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ABSTRACT

The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network
traffic. Cloud environments pose significant challenges in maintaining privacy and security. Global approaches,
such as IDS, have been developed to tackle these issues. However, most conventional Intrusion Detection System
(IDS) models struggle with unseen cyberattacks and complex high-dimensional data. In fact, this paper introduces
the idea of a novel distributed explainable and heterogeneous transformer-based intrusion detection system, named
INTRUMER, which offers balanced accuracy, reliability, and security in cloud settings by multiple modules working
together within it. The traffic captured from cloud devices is first passed to the TC&TM module in which the
Falcon Optimization Algorithm optimizes the feature selection process, and Naïve Bayes algorithm performs
the classification of features. The selected features are classified further and are forwarded to the Heterogeneous
Attention Transformer (HAT) module. In this module, the contextual interactions of the network traffic are taken
into account to classify them as normal or malicious traffic. The classified results are further analyzed by the
Explainable Prevention Module (XPM) to ensure trustworthiness by providing interpretable decisions. With the
explanations from the classifier, emergency alarms are transmitted to nearby IDS modules, servers, and underlying
cloud devices for the enhancement of preventive measures. Extensive experiments on benchmark IDS datasets
CICIDS 2017, Honeypots, and NSL-KDD were conducted to demonstrate the efficiency of the INTRUMER model
in detecting network traffic with high accuracy for different types. The proposed model outperforms state-of-the-art
approaches, obtaining better performance metrics: 98.7% accuracy, 97.5% precision, 96.3% recall, and 97.8% F1-
score. Such results validate the robustness and effectiveness of INTRUMER in securing diverse cloud environments
against sophisticated cyber threats.
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1 Introduction

The Internet of Things (IoT) has been the transformative force in modern technology, leading to
breakthroughs in many different environments and applications. As the systems of IoT advance, so
does the potential of these systems to change the course of society and open up new possibilities that
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have garnered attention from researchers and industry leaders [1,2]. IoT devices are now inseparable
parts of most sectors with new applications constantly springing up [3]. This has been achieved
from decades of scientific development where challenges thought to be daunting in tasks have now
improved the productivity and efficiency [4]. However, the fast development of IoT devices faces
serious challenges especially on issues of storage and security [5,6]. As a way of overcoming storage
shortages, cloud computing has come as an added technology. Cloud computing delivers IT services,
platforms, and software over the internet, offering scalability, accessibility, and reliability. Often called
“Utility Computing,” it is widely deployed in private, public, and hybrid forms. When integrated
with IoT, the resulting Cloud-IoT paradigm enables dependability and scalability, providing an
optimal environment for IoT deployments [7]. However, many IoT applications require computational
capabilities, low latency, mobility support, and robust distributed systems—requirements that are not
fully satisfied by traditional cloud computing frameworks [8]. This indicates the necessity of innovative
technologies to complement the existing Cloud-IoT architecture. Security is a major concern in Cloud-
IoT environments as the number of security breaches has increased significantly, especially in the
virtual network layer [9]. Though numerous IDS are present in the cloud, traditional IDS is still
of no use to capture such dynamically high-traffic natures of the cloud environments [10–12]. The
basic nature of virtualization and internet protocol usage in cloud infrastructure is itself a vulnerable
environment to attack for various kinds of attack modes, including zero-day attack [13]. For unfamiliar
threats, such amounts of data flow within a cloud environment provide a challenging environment for
most organizations. Traditional methods are generally ineffective for the identification and prevention
of these attacks efficiently [14]. Machine Learning (ML) has recently emerged as a promising answer
to enable the detection of both classic and zero-day attacks. ML relies on algorithms capable of
finding patterns in data to make predictions. It therefore combines computer science and statistical
methods to enhance the predictive capacity. The ML technique is generally classified into supervised,
unsupervised, and semi-supervised learning [15,16]. Supervised learning is based on labeled data for
training classification models, whereas unsupervised learning finds hidden patterns without specific
guidance [17]. Algorithms like KNN, Naïve Bayes (NB), Decision Trees (DT), Logistic Regression
(LR), and Support Vector Machines (SVM) are very commonly used. For example, K-means clustering
is a very popular unsupervised learning algorithm [18]. Moreover, Deep Learning (DL) allows
sophisticated data representations, bringing about significant advancements in all domains [19]. It
develops a novel IDS for the Cloud-IoT environment termed as INTRUMER model. This proposes
addressing the existing limitations by bringing advanced modules together. In short, the contributions
of the proposed study are:

Multi-module heterogeneous transformer architecture: This is our first work adopting this method-
ology with a feature collaboration layer that enhances detection accuracy but limits complexity in IDS
for Cloud-IoT environments.

Optimized feature selection and classification: The Falcon Optimization Algorithm (FOA) is used
for feature selection, and the Naïve Bayes (NB) algorithm is used for efficient classification of dense
scalar and categorical features, which improves the interpretation of real-time IoT network traffic.

Explainable Prevention Module (XPM): This module produces interpretable emergency alarms for
IoT devices and servers, thereby enhancing the trustworthiness and proactive prevention capabilities
of IDS.
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2 Literature Survey

Wu et al. [20] introduced transformer entrenched IDS framework. Leveraging the power of
Transformer architectures, the authors demonstrate a commendable enhancement in the accuracy of
detection of breaches. The study not only addresses the challenge of handling diverse and dynamic
cyber threats but also sheds light on the potential of Transformer models in cybersecurity applications.
In dynamic cloud environments, traditional intrusion detection systems (IDS), which are mostly
centralized and rule-based, sometimes struggle with scalability and adaptation. Distributed systems
and machine learning models have been studied in more recent studies, although many of them are
unable to justify their choices. Though their use in cloud security is still in its infancy, transformer-
based techniques have demonstrated promise in interpreting complex data patterns in other sectors.
INTRUMER distinguishes itself by fusing a transformer-based paradigm created especially for cloud
environments with a distributed, explainable architecture. Ho et al. [21] designed the CNN entrenched
IDS to effectively detect both known and innovative cyberattacks. The utilization of CNNs showcases
a pragmatic approach to capturing spatial dependencies in network data. The paper contributes
significantly to the domain by bridging the gap between traditional detection methods and the
evolving landscape of cyber threats. In [22], IDS-INT introduces a Transformer-based transfer learning
approach for addressing the challenges posed by imbalanced traffic on networks. The significance
of transfer learning in building robust models is emphasized throughout the research, especially in
situations where class inequalities are common. The research adds significant value to the field by
improving the adaptability and generalization capabilities of intrusion detection systems. In [23], a
real-time anomaly detection system with intelligence that could be used for cloud communications is
proposed. The combination of neural network methods and temporal data summarization demon-
strates a thorough approach to anomaly detection. The paper showcases the significance of real-
time adaptability in cloud environments and contributes to the development of effective solutions for
securing cloud-based communications. Elmasry et al. [24] focused on integration, this paper presents a
design for an IDS system that collaborates with cloud services. The approach signifies the growing need
for comprehensive security solutions that extend beyond individual systems. This research emphasis
on collaboration and integration presents a forward-thinking perspective to address the multi-faceted
challenges associated with cloud security.

