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ABSTRACT

In this manuscript, we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced
composites, bypassing general computational homogenization. The method is based on the reduced-order homog-
enization (ROH) approach. The ROH method typically involves solving multiple finite element problems under
periodic conditions to evaluate elastic strain and eigenstrain influence functions in an ‘off-line’ stage, which offers
substantial cost savings compared to direct computational homogenization methods. Due to the unique structure
of the fibrous unit cell, “off-line” stage calculation can be eliminated by influence functions obtained analytically.
Introducing the standard solid model to the ROH method enables the creation of a comprehensive analytical
homogeneous viscoelastic constitutive model. This method treats fibrous composite materials as homogeneous,
anisotropic viscoelastic materials, significantly reducing computational time due to its analytical nature. This
approach also enables precise determination of a homogenized anisotropic relaxation modulus and accurate
capture of various viscoelastic responses under different loading conditions. Three sets of numerical examples,
including unit cell tests, three-point beam bending tests, and torsion tests, are given to demonstrate the predictive
performance of the homogenized viscoelastic model. Furthermore, the model is validated against experimental
measurements, confirming its accuracy and reliability.

KEYWORDS
Homogenized relaxation modulus; viscoelastic; standard solid model; reduced order homogenization; fibrous
composite material

1 Introduction

Fiber-reinforced composites offer advantages such as lightweight properties, high strength,
extended maintenance intervals, and corrosion resistance, making them widely used in the aerospace
and automotive industries [1–5]. Thermosetting or thermoplastic matrices with cylindrical microstruc-
tures exhibit transversely isotropic viscoelastic behavior, as documented in the literature [6,7]. The
overall mechanical behavior of fibrous composites is analyzed using multiscale methods. These
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methods provide detailed insights into the underlying mechanisms, enabling material performance
optimization and guiding innovative material design.

Initially, homogenization methods for viscoelastic composites were based on the correspondence
principle. Micromechanical theoretical schemes developed for elastic composites were extended to
viscoelastic composites to estimate their effective elastic moduli in the Laplace domain. Various
approaches, including mean-field homogenization methods [8–10], the asymptotic homogenization
method [11–13], the variational principle [14,15], and the sequential linearization approach [16], have
been employed to simulate viscoelastic composites. Results obtained in the Laplace domain are then
transformed back to the time domain to determine the effective response of the viscoelastic materials.
However, performing an analytical inverse transform is usually too complex, so the macroscopic
response in the time domain can only be obtained through numerical inversion [12] or approximate
inversion methods [17], which can be costly and less accurate.

To overcome the limitations of the Laplace transformation, various homogenization methods
have been developed to operate directly in the time domain [18–20]. Mean-field homogenization
methods, initially formulated for linear elastic composite materials, have since been extended to
address nonlinear behaviors, such as elastoplastic [21,22] and viscoelastic [23] responses, among
others. These extensions are typically implemented by linearizing local constitutive laws incrementally,
an approach necessitated by the Eshelby problem’s assumption that mechanical interactions within
phases are purely elastic. Additionally, stress and strain fields within each phase are approximated
as phase averages, treating them as homogeneous. However, in nonlinear problems, where stress
and strain distributions are inherently non-uniform across phases, this approximation can lead to
an over-stiffness issue. To address this challenge, techniques such as the isotropization method [24]
and higher-order theories [25] have been proposed. Bleiler et al. [26] introduced a tangent second-
order homogenization method to estimate the effective mechanical response of fibrous composites
with hyperelastic, anisotropic, and incompressible phases. Furthermore, Barral et al. [27] advanced
the Mori-Tanaka method by incorporating a modified transformation field analysis (TFA) approach
first proposed by Dvorak and his coworkers [28] and introducing a specialized coating between fibers
and the matrix, effectively mitigating over-stiffness in the analysis of fiber-reinforced composites. In
the TFA method, the inelastic strains are considered as given eigenstrains. This method assumes that
eigenstrains in each phase of the composite are piecewise constant, this lower-order approximation
can lead to inaccurate solutions for overall properties. To overcome the problem, Michel et al. [29,30]
have introduced the nonuniform transformation field analysis, where full field calculations take place
and the plastic behavior is traced with the help of several plastic modes. Strategies such as subdividing
each phase into numerous partitions, using asymptotically consistent eigenstrain fields have also been
employed [31].

The asymptotic homogenization method is a mathematically rigorous methodology developed
by Sanchez-Palencia [32], Bensoussan and Alain [33]. Compare to the Mean-field homogenization
method, it effectively captures the interactions between different phases within composite materials,
enabling more precise predictions of their overall performance. It has been proved that the considered
fields converge towards the homogeneous macroscopic solution as the micro-structural parameter
ξ = x/y tends to 0. The classic asymptotic homogenization method can obtain the linear homogenized
modulus by solving a linear unit cell problem with given phase material elastic properties. Thus,
one can use the homogenized elastic properties in a macroscopic simulation without downscaling or
upscaling between the macro- and meso-scales. In this manner, the linear homogenization process is
named as “off-line” process. However, if material nonlinearities at the mesoscale are considered, a
unit cell problem must be solved at every integration point of all the macroscopic elements during
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each macroscopic Newton-Raphson iteration. Additionally, the unit cell problem itself requires a
Newton-Raphson iterative process due to material nonlinearities. This repeating process is known as
the “on-line” process since it depends on the “on-the-fly” kinematic measurements at the macro-scale,
significantly increasing the computational cost. Yu et al. [34] used the asymptotic homogenization
method to solve thermo-viscoelastic problems, considering both multiple spatial and temporal scales.
Zhai et al. [18] developed a time-domain asymptotic homogenization method based on the integral
form of the Kelvin–Voigt viscoelastic model and used it for woven fabric composites.

Multiscale computational techniques based on the finite element method such as FE2, offer the
possibility of computing the macro-structural response of heterogeneous materials with an arbitrary
microscopic geometry and constitutive behavior. A scheme based on the discrete homogenization
method are developed to predict the effective mechanical properties of 3D dry textiles [35]. Recently,
the isogeometric analysis method (IGA), proposed by Hughes and his coworkers [36,37], has been
incorporated into computational homogenization [38–40]. The method aims to unify the representa-
tion of geometric models and mesh models by directly employing the spline functions as the shape
functions. The errors produced by geometric approximations inherent in conventional finite-element
and finite-volume techniques could be greatly reduced because the same model is used for both
modeling and analysis. Cylindrically orthotropic [41] and viscoelasticity [42] are considered for fiber-
reinforced composites using IGH methods.

