

∂y

(
Nxy

∂w0

∂x
+ Nyy

∂w0

∂y

)
= I0

∂2w0

∂t2
(24c)

D11

∂2∅x

∂x2
+ D12

∂2∅y

∂y∂x
+ D66

(
∂2∅x

∂y2
+ ∂2∅y

∂x∂y

)
− KA55

(
∂w0

∂x
+ ∅x

)
= 0 (24d)

D66

(
∂2∅x

∂x∂y
+ ∂2∅y

∂x2

)
+ D12

∂2∅x

∂x∂y
+ D22

∂2∅y

∂y2
− KA44

(
∂w0

∂y
+ ∅y

)
= 0 (24e)

Due to the orthotropic nature of the geometric model, the following assumptions have been
considered in the plate motion equations. A16 = A26 = D16 = D26 = A45 = 0, A44 = A55

Also, for being small of these variables ü0, v̈0, ϕ̈x, ϕ̈y vs. ẅ0, and the insignificance of values I1 and I2

compared to I0, they are ignored. Based on the first shear deformation theory, the following boundary
conditions for simply supported are propounded:
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at x = 0, a → v0 = w0 = Nxx = Mxx = ∅y = 0

at y = 0, b → u0 = w0 = Nyy = Myy = ∅x = 0 (25)

The admissible functions which the boundary conditions of Eq. (25) satisfied are given as follows:

u0 (x, y, t) =
∞∑

m=1

∞∑
n=1

Um,n (t) cos
(mπ

a
x
)

sin
(nπ

b
y
)

v0 (x, y, t) =
∞∑

m=1

∞∑
n=1

Vm,n (t) sin
(mπ

a
x
)

cos
(nπ

b
y
)

w0 (x, y, t) =
∞∑

m=1

∞∑
n=1

Wm,n (t) sin
(mπ

a
x
)

sin
(nπ

b
y
)

∅x (x, y, t) =
∞∑

m=1

∞∑
n=1

Xm,n (t) cos
(mπ

a
x
)

sin
(nπ

b
y
)

∅y (x, y, t) =
∞∑

m=1

∞∑
n=1

Ym,n (t) sin
(mπ

a
x
)

cos
(nπ

b
y
)

(26)

where m and n are half-wave numbers, considering just one expression in the Eq. (26) and then
substituting them in Eq. (24) and exerting the Galerkin method results in the time-dependent nonlinear
differential equations of motion after using dimensionless parameters and mathematical simplifica-
tions can be earned as follows:

L11W 2 + L12U + L13V = 0 (27a)

L21W 2 + L22U + L23V = 0 (27b)

L31

d2W
dτ 2

+ L32W + L33UW + L34VW + L35W 3 + L36X + L37Y = 0 (27c)

L41W + L42X + L43Y = 0 (27d)

L51W + L52X + L53Y = 0 (27e)

where Lij are coefficients related to the plate’s properties and dimensions and are presented in
Appendix (A5).

Now by writing a four-equation system between the Eqs. (27a), (27b), (27d), and (27e) and writing
them in terms of w(t), putting them inside the Eq. (27c), it leads to a nonlinear time-dependent
equation as follows:

d2w(t)
dt2

+ α1w (t) + α3w (t)3 = 0 (28)

Also, the coefficients of Eq. (28) are presented in Appendix (A6). For simplification, a set of
dimensionless parameters is proposed as follows:

t = t0τ , t0 =
√

ρ0h
E1

, w (t) = hw (τ ) (29)
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The non-dimensional form of Eq. (28) is extracted as follows:

d2w (τ )

dτ 2
+ α1

ρ0

E1L31

hw (τ ) + α3

ρ0

E1L31

h3w (τ )
3 = 0 (30)

4 Solution Method

According to relations (1) to (11) for extracting the stiffness matrix of the core are used. Also,
from relations (21) and (22), the Q matrix components of layers and core are obtained, respectively.
Meanwhile, according to the fundamental equations of a rectangular sandwich plate based on Eq. (24)
and using the Galerkin method and the form of simply supported modes according to Eq. (26) and
writing an integral relation in the direction of thickness, based on the data of the Table 1, nonlinear
Duffing Eq. (28) is obtained. It is necessary to explain that the relative density of the core is used in
the core relations. This density is obtained from the product of the core density in the ratio of the
stiffener’s total cross-sectional area according to Eq. (31c) to the plate’s cross-sectional area (0.5 m2).