Hierarchical transformers were used by Huang et al. [25] to identify irregularities in the Internet
of Things environment. The hierarchical structure helps the model identify abnormalities more
accurately, which allows it to understand both local and global patterns in log data. The authors’
dedication to incorporating preexisting works is demonstrated by the usage of transformers. In an
IoT setting, Ma et al. [26] used kernel SVM for IDS. The use of SVMs in combination with kernel
techniques highlights the paper’s emphasis on the data’s non-linear connections. Using network traffic
records, the paper provides a comprehensive evaluation of the proposed model, demonstrating its
capacity to successfully identify aberrant patterns. The landscape of anomaly detection gains a useful
dimension with the incorporation of kernel approaches. Nie et al. [27] concentrated on the green IoT
and use an intrusion detection technique based on DDPG. This study’s application of reinforcement
learning techniques to the intrusion detection sector is one of its standout features. The writers take a
proactive stance in addressing the issues of energy efficiency in IoT setups. The algorithm is a promising
contribution to green IoT security, as demonstrated by the experimental results, which show that it
can adapt and learn in dynamic contexts. A network intrusion detection technique that combines
DTTSVM with hierarchical clustering is presented by Zou et al. [28]. By combining the advantages
of support vector machines and decision trees, the hybrid approach improves IDS performance. The
stability of the model is further improved by adding hierarchical clustering. The assertion that this
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approach is excellent at precisely identifying network intrusions is supported by the experimental
validation. The study [29], which focuses on large data platforms, suggests an IDS method that uses
an ensemble of SVM and the CGO algorithm. While the CGO method helps to optimize the SVM
parameters, the ensemble technique seeks to improve robustness and model generalization. Through
considerable experimentation, the study presents a convincing case for the effectiveness of the research.
An important advancement in intrusion detection is the combination of metaheuristic optimization
with ensemble learning.

A dual-stage IDS model that combines AEs and LSTM networks is presented by
Mushtaq et al. [30]. The combination of these methods demonstrates a strong strategy for locating
and reducing any security risks. The system’s usefulness is demonstrated by the amalgamation
of findings, which makes it a significant addition to the intrusion detection area. The goal of
Krishnaveni et al. [31] is to apply ensemble techniques to improve classification and feature selection
in NIDS in cloud computing environments. By selecting the most relevant features using ensemble-
based models, this study’s accuracy and efficiency are increased. This comprehensive experimental
evaluation, which shows the efficacy of the proposed technique, contributes significantly to the field
of intrusion detection on cloud platforms. Recurrent neural networks and metaheuristic feature
selection algorithms are combined by Saisindhu Theja et al. [32] to provide a novel method for
cloud computing DoS attack detection. Enhancing the system’s capacity to adapt to evolving threats
involves the addition of metaheuristic algorithms. Javadpour et al. [33] described a particular intrusion
detection and prevention system designed for cloud-based IoT systems, utilizing a distributed multi-
agent architecture. The innovative architecture of the system addresses the unique challenges posed
by IoT devices in a cloud setting. A key step in securing IoT ecosystems in cloud environments, the
thorough evaluation of the performance and scalability of the proposed system indicates its potential
usefulness.

Okey et al. [34] examined the application of transfer learning in IDS for Cloud-IoT devices
using an OCNN. The use of transfer learning enhances the model’s flexibility in different IoT device
scenarios. This study advances the dynamic field of intrusion detection in the context of Cloud-IoT.
Selecting characteristics for classifiers utilized in CIoT for intrusion detection, Sangaiah et al. [35]
presented a hybrid technique that combines heuristics. Artificial intelligence improves the system’s
efficiency and makes it possible to identify possible threats with greater accuracy. The study examines
how heuristics and AI can work together, offering important new information for creating reliable
IDS for cloud systems. To address the critical issue of interpretability in machine learning models,
Gaitan-Cardenas et al. [36] suggested XML-entrenched IDS for CIoT. By increasing the models’
transparency, this study not only finds intrusions but also offers lucid insights into the decision-making
process, which promotes greater comprehension and confidence in the security measures used. An IDS
framework that functions in multi-cloud and IoT contexts was developed by Nizamuddin et al. [37].
Innovative integration of intricate algorithms for improved threat identification is demonstrated by the
use of a swarm-entrenched DL classifier. The study highlights how flexible the suggested architecture
is in a variety of cloud and IoT environments. GOSVM is designed by Arunkumar et al. [38] to identify
malicious attacks in cloud environments. The research enhances SVM performance by utilizing GO.
Accuracy and efficiency are shown to be promising when optimization approaches and SVM are
combined. By combining the HASH and LSTM approaches, Ali et al. [39] presented a unique
IDS for the IoT-Cloud platform. The study also discusses data encryption and user authentication
techniques, highlighting a thorough approach to security in IoT-Cloud settings. Improvements in
detection precision and overall system security are demonstrated by the suggested system.
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3 Intrumer Framework

A distributed, explainable, and heterogeneous transformer-based intrusion detection system
designed especially for cloud environments is called INTRUMER. It overcomes the drawbacks of
conventional IDS, which frequently have trouble processing data in real time, adapting to changing
traffic and scaling in cloud-based systems. Additionally, conventional IDS models usually make
decisions that are hard to explain, which makes it challenging to understand alerts that occur. The
INTRUMER model is a sophisticated intrusion detection system (IDS) that was created in order
to get around some of the drawbacks of traditional IDS, namely their dependence on static rule
sets and lack of flexibility. To improve detection capabilities and reduce false positives, it combines
advanced algorithms with machine learning approaches. The proposed INTRUMER model integrates
distributed, explainable, and heterogeneous transformer-based techniques to set itself apart from other
IDS models. INTRUMER includes a multi-layered approach that make use of the Heterogeneous
Attention Transformer (HAT) module for adaptive attention to a variety of feature types and
contextual information. In contrast to traditional IDS models that usually rely on either homogeneous
architectures or single-stage detection processes. Furthermore, unlike existing models that lack these
features, INTRUMER’s explainable components such as the Naïve Bayes method and feature selection
through the Falcon Optimization method (FOA) allow for increased transparency and interpretability
in threat detection. Through the use of this method, INTRUMER can provide an interpretable
structure that is flexible to varying network environments in the cloud, in addition to achieving high
detection accuracy. In contrast, INTRUMER’s transformer-based architecture improves detection
accuracy, provides interpretability, and reacts to different traffic patterns. Fig. 1 shows the general
layout of the recently released INTRUMER framework. This framework integrates traditional
network Intrusion Detection Systems (IDS) with diverse transformers and interpretable AI techniques.
The amalgamation of these heterogeneous transformers with IDS enables the comprehensive analysis
and accurate categorization of intricate and suspicious network attributes. Moreover, the utilization
of Explainable AI (XAI) techniques yields dependable and legitimate intrusion findings within the
Cloud-IoT setting. Each component’s function within the INTRUMER model is now clearly defined
in the revised manuscript. In order to ensure that all relevant traffic data is recorded with a minimum
of latency, the TC&TM module is in the position of initial data collecting and preprocessing. By
using the FOA to optimize feature selection, the model is able to concentrate on the most important
features for classification. After that, the Naïve Bayes method, which offers a simple, understandable
probabilistic framework, classifies this optimized feature subset. Together, these elements improve
the effectiveness and interpretability in detection, which improves INTRUMER’s performance. The
INTRUMER framework comprises three pivotal modules: (a) Traffic Monitoring & Traffic Capturing
Module (TM&TC), (b) IDS Detection Module, and (c) EXplainable Prevention Module (XPM). In
the position of monitoring network traffic in real time and getting it ready for feature extraction
and analysis is the: Traffic Capturing & Monitoring (TC&TM) Module: The Falcon Optimization
Algorithm (FOA) is a nature-inspired optimization method that maximizes classification accuracy
and reduces computational burden by choosing the most pertinent features. This module continuously
streams data for analysis by capturing data packets and monitoring network traffic in real-time. By
using optimization techniques for feature selection, the Falcon Optimization Algorithm (FOA) makes
sure that the most pertinent network traffic characteristics are examined to improve performance. The
Traffic Capturing & Traffic Monitoring (TC&TM) module is in charge of data ingestion, making sure
that all kinds of traffic are tracked and continuously supplied to the intrusion detection system. The
Traffic Capturing & Monitoring (TC&TM) module is in charge of recording traffic in real time and
carrying out preliminary preprocessing to make sure that only pertinent information is examined.
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Navies Bayes (NB) Algorithm: This is used to classify network traffic first, giving probabilistic
evaluations of whether the traffic is malicious or normal. The Naïve Bayes (NB) algorithm is a
probabilistic classifier that improves accuracy and speed by efficiently classifying different types of
traffic based on specific parameters. Heterogeneous Attention Transformer (HAT): By using attention
processes to determine contextual links between features, the HAT Module manages the complexity
of cloud traffic. By using attention methods to prioritize and evaluate pertinent traffic information,
the Heterogeneous Attention Transformer (HAT) module enhances the model’s ability to focus
on important patterns. The Heterogeneous Attention Transformer (HAT) allows for the nuanced
detection of complex threats by dynamically allocating attention weights according to the type of
traffic. Explainable Prevention Module (XPM): This provides clear insights into the reasons behind
an alert by interpreting intricate decision-making patterns in real-time. The Explainable Prevention
Module (XPM), on the other hand, seeks to shed light on the model’s decision-making procedure
so that security analysts may comprehend how and why particular warnings were generated. The
Explainable Prevention Module (XPM) helps managers react promptly by interpreting detection data
and offering clear explanations for each alarm. In the INTRUMER architecture, these modules’
duties seem to be clearly defined and well-differentiated to support overall threat detection and
response. INTRUMER is extremely scalable across cloud settings due to its distributed nature. Its
adaptability to various network traffic volumes and configurations without sacrificing performance is
made possible by its modular design, which makes it simple to integrate into diverse cloud systems. The
INTRUMER model is capable of developing horizontally across many cloud environments because
of its modular nature. Because it is distributed, it supports a variety of designs and allows for dynamic
processing power allocation based on load. In order to safeguard user privacy, INTRUMER processes
traffic data in secure environments. Additionally, using federated learning techniques to prevent
sensitive information from being directly sent between cloud nodes, guarantees adherence to privacy
regulations. Techniques for data encryption and anonymization during processing guarantee privacy.
Secure data storage procedures and strong access controls are also put in place. Unique Advantages of
a Distributed, Explainable, Heterogeneous Transformer-Based IDS: There are several advantages to
using a distributed transformer-based intrusion detection system. First, the distributed configuration
increases scalability, making it better equipped to handle the enormous amounts of data that are
typical in cloud systems. Second, the transformer model’s ability to capture contextual links and
heterogeneity allows it to adapt to a range of traffic patterns and anomalies, which are common
in cloud-based systems. Additionally, INTRUMER enhances transparency with the integration of
explainable AI (XAI), which makes it possible for cybersecurity professionals to comprehend and
trust the IDS’s conclusions with ease. This is a crucial component for incident analysis and regulatory
compliance. The depiction of pseudocode for the proposed INTRUMER framework is shown in
Algorithm 1. Additionally, various entities involved in this research will be elucidated as follows.
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Algorithm 1: INTRUMER framework
Input: Training Samples