To decrease computational costs at the meso-scale without significantly compromising solution
accuracy, the reduced-order-homogenization (ROH) multiscale method was developed, combining
the asymptotic homogenization method with transformation field analysis (TFA) [43,44]. The ROH
method was first used in composite plasticity and failure analysis [43,45], and higher-order ROH
methods have been developed for three-scale nonlinear problems [46–49]. In this paper, a two-phase
model with the assumption of one partition per phase is employed for fiber-reinforced composites. Due
to the unique structure of the fiber-reinforced unit cell, analytical transformation influence functions
can be derived. Based on ROH theory, an analytical homogenization constitutive model for unidirec-
tional fibrous composites is proposed, eliminating the need for computational homogenization. As
demonstrated in the following section, the proposed model does not exhibit significant over-stiffness
and helps reduce computational time.

This paper is organized as follows. In Section 2, we introduce the analytical viscoelastic fibrous
composites constitutive model based on the ROH homogenization method. Special cases where the
fiber volume fraction approaches zero are considered to confirm the model’s consistency under
extreme conditions. We investigate the impact of material parameters of each component on the
relaxation times of the homogenized viscoelastic material. Additionally, numerical implementation
specifics for the proposed model are detailed in this section. Section 3 presents numerical verifications
of the proposed model through three sets of numerical examples: unit cell tests, three-point beam
bending tests, and torsion tests. Experimental results from the literature are used to validate the
proposed constitutive model. Conclusions are provided in Section 4.

2 Methodology

In this section, we introduce an analytical framework to determine homogenized viscoelastic mate-
rial properties for the fibrous composite material based on the so-called reduced order homogenization
(ROH) method. Here we assume the fiber phase follows transversely isotropic symmetry and keeps
elastic that
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σ f
ij = Lf

ijklε
f
kl (1)

On the other hand, the matrix phase is viscoelastic and described by the standard solid model [50],
and the stress response is written as the following form:

σ m
ij = Lm,∞

ijkl εm
kl +

∫ t

0

e−(t−η)/τ1Lm,iso
ijkl ε̇m

kl (η) dη (2)

where

Lm,∞
ijkl = 2μm,∞Idev

ijkl + 3κm,∞I vol
ijkl , μm,∞ = Em,∞

2 (1 + νm)
, κm,∞ = Em,∞

3 (1 − 2νm)
(3a)

Lm,iso
ijkl = 2μm

isoI
dev
ijkl + 3κm

isoI
vol
ijkl , μm

iso = Em
iso

2 (1 + νm)
, κm

iso = Em
iso

3 (1 − 2νm)
(3b)

Here Em,∞ is the equilibrium Young’s modulus of the matrix phase, and νm is the corresponding
Poisson’s ratio. Em

iso is the isotropic relaxation modulus. Finally, the fourth-order tensors I vol
ijkl and Idev

ijkl

are defined as

I vol
ijkl = 1

3
δijδkl, Idev

ijkl = 1
2

(
δikδjl + δilδjk

)− 1
3
δijδkl (4)

respectively. Here the quantities associated with the fiber and the matrix phase are marked with
superscription Ef and Em, respectively.

Our goal is to obtain an analytical homogeneous relaxation tensor Rc
ijkl (t) that

σ c
ij = Lc,∞

ijkl ε
c
kl +

∫ t

0

Rc
ijkl (t − η) ε̇c

kl (η) dη = Lc,∞
ijkl ε

c
kl + Rc

ijkl (t) ∗ ε̇c
kl (t) (5)

based on given material properties of the fiber and the matrix phase without computational homog-
enization process, where σ c

ij , εc
ij are the macroscopic stress and strain tensor, respectively, Lc,∞

ijkl is
homogenized linear elastic stiffness tensor, and f (t) ∗ g (t) denotes the convolution of function f (t)
and g (t). Here the macroscopic properties are marked with superscription εc.

2.1 Reduced Order Homogenization (ROH) for Fibrous Composite Material

The reduced-order homogenization (ROH) method is based on two key assumptions: 1) It
is possible to distinguish between two length scales associated with macroscopic and microscopic
phenomena; 2) The microstructure is sufficiently regular to be considered periodic; 3) The material
within the same partition maintains a consistent status throughout, which reduces computational
costs at the meso-scale. A complete derivation of the ROH method would be too extensive for this
section, so we will present only the essential formulas. For a detailed explanation of the methodology,
please refer to reference [44]. The fibrous composite material consists of the fiber and matrix phases.
We introduce eigenstrains μij defined as [44]

μij = εij − Mijklσkl (6)

where Mijkl is the elastic compliance tensor. The ROH aims to solve the following system of nonlinear
equations [44]:

εf
ij − Pkl,fm

ij μm
kl − Pkl,ff

ij μf
kl = Ekl,f

ij εc
kl (7a)

εm
ij − Pkl,mm

ij μm
kl − Pkl,mf

ij μf
kl = Ekl,m

ij εc
kl (7b)



CMC, 2025, vol.82, no.1 197

where Ekl,f
ij and Ekl,m

ij are the elastic strain influence functions, Pkl,fm
ij , Pkl,mm

ij , Pkl,ff
ij and Pkl,mf

ij are the
eigenstrain influence functions, and εc

ij is the macroscopic strain tensor.

Since the fiber phase keeps elastic, we can obtain μf
ij = 0 directly. The eigenstrains of the matrix

phase are given as

μm
ij = εm

ij − Mijklσ
m
ij = εm

ij − (Lm
ijkl

)−1
σ m

kl = εm
ij − (Lm,∞

ijkl

)−1
σ m

kl

= −ψm

∫ t

0

e−(t−η)/τ1 ε̇m
ij (η) dη (8)

by the standard solid model defined in Eq. (2), with consideration of material isotropy Eqs. (3a) and
(3b), and define ψm ≡ Em

iso/Em,∞. Here we define

Lm
ijkl = Lm,∞

ijkl (9)

By linear elastic stiffness tensor of the fiber phase and the matrix phase given in Eqs. (1) and (9),
respectively, we can first obtain the homogenized elastic stiffness tensor Lc

ijkl that

Lc
ijkl = cfLf

ijmnE
kl,f
mn︸ ︷︷ ︸

≡Lcf
ijkl

+ cmLm
ijmnE

kl,m
mn︸ ︷︷ ︸

≡Lcm
ijkl

(10)

where cf and cm = 1 − cf are the volume fraction for the fiber and the matrix phase, respectively. The
macro-scopic averaged stress then is given by volumetric averaging of phase stresses that