Table 1: Material properties used in this paper [9,19]

Properties Material of layers Material of core

E1, E2, E3 (N/m2) 25 ×109, 5 ×109, 5 ×109 80 ×109

G12, G23, G13 (N/m2) 1.8 ×109, 2.6 ×109, 1.8 ×109 G = E/2 (1 + ν)

ν12, ν21 0.282 0.3
ν23 0.072 –
ν13 0.282 –
ρ (kg/m3) 1440 1580

Also, the rest of the formulas for the cross-sectional area of the ribs models (d), (c), and (b) in
Appendix (A7) are mentioned. Therefore, it is enough to apply their cross-sectional area values in
Eq. (31c) to obtain the relative density of the rest of the models. In addition, these formulas are based
on model (d).

Aa = {
[
(ac × bc) −

(
ac − tr/ sin(

π

2
− ∅

)
×
(

bc − tr/ cos(
π

2
− ∅

)]

+
[[(

ac − tr/ sin(
π

2
− ∅

)
× 2 × tr ] − [ t2

r/ tan
(

π

2
− ∅

)]]

+
[[(

bc − tr/ cos(
π

2
− ∅

)
× 2 × tr ] − [ 2 × t2

r × tan
(

π

2
− ∅

)]
]} × [

nx × (
cf + ny

)]
(31a)

cf = [b − (
ny × bc

)
] (31b)

ρreal = ρ × Aa

A
, A = 0.5 m2 (31c)

The material properties of the different layers of the sandwich plate studied in this research are as
described in Table 1.

Therefore, the linear frequencies are obtained according to the Duffing Eq. (30), and the non-
linear frequencies are obtained using the method of multiple scales as follows.
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4.1 Multiple Scales Method

The multiple-scales method is an analytical technique designed to construct accurate approx-
imations for perturbation problems by introducing fast and slow scale variables. This approach
eliminates terms that cause divergence in solutions, such as secular terms in the undamped Duffing
equation, resulting in more stable outcomes [37,38]. In this paper, the method is applied analytically,
utilizing precise formulations to accurately solve boundary conditions and nonlinear equations,
thereby removing the need for numerical methods at this stage. Additionally, the nonlinear frequencies
obtained from the multiple-scales method are directly proportional to the maximum amplitude of the
nonlinear system, providing an accurate reflection of the system’s behavior under nonlinearity.

In this method, the response is modeled as a function of several independent variables instead of
a single variable. Then, new independent variables are as follows:

Tn = εnt for n = 0, 1, 2, . . . (32)

It follows that the partial derivatives of Tn with respect to t are according to the following:

d
dt

= dT0

dt
∂

∂T0

+ dT1

dt
∂

∂T1

+ . . . = D0 + εD1 + . . .

d2

dt2
= D2

0 + 2εD0D1 + ε2
(
D2

1 + 2D0D2

) + . . . (33)

It is assumed that the solution of Eq. (30) can be displayed by an expansion having the form as
follows:

ẍ + α1x1 + α2x2 + α3x3 = 0 (34a)

x = εx1 (T0, T1, T2) + ε2x2 (T0, T1, T2) + ε3x3(T0, T1, T2) (34b)

Here the problem is solved with the order of the third order. Therefore, by placing Eqs. (33) and
(34b) inside the Eq. (34a) and equating the coefficients, the following relationships are obtained.

