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ABSTRACT: Transportation systems are experiencing a significant transformation due to the integration of advanced
technologies, including artificial intelligence and machine learning. In the context of intelligent transportation sys-
tems (ITS) and Advanced Driver Assistance Systems (ADAS), the development of efficient and reliable traffic light
detection mechanisms is crucial for enhancing road safety and traffic management. This paper presents an optimized
convolutional neural network (CNN) framework designed to detect traffic lights in real-time within complex urban
environments. Leveraging multi-scale pyramid feature maps, the proposed model addresses key challenges such as the
detection of small, occluded, and low-resolution traffic lights amidst complex backgrounds. The integration of dilated
convolutions, Region of Interest (ROI) alignment, and Soft Non-Maximum Suppression (Soft-NMS) further improves
detection accuracy and reduces false positives. By optimizing computational efficiency and parameter complexity,
the framework is designed to operate seamlessly on embedded systems, ensuring robust performance in real-world
applications. Extensive experiments using real-world datasets demonstrate that our model significantly outperforms
existing methods, providing a scalable solution for ITS and ADAS applications. This research contributes to the
advancement of Artificial Intelligence-driven (AI-driven) pattern recognition in transportation systems and offers a
mathematical approach to improving efficiency and safety in logistics and transportation networks.

KEYWORDS: Intelligent transportation systems (ITS); traffic light detection; multi-scale pyramid feature maps;
advanced driver assistance systems (ADAS); real-time detection; AI in transportation

1 Introduction
Intelligent transportation systems, including ADAS and autonomous cars, have benefited greatly from

recent developments in AI and big data. By incorporating computer software that can perceive and disrupt
traffic conditions in an urban setting, intelligent transportation systems aim to enhance vehicle safety and
efficiency. There are a lot of obstacles that make it difficult to simulate human visual data analysis on a
computer. These include things like backdrop complexity, object similarity, intraclass variance, and different
perspectives. Computers need to be able to detect and identify a wide variety of things, including humans,
other cars, traffic signs, and traffic signals. Among them, the traffic lights stand out as an essential component
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of cityscapes for managing vehicular traffic. More cars on the road means more complicated traffic condi-
tions, which means more accidents. The development of artificial systems capable of independently detecting
and recognizing things in their environment and making decisions in accordance with traffic regulations is,
thus, viewed as a potential answer.

A high-performance traffic light detector is the subject of our investigation in this study. Due to their
substantial influence on the intelligent transportation system, such applications need a balance between
speed and accuracy. The standard geometric shape for traffic lights is a rectangle oriented either vertically or
horizontally, with a predetermined number of colors (red, yellow, and green) and directions (straight, left,
and right) to alert cars. Having said that, traffic lights only take up a tiny fraction of a real-life scene and need
to be identified from more than 100 m away. Even in a complex, faraway landscape, a human motorist may
easily notice and recognize the status of the traffic signal. It takes a lot of processing power and robust cameras
for an artificial system to figure out what the traffic light status is. Estimating the recognition distance is as
simple as finding the distance between the vehicle’s braking point and the stop line. The braking distance is
approximately 98 m if the top speed in an urban setting is 50 KM/H. We need to talk about the trade-off
between the suggested method’s performance and the capabilities of the hardware utilized to execute it if we
assume a recognition distance of 100 m.