σ c
ij = cfLf

ijklε
f
kl + cmLm

ijklε
m
kl = Lc

ijklε
c
kl + Am

ijklμ
m
kl (11)

where

Am
ijkl = cfLf

ijstP
kl,fm
st + cmLm

ijst

(
Pkl,mm

st − Istkl

)
(12)

Usually, the fibrous composite material is assumed to satisfy the transversely isotropic symmetry
so that the linear elastic stiffness tensor can be written with Hill’s constants nc, lc, mc, kc, and pc [51],
with the fibers aligned along the longitudinal x1−axis:

{
Lc

ijkl

} =

⎡
⎢⎢⎢⎢⎢⎢⎣

nc lc lc

lc kc + mc kc − mc

lc kc − mc kc + mc

mc

pc

pc

⎤
⎥⎥⎥⎥⎥⎥⎦ (13)

The fiber phase also is transversely isotropic, where its Hill’s constants are written as nf , lf , mf , kf ,
and pf . For fibrous composite material, the following universal connections are satisfied [51]:

kc − kf

lc − lf
= kc − (λm,∞ + μm,∞)

lc − λm,∞ = lc − cf lf − cmlm

nc − cfnf − cmnm
= kf − (λm,∞ + μm,∞)

lf − λm,∞ (14)

where λm,∞ and μm,∞ are the Lamé constants of the matrix phase.

2.2 Analytical Influence Functions for Fibrous Composite Material

The elastic strain and eigenstrain influence functions are usually evaluated by solving a number
of finite element problems over the given fibrous unit cell [44]. In this manuscript, we aim to provide
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an analytical method to evaluate those functions with given linear homogenized stiffness tensor Lc
ijkl,

which can be estimated by Mori-Tanaka or self-consistent method [51].

First of all, the elastic strain influence functions satisfy the following constraint that [44]

cfEkl,f
ij + cmEkl,m

ij = Iijkl (15)

One can obtain the elastic strain influence functions by Eqs. (10) and (15) [44]:

Ekl,f
ij = 1

cf

(
Lf

ijmn − Lm
ijmn

)−1 (
Lc

mnkl − Lm
mnkl

)
(16a)

Ekl,m
ij = 1

cm

(
Lm

ijmn − Lf
ijmn

)−1 (
Lc

mnkl − Lf
mnkl

)
(16b)

In other words, for a two-phase unit cell, as long as Lc
ijkl is given, the elastic strain influence

functions can be obtained directly.

Next, we continue to evaluate the eigenstrain influence functions. Define the following supportive
tensors:

{
Ẽpq,f

ij

}
≡

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
−ν f

at 0 0
−ν f

at 0 0
0

0
0

⎤
⎥⎥⎥⎥⎥⎥⎦ (17)

and

{
Ẽpq,m

ij

}
≡

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
cfν f

at/cm f22 0
cfν f

at/cm 0 f33

f23

f13

f12

⎤
⎥⎥⎥⎥⎥⎥⎦ (18)

with ν f
at denoting the Poisson’s ratio in longitudinal direction of the fiber phase, and

fij = Lc
ijij/Lcm

ijij , ij = 22, 33, 23, 13, 12, no summation over repeated indices (19)

where Lcm
ijij is defined in Eq. (10). Then we obtain the eigenstrain influence functions:

Pkl,mm
ij = Iijkl − Emn,m

ij

(
Ẽkl,m

mn

)−1

, Pkl,f
ij = Iijkl − Ekl,m

ij − Pkl,mm
ij (20a)

Pkl,fm
ij =

(
Emn,f

ij − Ẽmn,f
ij

) (
Ẽkl,m

mn

)−1

, Pkl,ff
ij = Iijkl − Ekl,f

ij − Pkl,fm
ij (20b)

However, Pkl,mf
ij and Pkl,ff

ij are not used since μf
ij = 0.

Due to the symmetry of fibrous unit cell, one can use only 5 non-zero parameters to define one
influence tensor. For the linear strain influence tensors, we have (E = f, m)



CMC, 2025, vol.82, no.1 199

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
E11,22 E22,22 E33,22

E11,33 E22,33 E33,33

E23,23

E13,13

E12,12

⎤
⎥⎥⎥⎥⎥⎥⎦⇒

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
E1 E2 E3

E1 E3 E2

E4

E5

E5

⎤
⎥⎥⎥⎥⎥⎥⎦ (21)

and for the eigenstrain influence tensors, we also have (E = f, m)⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
P11,mm

22 P22,mm
22 P33,mm

22

P11,mm
33 P22,mm

33 P33,mm
33

P23,mm
23

P13,mm
13

P12,mm
12

⎤
⎥⎥⎥⎥⎥⎥⎦⇒

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
Pmm

1 Pmm
2 Pmm

3

Pmm
1 Pmm

3 Pmm
2

Pmm
4

Pmm
5

Pmm
5

⎤
⎥⎥⎥⎥⎥⎥⎦ (22)

From Eqs. (21) and (22), we can quickly obtain the following results:

εm
11 = εf

11 = εc
11 (23)

which means the axial strains of the matrix and the fiber phases are the same and equals to the
macroscopic axial strain εc

11.

2.3 Viscoelastic Model for the Fibrous Composite Material

In this section, we propose a homogenized viscoelastic model with the analytical elastic strain and
eigenstrain influence functions. Substituting Eqs. (8) into (7b) with μf

ij = 0 yields

εm
ij + Pkl,mm

ij ψmm

∫ t

0
e−(t−η)/τ1 ε̇m

kl (η) dη = Ekl,m
ij εc

kl,

ij = 22, 33, 23, 13, 12, summation convention over k, l
(24)

where ij = 11 is not considered due to Eq. (23). In the rest of this section, we derive system of ordinary
differential equations (ODEs) for ε̇m

ij with ij = 22, 33, 23, 13, 12. First, taking the derivative of Eq. (24)
with respect to time t yields

ε̇m
ij (t) + Pkl,mm

ij ψmm

[
ε̇m

kl (t) − 1
τ1

∫ t

0

e−(t−η)/τ1 ε̇m
kl (η) dη

]
= Ekl,m

ij ε̇c
kl (t) (25)

Thus we obtain

Pkl,mm
ij ψm

∫ t

0

e−(t−η)/τ1 ε̇m
kl (η) dη = τ1

[
Iijkl + ψmPkl,mm

ij

]
ε̇m

kl (t) − τ1Ekl,m
ij ε̇c

kl (t) (26)

Next, substituting Eqs. (26) into (24) yields

εm
ij + τ1

[
Iijkl + ψmPkl,mm

ij

]
ε̇m

kl (t) = Ekl,m
ij

[
εc

kl + τ1ε̇
c
kl (t)