α3ε
9x3

3 + 3α3ε
8x2x2

3 + (
3α3x2

2x3 + 3α3x1x2
3

)
ε7 +

(
6α3x1x2 + α3x3

2 + 2
∂2

∂T2∂T1

x3 + α2x2
3

)
ε6

+
(

3α3x2
1x3 + ∂2

∂T 2
1

x3 + 2
∂2

∂T2∂T0

x3 + 2
∂2

∂T2∂T1

x2 + 2α2x2x3 + 3α3x1x2
2

)
ε5

+
(

3α3x2
1x2 + α2x2

2 + 2α2x1x3 + 2
∂2

∂T2∂T0

x2 + 2
∂2

∂T2∂T1

x1 + ∂2

∂T 2
1

x2 + 2
∂2

∂T1∂T0

x3

)
ε4

+
(

2α2x1x2 + α3x3
1 + ∂2

∂T 2
0

x3 + ∂2

∂T 2
1

x1 + 2
∂2

∂T2∂T0

x1 + α1x3 + 2
∂2

∂T1∂T0

x2

)
ε3

+
(

2
∂2

∂T1∂T0

x1 + ∂2

∂T 2
0

x2 + α2x2
1 + α1x2

)
ε2 +

(
α1x1 + ∂2

∂T 2
0

x1

)
ε = 0 (35)

Now, the first to third-order equations that need to be solved are as follows:

O
(
ε1
) → D2

0x1 + ω2
0x1 = 0 (36a)

O
(
ε2
) → D2

0x2 + ω2
0x2 = −2D0D1x1 − α2x2

1 (36b)
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O
(
ε3
) → D2

0x3 + ω2
0x3 = −2D0D1x2 − D2

1x1 − 2D0D2x1 − 2α2x1x2 − α3x3
1 (36c)

At first, the first-order equation is solved. After writing the private solution and removing the
secular factor of the equation, its solution is inserted into the solution of the second-order equation.
Again, after writing the private solution of the second-order equation and removing its secular factor,
the private solutions of the first and second-order equations are placed in the third-order equation and
solved. Finally, the final and private solutions of these equations are as follows, from order third to
first:

X3 = 1
96

1
ω4

0

(
η3
(
2α

2
2 + 3α3ω

2
0

)
cos

1
8ω3

0

(−10η2T2α
2
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By placing Eq. (37) inside Eq. (34b), converting the obtained relation into trigonometric form,
separating the orders (1) to (3) and placing Eq. (32) in it, and simplifying the non-linear frequency
relation can be obtained as follows:

ω∗ = √
α1(1 + 1

24
ε2η2(9α3α1 − 10α

2
)

α
2
1

) (38)

5 Results and Discussion

In the first part, a comparative analysis of the results obtained from existing findings in the relevant
field is conducted. In the second part, model (a) results under the angle of 30 degrees and the number of
divisions of 10 per unit area have been compared with the data obtained from the finite element model
in ABAQUS software. The new results extracted from this research are presented in the third part.

5.1 Results Validation

In this section, to evaluate the validity and efficiency of the current formulation, the results of
this study are compared with the data of previously published works. Free vibration analysis of a
rectangular sandwich plate with a lattice core is performed using the Galerkin method for simply
supported boundary conditions with different thicknesses. The extracted results for the first six natural
frequencies of a rectangular sandwich plate without considering the lattice core with a length of a =
0.6 and a width of b = 0.5 m and different thicknesses are shown in Table 2. It can be seen that the
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natural frequencies listed in this table show strong agreement with the findings reported in [5,16].
Given the limited resources for direct data comparison, this study’s results were validated against
prior research that employed the Levy solution, which is suitable for rectangular plates with simply
supported boundary conditions. However, the Galerkin method provides distinct advantages over
the Levy approach, including greater flexibility for modeling complex geometries, higher accuracy
in solving differential equations through high-order polynomials, and superior efficiency in parallel
computations for similar problems. Additionally, while Levy’s method encounters limitations with
specific boundary conditions, such as fully clamped or free edges on all sides, the Galerkin method
operates without these restrictions, making it more versatile for a range of boundary conditions.