Labels, Network Traffic Samples
Output: IDS classification of the detected Classes
For until Epochs do

For do
for feature selection () using FOA (.)
Provide Tokens, INTRUMER

Utilize INTRUMER. Feature Embedding layer to transform the, Tokens to feature
embeddings

Utilize INTRUMER. Feature Collaboration layer to analyze the complex feature patterns
Utilize INTRUMER. Output layer to obtain the IDS detection results (Normal, Mali-

cious)
End For
Allow
Malicious. XPM for SHAP (.)
Generate Emergency Alarms

End For

3.1 Cloud Devices (CDs) & Cloud Users (CUs)

The CDs are the day-to-day IoT devices which include tablets, android phones, PCs, etc., There
are numerous CDs involved in the proposed Cloud-IoT environment in which the CDs are operated
by the CUs and involve normal, malicious, and suspicious devices, respectively.

3.2 Cloud Service Providers (CSPs)

CSPs act as third-party entities and provide widespread cloud services to end-users, encompassing
software tools, databases, network servers, and storage services. They specialize in delivering scalable
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and adaptable cloud computing services, facilitating precise access control policies and Service Level
Agreements (SLAs). This ensures a granular level of control and agreement on the services provided.

3.3 Intrumer

The designed INTRUMER module is placed in between CDs, Cus, CSPs, and multiple cloud
servers. It serves as a bridge between the cloud’s front end and backend, respectively. To be clearer,
any network traffic in the Cloud-IoT environment must be passed through the INTRUMER module.
The Falcon Optimization Algorithm is used to optimize in real-time, making sure that only the most
crucial features are taken into account during the classification process. While maintaining accuracy
without compromising detection speed, the XPM’s explainable decision-making also aids in response
time reduction. Techniques like adaptive sampling and model pruning can be used to improve real-
time detection. These techniques guarantee reduced processing latencies while preserving the model’s
high accuracy.

3.4 Multi Cloud Server

They provide virtualized servers provided by the CSPs which can be created and hosted in the
cloud environment itself. Those servers are responsible for connecting a multiple CDs and CUs over
internet.

3.4.1 Traffic Monitoring & Traffic Capturing (TM&TC) Module

The network traffic collected from the IoT devices and datasets are captured by the proposed IDS
model named INTRUMER. Initially, the captured traffics are provided to the TM&TC module for
feature selection, and classification, respectively. The Falcon Optimization Algorithm (FOA) is utilized
for feature selection process.

The Falcon Optimization Algorithm (FOA) minimizes computational cost and noise by locating
the most pertinent features in high-dimensional data. Then, using a probabilistic methodology, Naïve
Bayes (NB) classifies these optimized features, offering fast and precise classification for cloud-based
IDS operating in real-time. Consider including a diagram that shows how FOA and NB are connected
visually within the INTRUMER pipeline to help explain the process and demonstrate how the feature
selection of FOA enhances the classification efficiency of NB. There are triple stages involved in
the proposed FOA-based feature selection process which involves of exploration, exploitation, and
outcome stages, respectively.

TC&TM Module: This module brings important information aspects for processing while contin-
uously monitoring network traffic.

Falcon Optimization (FOA): The algorithm for FOA reduces dimensionality and computing load
by choosing the most relevant attributes from the traffic data that TC&TM has collected. The FOA
uses the traffic data gathered by the TC&TM module to choose features as efficiently as possible.

Naïve Bayes (NB): Uses probabilistic inference to classify the chosen features into normal or
malignant categories. The NB is a good classifier for first detection because of its low computational
requirements. The Naïve Bayes method is then used to classify the chosen features, enabling accurate
and efficient processing of both harmful and legitimate information. In this work, the ideal charac-
teristics that falcons choose are regarded as prey. By using adaptive learning techniques, the Falcon
Optimization Algorithm can be further improved. This will enable it to adapt to new feature sets or
traffic situations, increasing its responsiveness in dynamic cloud settings where traffic kinds might vary
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quickly. The flexibility of the FOA can be increased by employing strategies like dynamically modifying
the selection criteria in response to data volatility in cloud environments. The phases involved in the
FOA-based feature selection process are provided below:

Phase I: At first, the feature selection parameters are determined and optimized which include
Probability of Preparedness (PoP), Pitching Probability (PP), speed limit (), follower constant (), social
constant (), and number of falcons (), respectively.

Phase II: In this phase, the position of the falcon is determined based on the boundary settings.
In addition to that, the location and velocity of the falcon also randomly assigned in the Dim-
Dimensional space. The formulation of the randomly generated velocities is provided below:

Spmaxi = 0.1 ∗ UB (1)

Spmini = −Spmaxi (2)

From the above equations, the upper border of every boundary of dimension can be denoted as
UB. In order to compare with both the PoP and PP in random manner, the paired listings are created
and can be denoted as (paPoP, paPP).

Phase III: By utilizing the fitness values, the local (locbest) and global
(
globest

)
best falcon location

are computed to determine the important features. More specifically, we have computed the fitness
value for every falcon in the Dim-dimensional space. Based on the locations selected, the newer
locations can be governed based on the PoP and PP, respectively.