]
, ij = 22, 33, 23, 13, 12 (27)

By solving the system of ordinary differential equations in Eq. (27), we obtain the matrix phase
strain εm

ij , where ij = 22, 33, 23, 13, 12. The detailed derivation is provided in Appendix A. The
solutions for the normal strains εm

22 (t) and εm
33 (t) can be expressed as
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εm
22 (t) = Em

1 εc
11 (t) + Em

2 εc
22 (t) + Em

3 εc
33 (t) +

[
−Em

1

τ2 − τ1

τ2

− τ1

τ2

ψmPmm
1

]
e−t/τ2 ∗ ε̇c

11 (t)

+
[
−1

2

(
Em

2 + Em
3

) τ2 − τ1

τ2

e−t/τ2 − 1
2

(
Em

2 − Em
3

) τ3 − τ1

τ3

e−t/τ3

]
∗ ε̇c

22 (t) (28a)

+
[
−1

2

(
Em

2 + Em
3

) τ2 − τ1

τ2

e−t/τ2 + 1
2

(
Em

2 − Em
3

) τ3 − τ1

τ3

e−t/τ3

]
∗ ε̇c

33 (t)

εm
33 (t) = Em

1 εc
11 (t) + Em

3 εc
22 (t) + Em

2 εc
33 (t) +

[
−Em

1

τ2 − τ1

τ2

− τ1

τ2

ψmPmm
1

]
e−t/τ2 ∗ ε̇c

11 (t)

+
[
−1

2

(
Em

2 + Em
3

) τ2 − τ1

τ2

e−t/τ2 + 1
2

(
Em

2 − Em
3

) τ3 − τ1

τ3

e−t/τ3

]
∗ ε̇c

22 (t) (28b)

+
[
−1

2

(
Em

2 + Em
3

) τ2 − τ1

τ2

e−t/τ2 − 1
2

(
Em

2 − Em
3

) τ3 − τ1

τ3

e−t/τ3

]
∗ ε̇c

33 (t)

The solutions for the shear strains

εm
23 (t) = Em

4 εc
23 (t) − τ4 − τ1

τ4

Em
4 e−t/τ4 ∗ ε̇c

23 (t) (29a)

εm
13 (t) = Em

5 εc
13 (t) − τ5 − τ1

τ5

Em
5 e−t/τ5 ∗ ε̇c

13 (t) (29b)

εm
12 (t) = Em

5 εc
12 (t) − τ5 − τ1

τ5

Em
5 e−t/τ5 ∗ ε̇c

12 (t) (29c)

respectively. With

τ2 = τ1

(
1 + ψmPmm

2 + ψmPmm
3

)
, τ3 = τ1

(
1 + ψmPmm

2 − ψmPmm
3

)
,

τ4 = τ1

(
1 + ψmPmm

4

)
, τ5 = τ1

(
1 + ψmPmm

5

) (30)

here τk, k = 2, 3, 4, 5 are characteristic relaxation times for the fibrous composite materials.

So far, we are able to find the matrix phase strain εm
ij by the macroscopic strain εc

ij and the
corresponding strain rate ε̇c

ij. In order to obtain an analytical result for macroscopic stress defined
in Eq. (11), we continue to derive the eigenstrain of the matrix phase. For μm

11, we can directly obtain

μm
11 = −ψm

∫ t

0

e−(t−η)/τ1 ε̇m
11 (η) dη = −ψm

∫ t

0

e−(t−η)/τ1 ε̇c
11 (η) dη = −ψme−t/τ1 ∗ ε̇c

11 (t) (31)

by considering Eq. (23). For the rest components, expand Eq. (7b) into[
Pmm

2 Pmm
3

Pmm
3 Pmm

2

]{
μm

22 (t)
μm

33 (t)

}
=
[
εm

22 (t) − Em
1 εc

11 (t) − Em
2 εc

22 (t) − Em
3 εc

33 (t) − Pmm
1 μm

11

εm
33 (t) − Em

1 εc
11 (t) − Em

3 εc
22 (t) − Em

2 εc
33 (t) − Pmm

1 μm
11

]
(32a)

and

Pmm
4 μm

23 (t) = εm
23 (t) − Em

4 εc
23 (t) (32b)

Pmm
5 μm

13 (t) = εm
13 (t) − Em

5 εc
13 (t) (32c)

Pmm
5 μm

12 (t) = εm
12 (t) − Em

5 εc
12 (t) (32d)
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Finally, one can introduce a fourth-order tensor Y kl,m
ij (t) to represent the eigenstrain μm

ij (t) as the
following:

μm
ij (t) = Y kl,m

ij (t) ∗ ε̇c
kl (t) (33)

First, from Eq. (31), we can obtain the components corresponding to μm
11 that

Y 11,m
11 (t) = −ψme−t/τ1 (34)

From Eqs. (28a) and (28b), we obtain

Y 11,m
22 (t) = Y 11,m

33 (t) = Pmm
1 ψm

Pmm
2 + Pmm

3

e−t/τ1 +
[
−τ2 − τ1

τ2

Em
1

Pmm
2 + Pmzm

3

− τ1

τ2

Pmm
1 ψm

Pmm
2 + Pmm

3

]
e−t/τ2 (35a)

Y 22,m
22 (t) = −τ2 − τ1

τ2

Em
2 + Em

3

2 (Pmm
2 + Pmm

3 )
e−t/τ2 − τ3 − τ1

τ3

Em
2 − Em

3

2 (Pmm
2 − Pmm

3 )
e−t/τ3 (35b)

Y 22,m
33 (t) = −τ2 − τ1

τ2

Em
2 + Em

3

2 (Pmm
2 + Pmm

3 )
e−t/τ2 + τ3 − τ1

τ3

Em
2 − Em

3

2 (Pmm
2 − Pmm

3 )
e−t/τ3 (35c)

Y 33,m
22 (t) = Y 22,m

33 (t), Y 33,m
33 (t) = Y 22,m

22 (t) (35d)

In addition, from Eq. (29b) and (29c), we obtain

Y 23,m
23 (t) = −τ4 − τ1

τ4

Em
4

Pmm
4

e−t/τ4 , Y 13,m
13 (t) = Y 12,m

12 (t) = −τ5 − τ1

τ5

Em
5

Pmm
5

e−t/τ5 (35e)

and all other components of Y kl
ij are zero. In summary, the components of the eigenstrain μm

ij (t) are
written as the following:

μm
11 (t) = Y 11,m

11 (t) ∗ ε̇c
11 (t)