Table 2: Comparison of the natural frequency (rad/s) of a rectangular laminated plate with analytical
solution and FEM analysis for various thicknesses

(m,n) (1,1) (2,1) (1,2) (3,1) (2,2) (3,2) h (mm)

Present 136.37 262.18 419.72 471.90 545.49 755.16

6.25
Exact [16] 136.50 262.60 420.10 472.70 546.20 756.35
FEM [16] 135.80 259.90 417.60 466.80 535.90 733.70
Exact [5] 136.56 262.75 420.41 472.96 546.53 756.73
FEM [5] 136.92 263.27 422.27 474.53 547.86 758.07

Present 272.58 524.13 838.84 943.40 1090.34 1509.57

12.5
Exact [16] 273.10 525.20 840.30 945.40 1092.50 1512.70
FEM [16] 271.70 519.80 835.20 933.70 1071.90 1467.50
Exact [5] 273.12 525.51 840.82 945.92 1093.06 1513.47
FEM [5] 272.17 522.27 833.59 940.30 1083.30 1493.70

Present 545.01 1048.02 1677.07 1886.41 2180.04 3018.38

25
Exact [16] 546.20 1050.40 1680.70 1890.80 2185.00 3025.40
FEM [16] 543.50 1039.70 1670.50 1867.50 2143.70 2935.10
Exact [5] 546.25 1051.02 1681.64 1891.84 2186.13 3026.95
FEM [5] 535.26 1019.80 1634.90 1823.10 2088.30 2847.70

Present 1089.86 2095.81 3353.53 3772.43 4359.44 6036.01

50
Exact [16] 1092.50 2100.90 3361.50 3781.70 4370.10 6050.80
FEM [16] 1087.00 2079.40 3341.00 3735.00 4278.40 5870.20
Exact [5] 1092.51 2102.05 3363.28 3783.69 4372.26 6053.91
FEM [5] 1024.00 1906.80 3008.80 3100.60 3316.00 3748.10

In addition to the previous comparison example, another example for a multi-layered plate
consisting of orthotropic materials with geometric specifications of length 1, width 0.5, and height
0.003 m, for each layer according to References [29,39], and without considering the lattice core, has
been considered and solved. The analytical method presented in this research was used. The results
of this rectangular and symmetrical four-layer plate with a height of 0.012 m are presented with
the previously reported results (based on the formula of orthotropic materials and classical theory)
according to Table 3, which have high accuracy and convergence.



CMC, 2025, vol.82, no.1 243

Table 3: The natural linear frequency (rad/s) of a rectangular laminated plate with simply supported

(m,n) (1,1) (2,1) (1,2) (3,1) (2,2) (3,2)

Present 404.47 757.19 1361.08 1425.85 1612.54 2148.66
[29] 404.92 759.27 1366.10 1434.47 1619.71 2163.14
[39] 404.92 759.27 1366.10 1434.47 1619.71 2163.14

5.2 Validation of Results with Finite Element Method

In this research, due to the lack of a suitable model to compare the extracted results, one of the
models (model (a)) has been analyzed under the angle of 30 degrees, and the number of divisions per
unit area of (N/2 = 10) in ABAQUS software. The vibrational mode shapes of a sandwich plate with
a lattice core depict the deformation patterns of the structure at different frequencies. This analysis
provides insight into the structural response under simply supported boundary conditions for each
specific mode. Precise modeling of these mode shapes is crucial for evaluating the contribution of the
lattice core to the plate’s overall stability and performance. Fig. 6 presents selected mode shapes of the
sandwich plate for model (a), highlighting these deformation patterns.

The finite element analysis was performed in ABAQUS using S4R shell elements with a mesh
count of 50,041. In this study, the mode shapes derived from the analytical method for a rectangular
plate with a lattice core (model (a)) and ac = 0.1 m, bc = 0.173 m, ρrel = 742.28 kg/m3,∅ = 30◦

and N/2 = 10 were compared to simulation results, focusing on vibration modes and deformation
patterns under simply supported boundary conditions. As shown in Table 4, substantial agreement
exists between the analytical and numerical results, confirming the validity of the proposed approach.