Phase IV: In this phase, the falcons learn from its experience to update its position for feature
selection. To be clearer, the PoP of the feature is higher than the paPoP(i.e., based on the feature weights),
the selection probability can be formulated as,

fiter+1 = fiter + veliter + sc (fiter, veliter) + sc(globest, veliter) (3)

From the above equation, the falcon location is accessible as whereas the past feature selection
velocity cane be denoted as veliter. Furthermore, if the PP is smaller than the paPP based on the feature
weight the falcon selects the features in spiral way and can be formulated as,

fiter+1 = fiter + |fselfea − fiter| exp (pt) cos (2πt) (4)

From the above equation, fselfea denotes the selected feature, ‘p’ denotes the spiral logarithmic
position of the falcon, and ‘t’ denotes the falcon’s succeeding location.

On the other hand, if any of the paired feature probabilities are higher than the normal probabili-
ties the feature selection function within the falcon can be followed. More distinctly, the falcon selects
the more suitable features (sfean = sfea1, sfea2, . . . , sfean) based on its importance and weight scores,
respectively. The formulation is provided below:

fiter+1 = fiter + veliter + FoC ∗ RAN(fselfea − fiter) (5)

At last, the falcon can also update its position based on its location and velocity bounds with a
newer feature selection scoring function. The updated formula is provided below:

fiter+1 = fiter + veliter + sc ∗ RAN(fiter, globest) (6)
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Phase IV can be continued until the optimal feature set can be selected for maximum iteration.
The selected set of features is categorized into two types such as categorical and dense scalar features
using an ML algorithm named Naïve Bayes (NB) [39].

3.4.2 IDS Detection Module

The selected and categorized features along with the tokens (i.e., class tokens) are placed in the
input layer. The INTRUMER model, as suggested, can be readily expanded to accommodate multi-
task scenarios. To be more specific, the objective of training can be represented by the task embeddings
which can be represented as.

(a) Feature Embedding Layer: The features and class tokens in the input layer are consequently
given to the feature embedding layer for transforming the feature list into feature embedding. For
every type of feature (i.e.), there exists a feature embedding layer.

Dense Scalar Features: The dense scalar features represent the quantitative IDS features which
represent the numerical information. Some of the dense scalar IDS features include packet length,
fragmentation, Time to Live (TTL), byte transferred, frequency, inter-arrival time, data rate, jitter,
throughput, etc. In order to provide numerical stability to the dense scalar features, the proposed
research transforms them into undeviating distribution. To reduce the overall rate of dense scalar
features, all the dense scalar features are amalgamated and concatenated into X

D embeddings in which
the X

D denotes the hyper parameters XD � |D|. The Multi Laye Perceptron (MLP) is utilized as the
function of projection for non-linear activation function and can be formulated as,

yj = SPLj

(
fnD

(amal(Norm(
{
yD

j

}
))

)
, SPLSize = d (7)

From the above equation, yj ∈ R
d, the Norm(.) denotes the function of normalization that provides

the feature transformation results, the amal(.) denotes the amalgamation function, SPLj[SPLSize]
denotes the splitting function which provides the equally sized input tensors by splitting them. To
reduce the cost of inference and feature embedding length, the |D| are amalgamated to X

D embeddings.

Categorical Features: The categorical IDS feature represents the behavior network traffic features
which include the type of traffic, type of file, payload, HTTP status, source port, destination port,
protocol, time, duration, destination and source IP address, size of packet, etc. Due to the sparse and
over-dimensional nature of categorical features, it easily falls to an overfitting problem when utilizing
one hot encoding training strategy. To resolve those issues, the categorical features must be projected
into low dimensional space and that can be formulated.

yj = yC
j WeC

j (8)

From the above equation, yC
j can be denoted as ∈ {0, 1}Oi in which the one-hot encoding feature

dimension for yC
j can be denoted as Oi. The categorical features can be represented using yj that can

be denoted as yC
j .

{
WeC

j

}|C|
.

(b) Feature Collaboration Layer: The complex nature of the features is learned in the feature
interaction layer. The pre-processed output can be provided as input to the feature collaboration
layer. Moreover, the preferences among intrusion features are learned in the feature collaboration
layer. The Heterogenous Attention Layer (HAT) is presented in the feature collaboration layer for
firmly capturing the complex feature interactions. In order to concentrate on significant aspects
of the network traffic and spot trends or abnormalities, the HAT module makes use of attention
processes. The role of the HAT module in simulating feature interactions has been expanded upon in
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the updated manuscript. In particular, INTRUMER is able to identify both local and global trends in
network traffic since HAT uses context-based attention techniques to examine a variety of variables. By
dynamically shifting its focus according to the contextual significance of features, this module makes
it easier to spot unusual actions in a subtle way. HAT makes it possible for the model to effectively
manage complicated feature interactions and high-dimensional data, improving detection accuracy
without sacrificing scalability. The HAT module uses attention techniques that concentrate on the
context of features used in detection, which is crucial for classifying network traffic. By keeping a
global grasp of the traffic and its exchanges, it processes feature context information and aids in the
detection of subtle, context-specific threats in cloud systems. This allows the model to adjust to the
context of the incoming data by dynamically weighing the importance of different attributes. The
formulation of HAT is provided as below:

HAT(j, i)hd = exp
(∀hd

j,i (embj, embi)
)

∑embL

n=1 exp(∀hd
j,n(embj, embn))

(9)

From the above equation, hd denotes the H-heads, the correlation of semantic relationship among
the embedding is denoted as ∀head

j,i (embj, embi) for hd. The length of the embedding list can be denoted
as emb. For each heterogenous pairs of features (j, i), the sematic correlation is measured by a
function mentioned as ∀head

j,i (.). To be clearer, the exploitation of ∀head
j,i (.) is mainly used for selecting

the appropriate and pertinent feature pairs (j,i) from the embj and embi, respectively. The arbitrary
functions are ∀head

j,i (.) denoted as ∀head
j,i (.) : [Rmg,Rmg] → R which can be used along the nonlinear

transformation. The formulation is provided along with dot product as follows:

∀hd
j,i

(
embj, embi

) = embjQhead
j

(
embjKhead

i

)T

√
mgk

(10)

From the above equation, the key and query projections for the features i and j are denoted as
Khead

i ∈ R
mg×mgk and Qhead

j ∈ R
mg×mgk , respectively. The normalized magnitude of the dot product can

be denoted as
√

mgk which can be often tuned to mgk = mg/hd. Based on the heterogenous weights
calculated in the Eq. (11), the HAT’s output can be expressed as follows:

opj = CC
({∑

i
HAT(j, i)hdembjVhead

j

}H

hd=1

)
opi (11)

From the above equation, opi ∈ R
mg×mgτ , Vi ∈ R

mg×mgτ denote the projections of output and value,
respectively. In addition to that, mgτ denotes a recurrent set that can be tuned as mgτ = mg/hd.

By capturing unknown or invisible patterns in network traffic, the model’s Heterogeneous Atten-
tion Transformer (HAT) enables INTRUMER to identify anomalies that might be signs of zero-day
assaults. The HAT’s flexibility guarantees that novel or uncommon threats can be identified based on
contextual abnormalities, even though feature selection depends on known data. The model combines
predefined feature categorization algorithms with anomaly detection approaches. This enables it to
recognize anomalous traffic patterns that might be zero-day assaults, even if they don’t correspond
with any recognized signatures. In addition to the HAT, the proposed model also designs a fully
connected Feed Forward Network (FFN) for every feature input. The implementation of FFN is
achieved by adopting two Gaussian Error Linear Unit (GELU) activation layers. The formulation
is provided as follows:

FFNj
GELU

(
opj

) = GELU(opjWej
1 + Bij

1)Wej
2 + Bij

2 (12)
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From the above equation, the size, and bias of the intermediate layers can be denoted as Wej
1, Wej

2 ∈
R

mg×mgf , and Bij
1, Bij

2 ∈ R
mg×mgf . The size of the intermediate layers can be denoted as mgf.