μm
22 (t) = Y 11,m

22 (t) ∗ ε̇c
11 (t) + Y 22,m

22 (t) ∗ ε̇c
22 (t) + Y 33,m

22 (t) ∗ ε̇c
33 (t)

μm
33 (t) = Y 11,m

33 (t) ∗ ε̇c
11 (t) + Y 22,m

33 (t) ∗ ε̇c
22 (t) + Y 33,m

33 (t) ∗ ε̇c
33 (t)

μm
23 (t) = Y 23,m

23 (t) ∗ ε̇c
23 (t)

μm
13 (t) = Y 13,m

13 (t) ∗ ε̇c
13 (t)

μm
12 (t) = Y 12,m

12 (t) ∗ ε̇c
12 (t)

(36)

Substituting Eqs. (33) into (11) yields

σ c
ij = Lc

ijklε
c
kl + Am

ijmnY
kl,m
mn (t)︸ ︷︷ ︸

Rc
ijkl (t)

∗ ε̇c
kl (t) (37)

2.4 Model Consistency in an Extreme Case

In this section, we exam the homogenized viscoelastic properties of the fibrous composite material
by letting cf = 0 and cm = 1. Under this situation, the homogenized viscoelastic properties should
approach the viscoelastic response of pure matrix phase as well.

By setting cm = 1, one obtains Lc
ijkl = Lcm

ijkl = Lm
ijkl through Eq. (10) and Ekl,m

ij = Iijkl. In addition,
we have Am

ijkl = −Lm
ijkl by Eq. (12). The value of Ekl,f

ij does not have any meaning. Similarly, by Eq. (18),
we obtain Ẽpq,m

ij = Iijkl and thus leads to Pkl,mm
ij = 0 by Eq. (20a). This result guarantees that τk = τ1,

k = 2, 3, 4, 5 by Eq. (30).
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Considering the aforementioned conditions, we can obtain εm
ij = εc

ij from Eqs. (23), (28a) and
(29a), by applying ε̃m

22 (t) = ε̃m
33 (t) = 0, Em

2 = Em
4 = Em

5 = 1, Em
1 = Em

3 = 0. Finally, one can obtain
Y kl,m

ij = −ψmIijkl and

σ c
ij = σ m

ij = Lm,∞
ijkl εm

kl + ψmLm
ijkl ∗ ε̇m

kl (t) = Lm,∞
ijkl εm

kl + Lm,iso
ijkl ∗ ε̇m

kl (t) (38)

which traces back to the pure matrix case.

2.5 Influence of Component Parameters on Homogenization Relaxation Times

In this section, we analytically calculate the homogenization relaxation times τi, i = 1, 2, . . . , 5
using known component parameters, investigating how fiber and matrix properties influence the
overall viscoelastic response. It is important to note that relaxation time is closely related to material
viscosity. A smaller viscosity results in a shorter relaxation time. When viscosity (η) approaches
zero, the material behaves like an inviscid fluid, whereas when it approaches infinity, the material
behaves like an elastic solid. We observe that changes in component parameters lead to variations
in the homogenization relaxation times, with certain parameters exerting more significant influence
compared to others.

We first investigate the influence of fiber parameters on homogenized relaxation times. Parameters
are chosen as detailed in Table 1, with one parameter varied within specified ranges. Fig. 1a illustrates
the impact of fiber volume fraction on viscoelastic behavior: as the fiber fraction increases, the
relaxation times also increase, indicating that, in our research, fibrous composites with higher fiber
content tend to exhibit more solid-like characteristics in the homogenized state. It is noteworthy that
relaxation time associated with the fiber direction is always equal to the matrix relaxation time, as
indicated by Eq. (36), implying that the viscoelastic behavior in this direction is solely influenced by
matrix components, while viscoelastic behavior in other directions is influenced by both fiber and
matrix components. Fig. 1b demonstrates how homogenized relaxation time varies with changes in
ν f

t = 0.20, 0.25, 0.35, 0.40, revealing that ν f
t has a limited impact on viscosity behavior. A slight decrease

in homogenized relaxation time is observed with increasing ν f
t .

Table 1: Material parameters of the fibrous composite material

Fiber Ef
a 13,800 (MPa) Young’s modulus in axial direction

Ef
t 9500 (MPa) Young’s modulus in transverse direction

ν f
at 0.28 [−] Poisson’s ratio in axial-transverse plane

ν f
t 0.4 [−] Poisson’s ratio in transverse plane

μf
at 5200 (MPa) Shear modulus in axial-transverse plane

Matrix Em
∞ 4500 (MPa) Young’s modulus

νm 0.35 [−] Poisson’s ratio
Em

iso 500–3500 (MPa) Isotropic relaxation modulus
τ m

1 10 (s) Relaxation time

Next, we explore the influence of matrix parameters on homogenized relaxation times. As
shown in Fig. 2a, an increase in Em

iso leads to higher homogenized relaxation times due to the
corresponding increase in viscosity. Similarly, Fig. 2b demonstrates that higher Em

∞ results in increased
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homogenization relaxation times, paralleling the trend observed in Fig. 1a. Fig. 2c indicates that νm

has minimal impact on viscosity behavior, albeit showing a slight increase with higher νm.

Figure 1: Influence of fiber parameters on homogenized relaxation times: (a) Fiber volume; (b) Poisson
ratio in the transverse plane ν f

t

Figure 2: Influence of matrix parameters on homogenized relaxation times: (a) Relaxation modulus
Em

iso; (b) Elastic modulus Em
∞; (c) Poisson ratio νm
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2.6 Numerical Algorithm

In this section, we briefly introduce the numerical algorithm for the homogenized viscoelastic
model of fibrous composite material. In finite element analysis, we update material stress as well as
consistent tangent modulus over one increment [tn, tn+1]. The stress at tn+1, namely, σ c,n+1

ij is given as

σ c,n+1
ij = Lc

ijklε
c,n+1
kl + Am

ijklμ
m,n+1
kl = Lc

ijklε
c,n+1
kl + Am

ijklY
st,m
kl (t) ∗ ε̇c,n+1

st (t)

= Lc
ijklε

c,n+1
kl + Rc

ijkl (t) ∗ ε̇c,n+1
kl (t) (39)

again Rc
ijkl (t) ≡ Am

ijmnY
kl,m
mn (t) is the homogeneous relaxation tensor. The second term in the right-hand-

side of Eq. (39) is given by the classic integration form:

Am
ijklY

st,m
kl (t) ∗ ε̇c,n+1

st (t) = Am
ijkl

∫ tn+1

0

Y st,m
kl (tn+1 − η) ε̇c

st (η) dη

= Am
ijkl

∫ tn

0

Y st,m
kl (tn+1 − η) ε̇c

st (η) dη + Am
ijkl

∫ tn+1

tn

Y st,m
kl (tn+1 − η) ε̇c

st (η) dη (40)