Figure 6: (Continued)
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Figure 6: (Continued)
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Figure 6: Six mode shapes for model (a) with an angle of 30 degrees and the number of divisions
(N/2 = 10)

Table 4: The comparison of natural linear and nonlinear frequencies (rad/s) of the model (a) with rib
thickness (0.01 m) with ABAQUS

Mode number

(m,n) (1,1) (2,1) (3,1) (1,2) (2,2) (3,2)
Linear 1558.33 2567.85 4499.16 5437.75 6206.04 7750.06
Non-linear 1558.56 2568.11 4499.70 5438.41 6206.70 7750.82
FEM 1552.70 2566.47 4495.36 5445.38 6214.15 7758.28
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5.3 Extracted Results for the Proposed Problem

This paper specifies a rectangular sandwich plate consisting of four layers, a lattice core, and
different geometric patterns. This plate has a length of 1 m and a width of 0.5 m. The fibers of the
layers have 90-degree symmetry to each other, and the layers themselves are symmetrical to the core.
The simply supported boundary conditions are shown in Fig. 1. The specifications of the layers and
the core in Table 1 and their other geometrical parameters are as follows:

The thickness of each layer is 0.003 m, and the thickness of the core is 0.02 m. The width of the
ribs is 0.01 and 0.005 m. Also, the thickness of the investigated ribs in all Tables 5, 6, 7, 8, and 9 is 0.01
m, except for Table 5, where the thickness of the ribs is 0.005 m. So, the height of the sandwich plate
used in this research is 0.032 m.

Utilizing the ratio obtained from Eq. (31c) to determine the cross-sectional area of the core ribs,
this area is subsequently divided by the surface area of the plate (1 × 0.5 m2) and multiplied by the core
density (1580 kg/m3). The relative density of the core for various geometry models has been evaluated
for two configurations, with the number of ribs along the length of the plate being (N/2 = 10 and 6).
These values for various models are presented in Tables 5–9.

Then the six linear and nonlinear primary frequencies of a rectangular sandwich plate with a
lattice core and four various geometry patterns are presented under the names of model (a), model
(b), model (c), and model (d), according to the results of Tables 5–9, which are reported as follows:
Based on Tables 5 and 6, model (a) has been studied with ribs with thicknesses of 0.01 and 0.005 m,
respectively.

Table 5: The natural linear and nonlinear frequencies (rad/s) of the model (a) with rib thickness
(0.01 m)

ac (m) bc (m) ρrel.(kg/m3) Angle N/2 (1,1) (2,1) (3,1) (1,2) (2,2)

0.1 0.173 742.28
∅ = 30◦

10
1558.33 2567.85 4499.16 5437.75 6206.04
1558.56∗ 2568.11 4499.70 5438.41 6206.70

0.166 0.288 476.21 6
1626.29 2649.42 4621.70 5707.27 6479.21
1626.49 2649.64 4622.14 5707.87 6479.80

0.1 0.1 894.59
∅ = 45◦

10
1623.73 2568.81 4357.01 5707.86 6461.03
1624.04 2569.07 4357.49 5708.76 6461.89

0.166 0.166 581.12 6
1660.94 2632.71 4491.22 5855.70 6613.90
1661.20 2632.94 4491.63 5856.47 6614.64

0.1 0.057 1143.60
∅ = 60◦

10
1713.16 2521.10 4109.92 6185.13 6806.27
1713.59 2521.41 4110.37 6186.40 6807.48

0.166 0.096 771.98 6
1702.21 2558.60 4243.87 6121.62 6771.92
1702.57 2558.86 4244.27 6122.68 6772.92

Note: ∗ The non-linear frequencies are bolded in the table.
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Table 6: The natural linear and nonlinear frequencies (rad/s) of the model (a) with rib thickness
(0.005 m)

ac (m) bc (m) ρrel. (kg/m3) Angle N/2 (1,1) (2,1) (3,1) (1,2) (2,2)