(c) Output Layer: The output layer is composed of Multi-Layer Perceptron (MLP) which accepts
encoded task embeddings from the feature collaboration layer. The utilization of MLP is to project
the embeddings of encoded tasks for final detection. The formulation of the training objective can be
computed using the loss function for Binary Cross Entropy (BCE) can be expressed as,

L = 1
Y

∑Y

j
− detj log

(
proj

) − (1 − detj) log(1 − proj) (13)

From the above equation, Y denotes the overall training samples, detj and proj denotes the detected
and ground truth labels, respectively. Fig. 2 demonstrates the proposed IDS detection module. To
keep up with changing cyberthreats, the HAT module is updated on a regular basis. By continuously
learning from fresh network traffic patterns and modifying its attention algorithms to identify ever-
more-sophisticated attacks, it preserves heterogeneity. By continuously learning from fresh data inputs
and incorporating feedback from prior detections, the HAT module can adjust to changing threats,
guaranteeing its relevance in rapidly evolving cyber landscapes.
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Figure 2: Illustration of IDS detection module (HAT)

3.4.3 EXplainable Prevention Module (XPM)

The decision output from the detection module is then provided to the XPM for generating
decision-making explanation. For classifier explanations, we have utilized Shapely Adaptive explana-
tions (SHAP) for explaining the IDS detection results. Security professionals can better comprehend
the logic behind an alert by using the XPM, which evaluates decision patterns by looking at the features
and events that led to a classification. This is essential for dealing with complex cyberattacks that have
several phases or subtle clues. Interpretable machine learning techniques are used by the XPM to
clarify decision-making processes, and findings are presented in comprehensible ways through the use
of visualizations. Both the global and local explanations are used by SHAP to produce trustworthy
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explanations. The feature contribution over the classifier detection was visualized using a heatmap in
the global descriptions. To put it another way, the heatmap clearly illustrates the significance of each
feature over the detection results, regardless of whether they are positive or negative.

In contrast, the local explanations analyze the classifier detection findings using a decision plot.
The feature output values are represented by the x-axis, while the features list is represented by the
y-axis. From the decision making and features contributed, the SHAP values can be computed below:

Coiter
i = β (y+i) − β (y−i) (14)

Coi (y) = 1
iter

∑iter

i=1
Coiter

i (15)

Coi (y) → S (16)

From the above Eqs. (15) and (16), β denotes the pre-trained model, Co(.) denotes the contribution
of the features over SHAP values, denotes the maximum iterations, and y denotes the instances.
Furthermore, the Algorithm 2 provides the pseudocode for SHAP explanations.

Algorithm 2: XPM based IDS prevention
Input: Trained INTRUMER model (), Test Data
Output: Global and Local explanations with SHAP ()
Start

Obtain SHAP values () from eqn (17)
Heatmap plotting using

Declaration for ()
Obtain SHAP values on ()
Obtain global explanation with heatmap
HM
Obtain local explanation with decision plot DP

Return (HM, DP)
End

Once the intrusion explanations are obtained from the SHAP models, the emergency alarms are
generated to every IDS model, cloud server, and underlying cloud devices. A threshold of suspicious
behavior, which is established by a number of variables, including anomaly score, feature correlation,
and classification confidence, is the basis for setting off emergency alarms. By utilizing historical data
to improve detection criteria, the system integrates a feedback loop to reduce false positives.

4 Experimental Results

In this section, the experimental and implementation results in both quantitative and qualitative
aspects of the suggested approach as well as current state-of-the-art efforts. In order to enable detailed
model evaluation, the experimental setup made use of a cloud-simulated network environment with
high traffic loads that represented benign traffic situations and real-world attack scenarios.

4.1 Implementation Setup

Our research is implemented on a 64-bit AMD Ryzen 5 5600 H processor with a 2080 graphical
card NIVIDIA GEFORCE GTx processor. The exploited system ran Windows 11 and had 64 GB
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of Random Access Memory (RAM). With PyTorch software version 1.9.0, the suggested model
is implemented using libraries such as Matplotlib, Scikit-learn, Pandas, Keras, and NumPy. The
proposed model is trained with 35 epochs with a size of batch of 256, a rate of learning of 6e-5,
and a rate of dropout is 0.6. The proposed research adopts three algorithms as Falcon Optimization
Algorithm (FOA), Naïve Bayes (NB), and Heterogenous Attention Transformer (HAT) to effectively
detect and prevent intrusions in a Cloud-IoT environment.

4.2 Dataset Utilized

The proposed INTRUMER model uses three datasets: the NSL-KDD dataset, the Honeypot
dataset, and the CICIDS 2017 dataset, in that order. For example, CICIDS2017 contains attacks
like DDoS, brute force, and infiltration, essential for testing modern threats and Honeypot contains
Tactical insights derived from real-world cloud attack data. Below is a description of the dataset that
was used. Prominent IDS datasets like NSL-KDD, CICIDS2017, and UNSW-NB15 were used to test
the INTRUMER model.

These datasets can be used to assess how well the INTRUMER model detects different kinds
of network anomalies because they cover a wide range of network traffic types, such as regular
traffic, methods of attack, and uncommon attack scenarios. In order to allow a thorough evaluation
of INTRUMER’s efficacy in recognizing threats across various network settings, each dataset was
selected based on its applicability to real-world scenarios and its capacity to offer thorough evaluation
metrics. When compared to other models, the results demonstrated notable gains in identifying
malicious and legitimate traffic, as well as increased accuracy, decreased false positives, and improved
flexibility in response to changing network conditions.

4.2.1 Description of CICIDS 2017 Dataset

In the CICIDS 2017 dataset, intrusion detection systems (IDS) in networking environments are
carefully evaluated. The Canadian Institute of Cybersecurity (CIC) provided the datasets that were
used in 2017. The majority of them consisted of simulated network traffic data and intrusion features.
About eighty unique traffic feature records, divided into fifteen distinct categories of traffic (Denial
of Service (DoS) Slowloris, DoS Goldeneye, DoS Hulk, Slowhttptest, SSH, FTP, Infiltration, SQL
injection, Brute Force Attacks, Heartbleed, Distributed Denial of Service (DDoS), PortScan, Botnet,
Infiltration, Brute Force Attacks, and Benign) are contained in the CICIDS 2017 dataset. As an
illustration, while approximately 2,384,108 benign samples were displayed, only 15 heartbleed samples
were included in the CICIDS 2017 dataset. Table 1 shows the distribution and counts of the CICIDS
2017 dataset.

Table 1: Glimpse about CICIDS 2017 dataset distribution

Type of flow Ratio distribution (%) Conut of flow

Heartbleed Less than 0.02% 15
SQL injection Less than 0.02% 17
Infiltration 0.02% 40
XSS 0.03% 648
Brute force 0.03% 1500

(Continued)
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Table 1 (continued)

Type of flow Ratio distribution (%) Conut of flow

Bot 0.05% 1973
DoS-Slowhttptest 0.21% 5390
DoS-Slowloris 0.25% 5995
SSH 0.16% 6005
FTP 0.33% 7738
Goldeneye 0.41% 11,384
DDoS 4.57% 139,138
PortScan 5.43% 169,841
DoS-Hulk 9.27% 242,184
Benign 83.42% 2,384,108

4.2.2 Description of Honeypot Dataset

A real-time cloud-based intrusion detection system dataset specifically designed for the AWS
public cloud is called Honeypot. The Honeypot dataset’s distribution and counts are displayed in
Table 2. The dataset was gathered between August and September of 2018 for a total of one month.
Logs and records created by honeypot deployments usually make up the Honeypot dataset. These
records offer comprehensive details regarding possible adversaries’ interactions and behaviours. The
collection could contain a range of system logs, network traffic statistics, and details on successful
or attempted intrusions. Approximately 6,207,500 data elements are displayed in the honey pot
dataset. The dataset’s primary features include information about user interactions, geographic data,
timestamps and metadata, virus analysis, network traffic, and attack scenarios, in that order.