A convolutional neural network equipped with multi-scale pyramid feature maps is our suggested
solution to tackle these issues. The self-learning and generalizability capabilities of convolutional neural
networks [1] have made them very effective in several computer vision applications [2–6]. The majority of
the convolutional neural networks that are suggested are repurposed for tackling different types of problems
through the process of transfer learning. By transferring the training weights and fine-tuning the data of
the new application, the transfer learning approach enables the usage of an existing convolutional neural
network to handle new problems. Numerous traffic-related applications have shown the efficacy of this
method, including the identification of traffic signs [6], cars [7], and a plethora of others [8,9]. Because most
current convolutional neural networks only use one dimensional for feature extraction, downsampling the
input picture makes it harder to localize and identify traffic lights in high-resolution photos. As a solution,
we suggest integrating local and global characteristics using multi-scale pyramid feature maps. Building a
multi-scale feature extraction network on top of the feature pyramid network was the primary goal in order
to acquire semantic characteristics of tiny traffic lights [10]. We suggest ResNet 101 [11], a basic model for
convolutional neural networks because it ranks fifth with an error of 4.60% in the ILSVRC 2015 classification
challenge. The ResNet replaces standard layers with residual blocks, which are connected to the input and
output of the block using skip layers. To avoid complexity explosions and mitigate the impact of vanishing
gradient, residual blocks are utilized in the construction of extremely deep convolutional neural networks
(with above 100 layers). Therefore, it facilitates the effortless training of extremely deep convolutional neural
networks. To recognize traffic signals at multiple sizes, the multi-scale feature extraction network was used
in conjunction with the suggested ResNet 101 model. Proposals for regions were generated using the region-
based method [12]. On top of that, we suggest using ROI Align [13] to create fixed feature map dimensions
from the combined feature maps. To further improve the detection results, we also included the usage of the
soft-NMS algorithm [14] for seeking the best-fit bounding box.

Training and evaluating convolutional neural networks requires massive amounts of data. Accordingly,
the LISA traffic light dataset is what we recommend using [15]. The film consists of 43,007 continuous frames
with 113,888 annotated traffic signals. The suggested method was trained and tested using the dataset. By
producing excellent results, the assessment of the suggested method demonstrates its efficacy.

In order to implement a convolutional neural network, one should aim for the graphics processing
unit (GPU). Convolutional neural networks can now be integrated into embedded devices, thanks to
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advancements in embedded GPU technology. The latest embedded GPU from Nvidia, the Drive AGX, has
enormous capabilities and little power consumption. To put the suggested method to the test, we create an
experimental setting that matches the performance of the Nvidia Drive AGX.

This work primarily contributes three things: (1) a method to fix the dimensions of feature maps using
region-of-interest alignment; (2) a network to extract features from multiple scales in high-resolution images;
and (3) an application of transfer learning to the ResNet 101 model for traffic light detection.

The remainder of the paper is organized as follows. Related works are discussed in Section 2.
In Section 3, the proposed approach is detailed. Section 4 is reserved for experimental results and discus-
sions. Conclusions and future work are presented in Section 5.

2 Related Works
Traffic light detection was and still is an important research field. There have been several attempts

to address the issue of traffic light detection using various ways. Deep learning and convolutional neural
network-based efforts will constitute the main emphasis of this paper. Using Global Positioning System (GPS)
data, John et al. [16] suggested a convolution neural network that can identify traffic signals in a variety of
lighting situations.

Behrendt et al. [17,18] proposed a YOLO-based convolutional neural network for traffic light detection,
leveraging the YOLO framework for object detection in high-resolution images. During the training phase,
input data was generated from randomly selected crops of the original images. In the testing phase, only
three crops from the top portion of the image were used, as traffic lights are typically located in this
region. Additionally, the system monitored the traffic light’s status in real time using stereo vision and
vehicle odometry.

To train and evaluate the proposed technique, a dedicated dataset was introduced. Approximately
5000 images were collected along El Camino Real in the San Francisco Bay Area of California for training
purposes. For testing, 8334 images were extracted from a stereo video sequence recorded along University
Avenue in Palo Alto, California. While the proposed method demonstrated real-time processing capabilities,
its accuracy was limited, achieving less than 60%.