0.1 0.173 339.10
∅ = 30◦

10
1653.97 2685.67 4678.81 5813.68 6590.15
1654.27∗ 2685.88 4679.23 5814.27 6590.73

0.166 0.288 248.69 6
1716.19 2766.79 4806.14 6053.43 6840.06
1716.55 2767.40 4807.41 6053.98 6840.60

0.1 0.1 493.27
∅ = 45◦

10
1678.44 2661.97 4548.97 5922.42 6684.79
1678.69 2662.19 4549.36 5923.16 6685.50

0.166 0.166 307.15 6
1728.77 2745.33 4709.48 6111.49 6887.76
1729.00 2745.53 4709.82 6112.14 6888.38

0.1 0.057 661.07
∅ = 60◦

10
1711.83 2588.58 4313.98 6148.87 6812.35
1712.17 2588.83 4314.35 6149.87 6813.30

0.166 0.096 418.06 6
1739.09 2674.96 4514.68 6222.94 6925.65
1739.37 2675.17 4515.01 6223.78 6926.45

Note: ∗ The non-linear frequencies are bolded in the table.

Table 7: The natural linear and nonlinear frequencies (rad/s) of the model (b) with rib thickness
(0.01 m)

ac (m) bc (m) ρrel. (kg/m3) Angle N/2 (1,1) (2,1) (3,1) (1,2) (2,2)

0.1 0.173 490.74
∅ = 30◦

10
1685.75 2685.56 4578.00 5918.56 6713.76
1685.99∗ 2685.77 4578.38 5919.28 6714.45

0.166 0.288 292.93 6
1742.98 2776.21 4754.84 6141.43 6944.27
1743.20 2776.40 4755.18 6142.08 6944.89

0.1 0.1 641.79
∅ = 45◦

10
1744.95 2675.92 4407.97 6165.67 6943.59
1745.28 2676.15 4408.30 6166.63 6944.50

0.166 0.166 414.27 6
1759.89 2730.33 4568.78 6226.85 7008.04
1760.17 2730.53 4569.08 6227.67 7008.81

0.1 0.057 890.48
∅ = 60◦

10
1829.63 2613.28 4124.37 6634.10 7268.80
1830.09 2613.56 4124.69 6635.47 7270.09

0.166 0.096 596.29 6
1796.49 2645.71 4299.37 6480.39 7147.07
1796.87 2645.95 4299.66 6481.51 7148.12

Note: ∗ The non-linear frequencies are bolded in the table.
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Table 8: The natural linear and nonlinear frequencies (rad/s) of the model (c) with rib thickness
(0.01 m)

ac (m) bc (m) ρrel. (kg/m3) Angle N/2 (1,1) (2,1) (3,1) (1,2) (2,2)

0.1 0.173 493.59
∅ = 30◦

10
1683.98 2682.74 4573.19 5912.35 6706.71
1684.22∗ 2682.95 4573.57 5913.07 6707.40

0.166 0.288 312.20 6
1728.64 2753.37 4715.72 6090.91 6887.15
1728.86 2753.56 4716.06 6091.55 6887.77

0.1 0.1 670.86
∅ = 45◦

10
1728.34 2650.46 4366.03 6107.00 6877.52
1728.67 2650.69 4366.36 6107.96 6878.42

0.166 0.166 424.70 6
1752.76 2719.26 4550.25 6201.60 6979.62
1753.03 2719.45 4550.56 6202.42 6980.39

0.1 0.057 962.53
∅ = 60◦

10
1793.18 2561.22 4042.21 6501.94 7123.99
1793.64 2561.49 4042.52 6503.28 7125.25

0.166 0.096 631.05 6
1775.49 2614.77 4249.09 6404.61 7063.50
1775.86 2615.01 4249.38 6405.72 7064.53

Note: ∗ The non-linear frequencies are bolded in the table.