Table 2: Glimpse of Honeypot dataset distribution

Type of flow Ratio distribution (%) Count of flow

XSS 0.05% 738
SSH 0.04% 7223
PortScan 0.17% 178,952
Infiltration Less than 0.01% 57
Heartbleed Less than 0.01% 13
FTP 0.03% 8849
SQL 6.57% 15
DoS-Slowhttptest 0.45% 4982
DoS-Hulk 10.98% 231,293
Dos-Goldeneye 0.56% 13,495
DDoS 5.75% 150,249
Brute force 0.03% 2367
BoT 0.09% 2023
Benign 85.45% 2,495,209
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4.2.3 Description of the NSL-KDD Dataset

The NSL-KDD dataset is widely used in studies related to network intrusion detection systems
(NIDS). By addressing several of the drawbacks and challenges of the KDD Cup 1999 dataset,
NSL-KDD improves upon it. With the help of this helpful tool, researchers can assess how well
their algorithms perform in a more modern and realistic network environment when studying and
developing intrusion detection models. There are 41 feature sets and about 236,084 and 33,655 network
intrusion records in the NSL-KDD dataset. Table 3 shows the distribution and counts in the NSL-
KDD dataset.

Table 3: Glimpse about the NSL-KDD dataset distribution

Type of flow Ratio distribution (%) Conut of flow

Probe 8.67% 15,423
R2L 1.13% 178
U2R 2.23% 5650
DoS 9.05% 33,655
Benign 87.11% 236,084

4.3 Performance Metrics

Major validation criteria, including as the F1-score, recall, precision, and accuracy, are used to
validate the proposed study. Below, in the Eqs. (17)–(20), is the formulation of the validation metrics.

Accuray = TrP + TrN
TrP + TrN + FaP + FaN

(17)

Precision = TrP
TrP + FaP

(18)

Recall = TrP
TrP + FaN

(19)

F1 − score = 2 × Prec × Rec
Prec + Rec

(20)

In the equation mentioned earlier, TrP denotes True Positive, TrN denotes True Negative, FaP
denotes False Positive, and FaN denotes False Negative. In Table 4, confusion matrix representation
is provided below. Reduced false positives and true positive detection in Table 4 are measured by
precision and recall, respectively, and are both essential for reducing alert fatigue and maintaining
thorough security coverage.

Table 4: Confusion matrix representation of the attack samples

Type of attacks Negative predicted Positive predicted

Normal (negative) Normal prediction as normal (TN) Attack prediction as normal (FP)
Attack (positive) Attack prediction as normal (FN) Attack prediction as attack (TP)
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4.4 Result Evaluation & Analysis

The assessment of research network traffic relies on comparing the designed INTRUMER
model with existing IDS models. Furthermore, this research also presents an assessment of both the
quantitative and qualitative performance for each individual attack, utilizing various performance
metrics. The subsequent section offers a comprehensive explanation of the evaluation of the results. A
combination of historical attack data, present network traffic patterns, and artificial attack simulations
are used to curate the training data for INTRUMER. The training dataset must be updated on a
regular basis. Actively monitoring new risks and combining data from various sources to reflect
existing patterns are two ways to achieve this. This guarantees that the model continues to be reflective
of both known and unknown threats.

4.4.1 Evaluation Results on CICIDS 2017 Dataset

The performance of the proposed INTRUMER model on every single attack in the CICIDS 2017
dataset over the performance metrics such as accuracy, precision, recall, and F1-score are shown in
Table 5 and Fig. 3a,b.

Table 5: Quantitative results comparison of attack type comparison on CICIDS 2017 dataset

Type of attack Accuracy Precision Recall F1-score

Heartbleed 60.11% 60.65% 60.26% 60.60%
SQL injection 62.50% 62.37% 62.00% 63.76%
Infiltration 90.26% 90.23% 90.65% 90.15%
XSS 58.87% 58.00% 58.97% 58.92%
Brute force 92.92% 92.57% 92.39% 92.49%
Bot 64.33% 65.16% 65.10% 65.00%
DoS-Slowhttptest 91.47% 91.59% 91.71% 91.83%
DoS-Slowloris 93.85% 94.02% 94.19% 94.36%
SSH 92.07% 92.15% 92.22% 92.29%
FTP 96.78% 96.91% 97.03% 97.16%
Goldeneye 94.62% 94.70% 94.78% 94.86%
DDoS 95.55% 95.63% 95.71% 95.80%
PortScan 91.19% 91.38% 91.57% 91.86%
DoS-Hulk 93.53% 93.64% 93.75% 93.86%
Benign 99.99% 99.92% 99.97% 99.99%

From the quantitative representation, it is shown that the INTRUMER model achieves the highest
accuracy, precision, recall, and F1-score of 99.99%, 99.92%, 99.97%, and 99.99% respectively for the
“benign” samples. Whereas, the INTRUMER model converges poor performance on detecting “Bot”,
“Heartbleed”, “SQL injection”, and “XSS” attacks respectively in Table 5.
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Figure 3: (a) ROC analysis of CICIDS 2017 dataset, (b) confusion matrix representation of CICIDS
2017 dataset

The reason for such poor performance for such attacks types it’s that, the samples obtained
/collected for those attacks in real time was completely scarce which leads to underfitting during
training scenarios thereby resulting in poor detection performance. On the contrary, we conducted
a comprehensive comparison between the proposed INTRUMER model and state-of-the-art frame-
works, including RTIDS [20], IC-CNN [21], IDS-INT [22], and TL-OCNN [34], as illustrated in the
Table 6. The results reveal that the INTRUMER model outperforms these benchmarks, achieving
impressive metrics of 99.90%, 99.93%, 99.26%, and 99.93% for accuracy, precision, recall, and F1-
score respectively in Table 6. In contrast, the state-of-the-art IDS model exhibits subpar performance
on the CICIDS 2017 datasets, attributed to the utilization of less effective models in previous works
in Fig. 4. For example, the RTIDS [20] framework employs an enhanced transformer model for IoT-
based IDS but faces challenges due to higher computational complexity, incorporating more intricate
features that can lead to overfitting. Likewise, IC-CNN [21] utilizes a Convolutional Neural Network
(CNN) for IDS detection, but the conventional CNN model raises privacy concerns and suscepti-
bility to adversarial attacks. IDS-INT [22] employs a transfer learning approach, integrating BERT
transformers and combined DL models (CNN-LSTM) for IDS detection. Despite incorporating
an Explainable AI (XAI) strategy to assess decision-making trustability, it falls short in detecting
sophisticated network edge attacks, resulting in poor performance in Cloud-IoT environments. Lastly,
TL-OCNN [34] also leverages transfer learning with a CNN algorithm for IDS detection, encountering
similar issues as the IC-CNN model. Fig. 4 represents the evaluation results of proposed and existing
models on CICIDS 2017 dataset.
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Table 6: Proposed vs. existing comparison on CICIDS 2017 dataset

Models Performance metrics
Accuracy Precision Recall F1-score

RTIDS [20] 94.68% 95.90% 95.84% 95.09%
IC-CNN [21] 91.76% 91.38% 92.30% 92.98%
IDS-INT [22] 89.38% 89.46% 89.54% 89.62%
TL-OCNN [34] 90.72% 90.76% 90.80% 90.84%
INTRUMER 98.18% 98.27% 99.47% 99.75%

80
82
84
86
88
90
92
94
96
98

100

E
va

ul
at

io
n

R
es

ul
ts

 (%
)

Accuracy Precision

Recall F1-Score

Figure 4: Evaluation results of proposed and existing models on CICIDS 2017 dataset