The numerical integration scheme is the same as the classic viscoelastic stress update procedure.
For example:∫ tn

0

Y 11,m
11 (tn+1 − η) ε̇c,n+1

11 (η) dη =
∫ tn

0

− ψme−(tn+1−η)/τ1 ε̇c
11 (η) dη

=
∫ tn

0

− ψme−(tn+1−tn)/τ1e−(tn−η)/τ1 ε̇c
11 (η) dη = e−�t/τ1

∫ tn

0

− ψme−(tn−η)/τ1 ε̇c
11 (η) dη (41a)

∫ tn+1

tn

Y 11,m
11 (tn+1 − η) ε̇c,n+1

11 (η) dη =
∫ tn+1

tn

− ψme−(tn+1−η)/τ1 ε̇c
11 (η) dη ≈ −ψme−�t/(2τ1)�εc

11 (41b)

With Δt ≡ tn+1 − tn, and �εc
11 the incremental strain at 11 component.

From the convolution form in Eq. (36), define the following 9 state variables:

sn+1
1 =

∫ tn+1

0

e−(tn+1−η)/τ1 ε̇c
11 (η) dη, sn+1

2 =
∫ tn+1

0

e−(tn+1−η)/τ2 ε̇c
11 (η) dη

sn+1
3 =

∫ tn+1

0

e−(tn+1−η)/τ2 ε̇c
22 (η) dη, sn+1

4 =
∫ tn+1

0

e−(tn+1−η)/τ3 ε̇c
22 (η) dη

sn+1
5 =

∫ tn+1

0

e−(tn+1−η)/τ2 ε̇c
33 (η) dη, sn+1

6 =
∫ tn+1

0

e−(tn+1−η)/τ3 ε̇c
33 (η) dη

sn+1
7 =

∫ tn+1

0

e−(tn+1−η)/τ4 ε̇c
23 (η) dη, sn+1

8 =
∫ tn+1

0

e−(tn+1−η)/τ5 ε̇c
13 (η) dη

sn+1
9 =

∫ tn+1

0

e−(tn+1−η)/τ5 ε̇c
12 (η) dη,

(42)

From (41a) and (41b), we can obtain

sn+1
1 = e−�t/τ1sn

1 + e−�t/(2τ1)�ε11 (43)

and{
∂Sn+1

1

∂ε
c,n+1
ij

}
= [e−�t/(2τ1) 0 0 0 0 0

]T
(44)
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Similar equations can be derived for sn+1
i , i = 2, 3, · · · , 9. Thus, Eq. (36) can be written with the

aforementioned state variables that

μm,n+1
11 = −ψmsn+1

1

μm,n+1
22 = Pmm

1 ψm

Pmm
2 + Pm

3

sn+1
1 +

[
−τ2 − τ1

τ2
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1

Pmm
2 + Pmm

3

− τ1

τ2
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1 ψm
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2 + Pmm

3

]
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2

− τ2 − τ1

τ2
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2 + Em

3

2 (Pmm
2 + Pmm

3 )

(
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5

)− τ3 − τ1

τ3
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3

2 (Pmm
2 − Pmm

3 )
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)
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3 )
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(45)

μm,n+1
23 = −τ4 − τ1

τ4

Em
4

Pmm
4

sn+1
7

μm,n+1
13 = −τ5 − τ1

τ5

Em
5

Pmm
5

sn+1
8

μm,n+1
12 = −τ5 − τ1

τ5

Em
5

Pmm
5

sn+1
9

In addition, one can derive Tm
ijkl ≡ ∂μm,n+1

ij /∂ε
m,n+1
kl so that the consistent tangent material modulus

is given as

∂σ c,n+1
ij

∂ε
c,n+1
kl

= Lc
ijkl + Am

ijmn

∂μm,n+1
mn

∂ε
c,n+1
kl
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mnkl (46)

Specifically,
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(47)
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3 Numerical Examples and Validation

In this section, we propose several groups of numerical examples to verify and validate the
proposed analytical homogenized viscoelastic model for fibrous composite materials. The numerical
examples and validation are organized as follows: In Section 3.1, unit cell tests under uniaxial
tension and pure shear conditions are performed to demonstrate consistency between FEM and the
proposed homogenized model under a uniform strain field. In Sections 3.2 and 3.3, we introduce pure
bending beam experiments and torsion experiments to further investigate the ability of the proposed
homogenized method. In Section 3.4, theoretical predictions are compared with experimental results
from the literature to validate prediction accuracy. All simulations are conducted using the commercial
FEM software ABAQUS/Standard 2022 with a user material subroutine (UMAT).

3.1 Unit Cell Tests

We first verify the accuracy of the homogenized viscoelastic model using a uniform strain field
problem. We explicitly construct a unit cell of the fibrous composite material for the direct numerical
simulation (DNS), where the fiber is transversely isotropic elastic and the matrix follows the standard
solid model, as depicted in Fig. 3. The size of the unit cell is set as lx = 1.732 (mm), ly = 1 (mm),
and lz = 0.5 (mm). By applying periodic boundary conditions and a macroscopic strain history, we
obtain the corresponding averaged stress history. For comparison, we construct a one-element model
associated with the homogenized viscoelastic constitutive model and apply the same strain history.
Table 1 lists the parameters for both the fiber and the matrix phases.

Figure 3: Unit cell model with size of lx = 1.732 (mm), ly = 1 (mm), lz = 0.5 (mm)

Various numerical tests are proposed with different fiber volume fractions: cf = 0.3, 0.4, 0.5, 0.6
and different relaxation moduli: Em

iso = 500, 1500, 2500, 3500 (MPa). For each unit cell problem, we
perform three uniaxial tension tests in the x-, y-, and z-direction, and three pure shear tests in the
xy-, xz-, and yz- planes, where x refers to the axial direction of the fiber. In order to capture the
viscoelastic response, we apply a loading-holding-unloading curve for the prescribed macroscopic
strain, as depicted in Fig. 4. In the unit cell problem, we use the loading rate defined in Fig. 4a. For
pure bending and torsion tests, the loading rate is defined as in Fig. 4b for a clearer observation of the
viscoelastic response.
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Figure 4: Loading rates: (a) Unit cell test; (b) Pure bending and torsion tests

A group of DNS simulations is depicted in Fig. 5, while the corresponding group of one-element
simulation using the proposed homogenized viscoelastic constitutive model is depicted in Fig. 6.
Clearly, the DNS results provide more detail but at a higher computational cost. To avoid redundancy,
not all simulation results will be displayed. Figs. 7 and 8 show comparison of strain-stress responses
between the DNS and the homogenized model (HM for short) for Em

iso = 500 (MPa) and Em
iso =

3500 (MPa). Note that the x-direction of the material coordinate system coincides with the z-direction
of the overall coordinate system. Figs. 7c and 8c show that the composite response is fiber-dominated
in this direction, while in other directions, the response is matrix-dominated. A more significant
viscoelastic response is observed as Em

iso increases. All the results show good agreement between the
homogenized model and the DNS simulations.