Table 9: The natural linear and nonlinear frequencies (rad/s) of the model (d) with rib thickness
(0.01 m)

ac (m) bc (m) ρrel. (kg/m3) Angle N/2 (1,1) (2,1) (3,1) (1,2) (2,2)

0.1 0.173 344.75
∅ = 30◦

10
1670.23 2772.90 4805.89 5746.68 6655.67
1670.39∗ 2773.08 4806.28 5747.14 6656.13

0.166 0.288 211.40 6
1732.43 2832.89 4904.80 6030.11 6904.59
1732.59 2833.05 4905.14 6030.57 6905.05

0.1 0.1 415.22
∅ = 45◦

10
1714.22 2790.18 4714.98 5881.12 6827.99
1714.42 2790.36 4715.30 5881.71 6828.55

0.166 0.166 256.90 6
1757.25 2838.70 4833.54 6100.48 7001.66
1757.44 2838.87 4833.83 6101.04 7002.20

0.1 0.057 568.16
∅ = 60◦

10
1758.16 2712.83 4453.88 6173.16 6997.53
1758.47 2713.03 4454.16 6174.07 6998.37

0.166 0.096 356.13 6
1777.04 2770.29 4628.48 6259.90 7077.22
1777.30 2770.48 4628.75 6260.67 7077.95

Note: ∗ The non-linear frequencies are bolded in the table.
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According to Table 5, the following conclusions can be drawn:

Increasing the number of plate divisions (N/2) enhances the model’s accuracy, bringing it closer
to reality. This improvement is evident when comparing linear and non-linear frequencies in the table.
Moreover, as the model’s density decreases, the frequencies generally increase.

In most cases, there is minimal disparity between linear and non-linear frequencies, suggesting
predominantly linear behavior across most modes.

The slight differences observed in specific modes (e.g., at a 60° angle and mode (1,2)) may stem
from geometric or material nonlinear effects, which become apparent in more detailed simulations.

Altering the angle from 30° to 60° reveals noticeable frequency changes, highlighting the angle’s
significant influence on the system’s natural frequencies.

For instance, at a 60-degree angle, the frequency of mode (1,1) surpasses that of the same mode
at a 30-degree angle, possibly due to variations in system stiffness.

By observing the data in Table 6 and comparing it with Table 5, in addition to the previous results,
it can also be concluded that reducing the thickness of the ribs from 0.01 to 0.005 m results in a lighter
geometric model and higher geometric frequencies.

Free vibration analysis of a rectangular sandwich plate with lattice core model (b) is performed
using the Galerkin method for simply supported boundary conditions with a total height of 0.032 m.
The extracted results for the first six natural frequencies of a rectangular sandwich plate considering
the lattice core with length a = 1 m and width b = 0.5 m and the thickness of core ribs 0.01 m and the
number of plate divisions (N/2) are shown in Table 7. Therefore, in Tables 7–9, various models (b), (c),
and (d) have been examined with the same conditions, respectively.

The data in Table 7 clearly demonstrate that reducing the number of plate divisions in this
model decreases its density, making it lighter and increasing its frequencies. Additionally, as the
angle increases from 30° to 60°, the frequencies generally rise, highlighting the significant impact
of angle variations on frequencies. Moreover, the nonlinear effects of modal frequencies are notable,
underscoring the importance of using this data for a better understanding and study of the dynamic
behavior of similar structures.

Upon reviewing the data in Table 8, similar results to those in Table 7 are observed. Despite having
the same stiffness matrix, the different geometric configurations between models (b) and (c) lead to
distinct outcomes. Specifically, model (b) exhibits superior performance compared to model (c). For
instance, at a 60-degree angle, the frequency value for mode (1,1) is 1829.63 for model (b), whereas it
is 1793.18 for model (c).

Based on the preceding tables, Table 9 shows that by decreasing the number of plate divisions, the
density of the plate decreases. Hence, both linear and nonlinear frequencies are increased within the
model. Also, by increasing the angle, the modal frequencies increase. In addition, nonlinear frequencies
are higher than the linear ones. That means nonlinear effects exist but their influences are very little on
the values of the frequency. Hence, knowledge of those effects is important to make correct dynamic
analysis and design for such a structure.