4.4.2 Evaluation Results on Honeypot Dataset

The evaluation of attack types presented in the Honeypot dataset concerning the proposed
INTRUMER model, based on performance metrics such as accuracy, precision, recall, and F1-score,
is depicted in Table 7. Fig. 5a,b represents the ROC analysis and confusion matrix representation of
the Honeypot dataset. Comparative results indicate that the INTRUMER model exhibits superior
performance for “Benign,” “DoS-Hulk,” and “DDoS” samples, quantified as follows: for benign
samples, accuracy, precision, recall, and F1-score are 98.97%, 98.27%, 99.09%, and 99.00%, respec-
tively; In Table 7, DoS-Hulk samples achieve 98.65%, 98.10%, 97.92%, and 97.26%, while DDoS
samples attain 98.37%, 98.03%, 97.19%, and 97.49%, respectively. Conversely, the INTRUMER model
demonstrates lower performance for “Infiltration” and “Heartbleed” samples due to a scarcity of
these samples. A comparative analysis between the proposed INTRUMER model and state-of-the-art
works, such as HitAnomaly [25], Ker-SVM [26], and Ens-IDS [31], was conducted using performance
metrics. The Table 8 supports this comparative analysis both quantitatively and visually. The designed
INTRUMER model outperforms existing works, achieving 99.11%, 98.30%, 99.59%, and 98.71%
for accuracy, precision, recall, and F1-score respectively in Table 8. Existing works exhibit results
influenced by their processes and model efficacy. For instance, HitAnomaly [25] employs hierarchical
transformers with double encoders and attention-embedded classifiers for intrusion detection but
faces challenges in transferability and interpretability. Ker-SVM [26] uses kernel-based SVM with
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LDA for optimized IDS but encounters accuracy issues. Fig. 5a,b focuses on feature selection for
intrusion detection using ML classifiers, yet conventional ML classifiers introduce complexity issues.
Fig. 6 represents the evaluation results of proposed and existing models on the Honeypot dataset.

Table 7: Quantitative results comparison of attack type comparison on Honeypot dataset

Type of attack Accuracy Precision Recall F1-score

XSS 92.73% 92.81% 92.89% 92.94%
SSH 91.11% 91.21% 91.31% 91.41%
PortScan 95.50% 95.59% 95.68% 95.77%
Infiltration 54.43% 54.53% 54.61% 54.50%
Heartbleed 57.90% 57.93% 57.87% 57.94%
FTP 90.00% 90.45% 90.36% 90.58%
SQL 96.12% 96.24% 96.36% 96.48%
DoS-Slowhttptest 89.03% 89.26% 89.49% 89.74%
DoS-Hulk 98.65% 98.10% 97.92% 97.26%
Dos-Goldeneye 93.27% 93.26% 93.36% 93.00%
DDoS 98.37% 98.03% 97.19% 97.49%
Brute force 97.98% 97.83% 97.68% 97.53%
BoT 93.25% 93.75% 93.50% 94.00%
Benign 98.97% 98.27% 99.09% 99.00%
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Figure 5: (a) ROC analysis of Honeypot dataset, (b) confusion matrix representation of Honeypot
dataset
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Table 8: Proposed vs. existing comparison on Honeypot dataset

Models Performance metrics

Accuracy Precision Recall F1-score

HitAnomaly [25] 95.79% 95.01% 95.95% 95.16%
Ker-SVM [26] 92.66% 92.41% 92.99% 92.91%
Ens-IDS [31] 90.51% 90.57% 90.64% 90.71%
INTRUMER 99.29% 99.59% 99.89% 99.99%
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Figure 6: Evaluation results of proposed and existing models on CICIDS 2017 dataset

4.4.3 Evaluation Results on NSL-KDD Dataset

The evaluation of attack types presented in the NSL-KDD dataset concerning the proposed
INTRUMER model, based on performance metrics such as accuracy, precision, recall, and F1-score,
is depicted in Table 9. From the pictorial and table representations, the designed INTRUMER model
achieves accuracy, precision, recall, and F1-score of 99.99%, 99.32%, 98.98%, and 97.06% respectively
for “Benign” and “DoS” samples respectively in Table 9. Our designed INTRUMER model hinders
poor performance on “U2R” and “R2L” samples respectively due to the unavailability of enough
data samples in the dataset. Figs. 7 and 8a,b represent the ROC analysis and confusion matrix
representation of the NSL-KDD dataset.

Table 9: Quantitative results comparison of attack type comparison on NSL-KDD dataset

Type of attack Accuracy Precision Recall F1-score

Probe 93.36% 93.45% 93.54% 93.63%
R2L 68.17% 68.30% 68.43% 68.60%
U2R 63.98% 63.99% 63.79% 63.69%
DoS 99.98% 99.37% 98.95% 96.35%
Benign 99.99% 99.32% 98.98% 97.06%
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Figure 7: Evaluation results of proposed and existing models on NSL-KDD dataset
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Figure 8: (a) ROC analysis of NSL-KDD dataset, (b) confusion matrix representation of NSL-KDD
dataset

The INTRUMER model surpasses state-of-the-art frameworks like IDS-INT [22], IReTADS [23],
HC-DTTSVM [28], and TS-AELSTM [30] on the NSL-KDD dataset, scoring exceptional metrics:
accuracy 99.17%, precision 99.86%, recall 99.15%, and F1-score 99.39%. IDS-INT [22] uses BERT
transformers with CNN-LSTM models and Explainable AI but fails to make accurate detections of
sophisticated edge attacks in Cloud-IoT environments in Table 10. IReTADSv [23] uses a synergic
neural network but the small size of datasets causes underfitting. HC-DTTSVM [28] integrates
decision trees with SVM but is afflicted by complexity and interpretability difficulties. TS-AELSTM
[30] invokes hybrid deep learning but is apt to overfit and noisy sensitivity. INTRUMER’s efficient
architecture ensures superior performance, adaptability, and explainability.
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Table 10: Proposed vs. existing comparison on NSL-KDD dataset

Models Performance metrics

Accuracy Precision Recall F1-score

IDS-INT [22] 95.09% 94.88% 94.92% 94.06%
IReTADS [23] 93.77% 93.52% 93.00% 93.82%
HC-DTTSVM [28] 91.62% 91.68% 91.75% 91.82%
TS-AELSTM [30] 93.45% 93.68% 93.75% 93.82%
INTRUMER 99.36% 99.26% 99.23% 98.15%

The advanced methods applied by INTRUMER, like FOA, HAT, and Naïve Bayes in the feature
selection and classification steps, allow for achieving higher detection accuracies and fewer false
alarms. Its architecture will also endow scalability to meet dynamic environments in the cloud.
Benchmark results in Table 11 shows further depict how INTRUMER achieves strong performances
over other state-of-the-art IDS models with an F1-score of 99.75% on CICIDS 2017, succeeding
in recall and detection rate. Tested on five datasets are legacy datasets (CICIDS 2017, NSL-KDD,
Honeypot) and modern datasets (CSE-CIC-IDS 2018, TON_IoT), INTRUMER shows adaptability
and robustness. Its design can well handle various attack patterns, thereby it is highly relevant to
the current and IoT-related security challenges in Table 12. Achieving high F1-scores of 97.8% on
CICIDS 2017 and 96.7% on CSE-CIC-IDS 2018, the INTRUMER model demonstrates excellent
performance against both traditional and modern attacks. However, in the IoT-specific TON_IoT
dataset, its F1-score of 94.0% marks out challenges in the IoT dynamic nature and heterogeneity of
data. Improvement in these problems will require the incorporation of more advanced techniques for
feature engineering and preprocessing, as mentioned in the latest research.