Figure 5: Demonstrations of DNS model and six loading cases: (a) Honeycomb unit cell; (b) uniaxial
tension test in x-direction; (c) uniaxial tension test in y-direction; (d) uniaxial tension test in z-direction;
(e) pure shear test in xy plane; (f) pure shear test in xz plane; (g) pure shear test in yz plane
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Figure 6: Demonstrations of homogenized model and six loading cases: (a) One-element model; (b)
uniaxial tension test in x-direction; (c) uniaxial tension test in y-direction; (d) uniaxial tension test in
z-direction; (e) pure shear test in xy plane; (f) pure shear test in xz plane; (g) pure shear test in yz plane

Figure 7: Relaxation curves under different fiber volume ratios with Em
iso = 500 (MPa): uniaxial tension

test in (a) x-direction; (b) y-direction; (c) z-direction; pure shear test in (d) xy plane; (e) xz plane; (f)
yz plane
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Figure 8: Relaxation curves under different fiber volume ratios with Em
iso = 3500 (MPa): uniaxial

tension test in (a) x-direction; (b) y-direction; (c) z-direction; pure shear test in (d) xy plane; (e) xz
plane; (f) yz plane

3.2 Pure Bending Tests

The unit cell tests verify the homogenized viscoelastic model under uniform strain fields. To extend
this validation to non-uniform strain fields, we propose a series of pure bending tests with geometric
setups and boundary conditions outlined in Fig. 9. The size of beam is lx = 39.836 (mm), ly =
5 (mm), lz = 7 (mm). The applied moment M(t) follows the loading rate defined in Fig. 4b, with
a maximum value of Mmax = 50 (N · mm). Both direct numerical simulation (DNS) and homogenized
models, as illustrated in Fig. 10, are employed to compare numerical efficiency and accuracy. The
results are presented in Fig. 11. It is observed that the stress concentration effect cannot be effectively
captured due to the piecewise constant eigenstrain assumption. This approach sacrifices some detail
for the sake of efficiency.

Figure 9: Geometric setup of pure bending beam and boundary conditions
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Figure 10: Pure bending beam models: (a) DNS; (b) homogenized model

Figure 11: Pure bending beam simulation result demonstrations: (a) DNS; (b) homogenized model

We tested different fiber volume fractions, cf = 0.3, 0.4, 0.5, 0.6, with the matrix relaxation
moduli set to Em

iso = 3000 (MPa). The results of the homogenized model and the reference results
for comparison are shown in Fig. 12. We used the displacement at t = 100 (s) to estimate the relative
displacement error between the DNS and homogenized models, as depicted in Fig. 13. The proposed
method demonstrates good consistency with the DNS method, with relative errors below 3%. It is
also noteworthy that the DNS method takes approximately 7600 (s), while the homogenized model
requires only 50 (s). The simulation is significantly faster than DNS, and the overall response remains
highly accurate.



CMC, 2025, vol.82, no.1 211

Figure 12: Pure bending beam experiment under different fiber volume fractions: DNS and homoge-
nized model result comparison with Em

iso = 3000 (MPa)

Figure 13: Pure bending beam tests under different fiber volume fractions: displacement relative error
between DNS and homogenized model result with Em

iso = 3000 (MPa)

3.3 Torsion Tests

In this section, the beam used for the pure bending tests is employed to conduct torsion tests.
We select viscoelastic parameters as Em

iso = 3000 (MPa) and investigate creep behavior under four
sets of fiber volume fractions: cf = 0.3, 0.4, 0.5, 0.6. The left boundary of the beam is fixed, and
a moment of Mmax = 500 (N · mm) is applied to the right boundary with the loading rate shown
in Fig. 4b. The simulation results for both the DNS and homogenized models are demonstrated in
Fig. 14. The comparison of relaxation curves is depicted in Fig. 15. It is evident from the analysis that
the discrepancy between the two curves is minimal, suggesting that the proposed model effectively
captures torsional deformation.
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Figure 14: Beam torsion simulation result demonstrations: (a) DNS; (b) homogenized model

Figure 15: Beam torsion experiment under different fiber volume fractions, DNS and homogenized
model result comparison with Em

iso = 3000 (MPa)

3.4 Experiment Validation

We obtained experimental data from a paper published by Thiruppukuzhi et al. [52] and referenced
another paper by Chen et al. [53]. In the first paper, Thiruppukuzhi et al. conducted experiments
using S2-glass/8553-40 epoxy fiber-reinforced composite with a fiber volume fraction of 65%. They
performed a series of off-axial tensile tests at three strain rates: 0.0001 [1/s], 0.01 [1/s], 1 [1/s], and
four off-axial tensile directions: 0◦ , 15◦ , 30◦ , and 90◦ . The combination of loading strain rate and off-
axis tensile direction in the experiment is shown in Table 2, where markers represent the experiments
conducted under the corresponding combinations. The setup of off-axial tensile tests is illustrated in
Fig. 16. The specimen dimensions are lx = 100 (mm), ly = 17.8 (mm) as described in the original
experiment, and we set lz = 1 (mm). We simulate the actual experimental boundary conditions by
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clamping the two ends of the specimen with fixtures, resulting in an over-constrained setup. Symmetric
boundary conditions are applied in the z-direction to represent the specimen’s real-life thickness.

Table 2: Combination of loading strain rate and off-axis tensile direction in the experiment

0◦ 15◦ 30◦ 90◦

0.0001 [1/s] � � � �
0.01 [1/s] � �
1 [1/s] � �

Figure 16: Setup of off-axial tensile tests

The elastic material parameters of both the fiber and matrix are identified inversely using experi-
mental data of composite materials under two sets of conditions: 0.0001 [1/s] , 0◦ and 0.0001 [1/s] , 90◦ .
The viscoelastic material parameters for the matrix are determined using experimental data with
the following test conditions:0.0001 [1/s] , 15◦ , 0.01 [1/s] , 15◦ , and 1 [1/s] , 15◦ . Table 3 presents the
material parameters of the fiber and matrix obtained by fitting the experimental data. Fig. 17 shows
the homogenized model results and experimental data along the 0◦ , 15◦ , 30◦ , 90◦ directions under a
loading strain rate of 0.0001 [1/s]. The simulation results along the 15◦ and 30◦ directions also show
good agreement with the experimental data, indicating that the parameters are a good fit. The Von
Mises stress contour plots for the homogenized models along the four directions are shown in Fig. 18.
Theoretical predictions begin to diverge from experimental results due to significant nonlinearity
induced by plasticity or damage at relatively large strains.