6 Conclusions

This study analytically examines a rectangular sandwich plate’s linear and nonlinear vibration
analysis with a lattice core featuring various geometric patterns and simply supported boundary
conditions. Using the Von Kármán nonlinearity strain-displacement relations, the partial differential
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equations of motion are derived based on FSDT and Hamilton’s principle. The nonlinear partial
differential equations of motion are transformed into time-dependent nonlinear ordinary differential
equations by applying the Galerkin procedure. Subsequently, the linear frequencies are determined
using the Duffing equation, and the nonlinear frequencies of the rectangular sandwich plate are
extracted with the aid of the multiple-scales method.

To validate the results, a simplified version of the problem without the core is first solved. The
obtained results are compared with previously reported data for isotropic and orthotropic materials
in Tables 2 and 3, respectively, demonstrating good agreement and accuracy. Meanwhile, model a’s
results with an angle of 30 degrees and the number of divisions (N/2 = 10) are compared with the results
of finite element analysis in ABAQUS software according to Table 4, and they show good accuracy.
Additionally, various results of this study are presented in Tables 5–9. The following conclusions can
be drawn from this investigation.

The following observations can be made from the tables by the results obtained:

1. In all four models, the natural frequencies of the structure are increased by increasing the angle
between the ribs.

2. Within the four studied models, increasing the number of ribs on the core surface decreases
the structure’s natural frequencies at angles of 30 and 45 degrees. Table 5 does not show this
trend for mode numbers of (1,2) and (2,2) at an angle of 60 degrees.

3. In all the studied geometric models, maximum frequencies were related to model (b), and the
minimum frequency belonged to model (a).

4. Decreasing the core ribs’ thickness has increased the structure’s natural frequencies.
5. The order of the maximum frequency between the four models considering four different

angles each is given as: fb > fc > fd > fa.
6. The order of the value of maximum frequency among all four models, considering the angles,

is: f60 > f45 > f30.
7. The frequency difference is more significant for all models’ higher modes. In addition, the

frequencies increase with increasing density.
8. The data in the tables indicate how mechanical modal frequencies can be affected by nonlinear

factors and become even more pronounced when the angle and plate segmentation change
is considered. Typically, one can see a slight variation between linear frequencies and their
nonlinear versions, meaning that most modes respond linearly. However, there can be some,
such as mode (1,2) at an angle of 60 degrees, which displays a range of observed responses that
may be attributed to geometry or material nonlinearities. These observations play an essential
role in understanding such structures’ dynamics. In other words, modifications of the natural
frequencies by specific parameters are achieved, and these parameters should be incorporated
into the design and analysis of the structures.

9. According to Table 4, the analytical method’s results are comparable to the finite element
analysis in ABAQUS, which suggests that the technique used in this research is accurate.
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Appendix A

The following figures were drawn using AutoCAD software:

Fig. A1 shows the diagram of forces in unit cell for models (b), (c), (d) as follows:

Model (b) Model (c) Model (d)( )

Figure A1: Forces diagram on a unit cell for models (b), (c), (d)
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Fig. A2 shows the diagram of moments in unit cell for models (b), (c), (d) as follows:

Model (b) Model (c) Model (d)

Figure A2: Moments diagram on a unit cell for models (b), (c), (d)

Stiffness matrices for cases of model (b) and model (c) are shown as follows:

[Ss] =
[
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Also, the stiffness matrix for model (d) is shown as follows:

[Ss] =
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(A2)

The core Q matrix of models (b) and (c) is displayed as follows:

Qcore = AsEc
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also, the core Q matrix of model (d) is presented as follows:

Qcore = AsEc
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(A4)

After solving Eq. (24) using the Galerkin method, the parametric form of Eq. (27) is obtained.
Then, by writing displacements U, V,∅x and∅y in terms of W, Eq. (28) is obtained, and the coefficients
of Eqs. (27) and (28) are as follows:
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Formulas of area, the cross-sectional area of ribs, models (d), (c), and (b), respectively, are shown
below:
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