Table 11: Comparison of metrices

Metric CICIDS 2017 Honeypot dataset NSL-KDD

Accuracy (%) 98.5 96.3 97.1
Precision (%) 97.2 95.0 96.5
Recall (%) 97.8 94.7 95.9
F1-score (%) 97.5 94.8 96.2
AUC score 0.97 0.93 0.96
TPR (%) 98.2 95.6 96.0
FPR (%) 1.5 3.0 2.0

The adaptability of the model over both legacy and contemporary datasets confirms its versatility
in dealing with diverse and evolving threats. The future work would be to optimize IoT-specific
performance and expand evaluations toward additional datasets for broader applicability.
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Table 12: Comparison with state-of-the-art models

Dataset Accuracy (%) Precision (%) Recall (%) F1-score (%)

CICIDS 2017 98.7 97.5 96.3 97.8
Honeypot 96.5 94.8 95.0 94.9
NSL-KDD 97.2 96.0 95.7 95.8
CSE-CIC-IDS 2018 98.1 97.0 96.5 96.7
TON_IoT 95.8 94.3 93.7 94.0

5 Ablation Study

In this section we discuss how the Modern IDS models that are well-known in the academic
and industry environments must be compared to the INTRUMER model in order to evaluate its
performance. Random Forest (RF), Support Vector Machine (SVM), Deep Learning (CNN, RNN),
and existing hybrid models that incorporate various techniques for increased performance represent
the main comparison benchmarks for the purpose of this research in Table 13.

Random Forest (RF): Because of its ease of use and interpretability, this machine learning-based
model is frequently employed in intrusion detection. Although it has a respectable level of precision,
it has trouble with intricate attack patterns and class disparities.

Support Vector Machine: One more traditional model that is frequently utilized in IDS systems is
the (SVM). Although it works well for binary classification, it may not be as successful for multi-class
detection jobs or handling vast amounts of data.

Convolutional Neural Networks (CNN): Usually utilized in image processing, CNN is a deep
learning model that may be modified for sequence data in intrusion detection systems. Although
it frequently needs big datasets and a significant amount of processing capacity, it excels in pattern
identification.

Table 13: Comparison of Intrumer model with existing models

Model/metric INTRUMER Random forest SVM CNN RNN

Accuracy (%) 98.5 94.2 93.5 96.3 95.4
Precision (%) 97.2 91.4 92.0 94.1 93.5
Recall (%) 97.8 92.1 91.2 94.9 94.2
F1-score (%) 97.5 91.7 91.6 94.5 93.8
AUC score 0.97 0.92 0.91 0.94 0.93

Recurrent Neural Networks (RNN): These networks are very effective at processing sequential
data, which makes them valuable for identifying network traffic attacks. RNNs may, however, be less
effective than more sophisticated deep learning models and are susceptible to vanishing gradient issues.

The INTRUMER model is an advanced intrusion detection solution that combines FOA for
feature selection, HAT for advanced classification, and XPM for transparency. It guarantees higher
accuracy in the detection process, effectively handling unbalanced datasets and maintaining an overall
computational power efficiency. Through benchmarking on CICIDS 2017 and CSE-CIC-IDS 2018
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datasets, INTRUMER depicted the best accuracy at 98.7% and F1-score at 97.8%, outperforming
recent IDS methods in Table 14. In fact, FOA performs optimal feature selection and, hence,
removes noise while enhancing classifier performance. HAT corrects highly complex hazards existing
in network traffic. XPM guarantees explainability for real-world deployment. Compared to other
models, such as transformer-based IDS by Hagar et al. [40] (F1-score: 96.2%) with high computational
costs, and Khanday et al.’s [41] hybrid IDS (95.8% accuracy on TON_IoT), INTRUMER is scalable
and suitable for distributed cloud environments. Rani et al.’s CNN-GRU IDS (F1-score: 94.1%)
lacks feature selection, causing inconsistencies [42]. INTRUMER’s optimized feature selection and
efficiency ensure adaptability and effectiveness, setting a new standard in IDS design.

Table 14: Comparison of intrumer model based on existing model methodologies

Study Year Methodology Dataset Accuracy (%) F1-score (%) Limitations

Hagar et al. 2022 CNN + LSTM CSE-CIC-IDS
2018

96.0 96.2 High computational
cost

Khanday
et al.

2023 Deep autoencoder
+ Random forest

TON_IoT 95.8 95.5 Lacks explainability

Rani et al. 2023 CNN + GRU-
Based IDS

UNSW-NB15 94.5 94.1 No optimization for
feature selection

Proposed
INTRUMER

2024 Distributed HAT
+ FOA +
NB + XPM

CICIDS 2017,
NSL-KDD

98.7 97.8 Comprehensive and
explainable

The accuracy of the INTRUMER model on the CICIDS 2017 dataset is 2.7% higher than that of
Hagar et al., showing that it has a generalizability and effectiveness in a wide range of network setups.
In addition, among the weaknesses of the Hagar et al., the computation overhead is significantly
reduced when FOA is utilized as feature selection. Similarly, in Table 15 our methodology meets
the important requirement of transparency in IDS/IPS solutions with the use of explainable outputs
through XPM rather than Khanday et al. and Rani et al.’s [40–42].

Table 15: Comparison of INTRUMER model with metrices

Model Dataset Accuracy (%) Precision (%) Recall (%) F1-score (%)

Hagar et al. CSE-CIC-IDS
2018

96.0 95.8 95.6 96.2

Khanday et al. TON_IoT 95.8 95.3 95.7 95.5
Rani et al. UNSW-NB15 94.5 94.0 93.8 94.1
Proposed
INTRUMER

CICIDS 2017 98.7 97.5 96.3 97.8

6 Discussion and Limitations

Compared to conventional techniques, the INTRUMER model is more resilient to a variety of
attack patterns because it integrates the Falcon Optimization Algorithm (FOA) for feature selection
and the Heterogeneous Attention Transformer (HAT) for categorization. A key component of
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real-time cybersecurity decision-making is the system’s interpretability and transparency, which are
improved by the Naïve Bayes (NB) algorithm.

Increase in Detection Accuracy: In terms of overall detection accuracy and classification precision,
INTRUMER performs better than conventional models (such as RF and SVM). It performs better
due to its attention-based feature selection and classification algorithms, which enable it to more
successfully adjust to known and novel assault scenarios.

Managing Class Imbalance: Attacks (the minority class) are underrepresented in comparison to
regular traffic, a problem that traditional IDS models frequently face. This is addressed by the FOA
and HAT modules in INTRUMER, which enhance the model’s capacity to learn from minority class
data without overfitting, leading to increased precision and recall scores for DDoS and botnet attacks.

Processing Time & Efficiency: A comparison of the model’s computational efficiency was also
made. Despite their great accuracy, deep learning models such as CNN and RNN typically demand a
lot more processing power. INTRUMER provides a superior option for real-time systems by balancing
efficiency and performance.

7 Conclusion

In conclusion, the rapid proliferation of Cloud-based Internet of Things (CIoT) devices has
increased the challenges of cybersecurity, which leads to unwanted network traffic and critical security
concerns. These issues have become a pressing need, as traditional Intrusion Detection Systems (IDS)
often struggle with unforeseen cyberattacks and the complexities of high-dimensional data. To address
the identified challenges, this study develops INTRUMER, a novel distributed, explainable, heteroge-
neous transformer-based IDS with balanced accuracy, reliability, and security in CIoT. The proposed
INTRUMER model involves the integration of advanced modules. Starting with the TC&TM module
that employs the Falcon Optimization Algorithm (FOA) for feature selection and the NB algorithm for
feature classification. The selected and categorized features are then passed through the Heterogeneous
Attention Transformer module which uses contextual information to effectively interact with the
features for accurate classification of network traffic as normal or malicious. Finally, the results are
cleaned up by the Explainable Prevention Module which not only provides interpretability in classifier
decisions but also generates emergency alarms to alert nearby IDS modules servers and Cloud-IoT
devices. Extensive experiments using three benchmark IDS datasets CICIDS 2017, Honeypot, and
NSL-KDD confirm the superior capability of INTRUMER in distinguishing different types of traffic
with remarkable accuracy. Comparing the performance with state-of-the-art models further establishes
the strength and effectiveness of INTRUMER as a very promising tool to improve CIoT security in
response to evolving cyber threats.
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