Table 3: Material parameters for fibrous composite material in experiment

Fiber Em 71,000 (MPa) Young’s modulus
ν f 0.2 [−] Poisson’s ratio

Matrix Em
∞ 1900 (MPa) Young’s modulus

νm 0.35 [−] Poisson’s ratio
E iso

∞ 304 (MPa) Isotropic relaxation modulus
τ m

1 0.8 (s) Relaxation time

Figs. 19 and 20 present the homogenized model results and experimental data along directions
15◦ , 30◦ under loading strain rates of 0.01 [1/s] and 1 [1/s], respectively. The corresponding Von Mises
stress contour plots for the homogenized models are shown in Figs. 21 and 22. The experimental data
along 15◦ were used to fit the viscoelastic parameters, while the data along 30◦ were used to validate the
accuracy of the proposed homogenized model. From Figs. 19 and 20, the simulation results along 30◦

exhibit good consistency with experimental data, indicating that our homogenized model can provide
reasonable predictions for fibrous composite materials with viscoelastic effects.
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Figure 17: Strain-stress curves obtained from experiment results and homogenized model predictions
for four off-axis tensile directions 0◦ , 15◦ , 30◦ , and 90◦ , loading strain rate ε̇ = 0.0001 [1/s]

Figure 18: Von Mises stress cloud for homogenized models of four off-axis tensile directions: (a) 0◦ ;
(b) 15◦ ; (c) 30◦ ; (d) 90◦ , loading strain rate ε̇ = 0.0001 [1/s]
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Figure 19: Strain-stress curves obtained from experiment results and homogenized model predictions
for two off-axis tensile directions 15◦ , 30◦ , loading strain rate ε̇ = 0.01 [1/s]

Figure 20: Strain-stress curves obtained from experiment results and homogenized model predictions
for two off-axis tensile directions 15◦ , 30◦ , loading strain rate ε̇ = 1 [1/s]

Figure 21: Von Mises stress contour plot for homogenized models of two off-axis tensile directions:
(a) 15◦ ; (b) 30◦ , loading strain rate ε̇ = 0.01 [1/s]
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Figure 22: Von Mises stress contour plot for homogenized models of two off-axis tensile directions:
(a) 15◦ ; (b) 30◦ , loading strain rate ε̇ = 1 [1/s]

4 Conclusion

In this manuscript, we propose an analytical homogenized viscoelastic model for fibrous com-
posite materials using the reduced-order homogenization (ROH) method. Compared to numerical
homogenization methods, our analytical model significantly reduces simulation costs while providing
accurate predictions of the overall mechanical behavior. However, some deviations in local stress
are observed, attributable to the one-partition-per-phase assumption. We model the fiber phase as
transversely isotropic elastic, while the matrix phase follows a standard solid model. This approach
allows for the analytical determination of effective moduli and relaxation times in fibrous composites.
As the fiber volume fraction approaches zero, our homogenized viscoelastic model simplifies to a pure
viscoelastic model. We verify our model through numerical unit cell tests, pure bending beam tests, and
torsion tests, demonstrating its accuracy and computational efficiency compared to direct numerical
simulations. Experimental validations further confirm the reliability of our approach.
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Appendix A

In this section, we solve the ODE equation system in Eq. (27) to obtain the matrix phase strains.
With the reduced 1-index defined in Eq. (22), we can rewrite Eq. (27) into the following system of
ODEs:
d
dt

{
εm

22 (t)
εm

33 (t)

}
= −1

2

[
1/τ2 + 1/τ3 1/τ2 − 1/τ3

1/τ2 − 1/τ3 1/τ2 + 1/τ3

]{
εm
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33 (t)

}

+ 1
2

[
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(A1a)

and
dεm

23 (t)
dt

= − 1
τ4

εm
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[
εc
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dεm
13 (t)
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Here τk, k = 2, 3, 4, 5 are characteristic relaxation times for the fibrous composite materials.

For the coupled ODEs defined in Eq. (A1a), notice that

1
2

[
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]
=
[

1 −1
1 1
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(A3)

Define the following two strains:{
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and the corresponding ODEs become:

d
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The solution of Eqs. (A5) can be written as
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Substituting Eqs. (A6a) and (A6b) into (A4) yields the solution that
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= Em
1 εc

11 (t) + Em
3 εc

22 (t) + Em
2 εc

33 (t) +
[
−Em

1

τ2 − τ1

τ2

− τ1

τ2

ψmPm
1

]
e−t/τ2 ∗ ε̇c

11 (t)

+
[
−1

2

(
Em

2 + Em
3

) τ2 − τ1

τ2

e−t/τ2 + 1
2

(
Em

2 − Em
3

) τ3 − τ1

τ3

e−t/τ3

]
∗ ε̇c

22 (t)

+
[
−1

2

(
Em

2 + Em
3

) τ2 − τ1

τ2

e−t/τ2 − 1
2

(
Em

2 − Em
3

) τ3 − τ1

τ3

e−t/τ3

]
∗ ε̇c

33 (t) (A7b)

The shearing response Eqs. (A1b)–(A1d), can be solved similarly. Taking Eq. (A1b) as an example.
Rewrite Eq. (A1b) into

d
dt

{
εm

23 (t) − Em
4 εc

23 (t)
} = − 1

τ4

{
εm

23 (t) − Em
4 εc

23 (t)
}− τ4 − τ1

τ4

Em
4 ε̇c

23 (t) (A8)
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so that the solution can be given by the convolution form:

εm
23 (t) = Em

4 εc
23 (t) − τ4 − τ1

τ4

Em
4 e−t/τ4 ∗ ε̇c

23 (t) (A9a)

Similarly, the solutions of (A1c) and (A1d) are written with convolution form that

εm
13 (t) = Em

5 εc
13 (t) − τ5 − τ1

τ5

Em
5 e−t/τ5 ∗ ε̇c

13 (t) (A9b)

εm
12 (t) = Em

5 εc
12 (t) − τ5 − τ1

τ5

Em
5 e−t/τ5 ∗ ε̇c

12 (t) (A9c)

respectively.
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