In reference [19], a convolutional neural network-based encoder-decoder. The encoder network was
ResNet 101 [11], whereas the decoder network was constructed using deconvolution blocks with skip
connections. In order to anticipate boundary boxes for traffic light detection, a detector network was also
utilized. The YOLO framework [18] served as the basis for the detector network. Two datasets, the Bosch
small [17] traffic light dataset and the LISA traffic lights dataset [15], were used to assess the suggested method.
According to the results that were provided, the performance was better than what is currently considered
state-of-the-art.

The status of traffic lights can be effectively detected and recognized using a combination of a convo-
lutional neural network (CNN) detector and pre-existing maps, as described in [20]. The pre-existing maps
are utilized to locate the traffic light, while the CNN identifies its current state. The proposed method was
evaluated using videos captured with a 2D camera that met specific requirements. The results demonstrate
that the method accurately detects the traffic light’s condition along the tested trajectory. However, while the
method performs well, it is limited in applicability without the availability of pre-existing maps.

Using LIDAR data and a convolutional neural network, Yeh et al. [21] suggest a method for traffic light
detection. There are two parts to the suggested method. In the first, we used two cameras with varying focus
lengths to identify traffic lights at various distances. In the second, we used the same lights to determine
their status. The initial step was finding the traffic light in the picture using the YOLOv3 model [22].
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After identifying the traffic light status (red, green, yellow, or arrows) using the YOLOv3 small model [22],
the second stage was using the LeNet model [23] to calculate the arrow’s direction. A dataset based on
Taiwanese road data was constructed for the purpose of training and evaluating the suggested method. A
massive amount of computational work is required by the suggested method, yet it achieves an average mean
accuracy of 67%.

In [24], a two-stage method was suggested for traffic light detection. There were two parts to the
suggested method: detection and recognition. The detection step was built using the MobileNet v2 model [25]
and the single-shot multi-box detection framework [26]. A suggested bespoke convolutional neural network
was used for the recognition step. At that moment, the two-stage strategy outperforms the one-stage method.

While prior studies have explored traffic light detection using convolutional neural networks, most
focus on high-resolution or simple environments, with limited attention to small, occluded, or low-resolution
traffic lights in complex urban settings.

Existing models often lack optimization for real-time performance on embedded systems, making them
impractical for deployment in real-world Intelligent Transportation Systems (ITS) and Advanced Driver
Assistance Systems (ADAS). In effect, insufficient integration of advanced techniques like multi-scale feature
extraction, dilated convolutions, and Soft Non-Maximum Suppression (Soft-NMS) to improve detection
accuracy and reduce false positives. Also, there is a lack of comprehensive benchmarking against diverse
datasets that represent real-world variability in traffic scenarios.

To address these gaps, this study proposes an optimized CNN framework specifically designed for real-
time, high-accuracy traffic light detection in complex urban environments.

The traffic light detection problem has been studied extensively, but no reliable solution has been
developed for practical implementation. Finding the optimal trade-off between speed and accuracy should be
the primary goal of improving state-of-the-art performance. Here, we present a traffic light detector with an
excellent trade-off between accuracy and speed. What follows is a more in-depth description of the strategy
that has been suggested.

3 Proposed Approaches
The method for traffic light detection that has been suggested is described in this section. The feature

extraction convolutional neural network is introduced first. The next section elaborates on the network for
extracting features from many scales, and the last section describes the detection and recognition module.

In a convolutional neural network, the features extraction network is its strongest component. In picture
processing, it is fundamental to the convolutional neural network’s performance. In contrast to traditional
approaches that relied on manually crafting features, the efficacy of automatic feature extraction straight
from the input image was demonstrated. An existing model of a convolutional neural network, ResNet 101,
is suggested for usage in this article [11]. One hundred and ten layers of feature extraction make up this
neural network model. In the ILSVRC 2015 picture classification competition, it obtained a top-5 error rate
of 4.61%. ResNet 101 deviates from the conventional convolutional layer approach by using residual blocks as
an alternative. Making skip links between the block’s input and output is the fundamental concept of residual
blocks. The preceding block’s output and input are therefore passed on to the following block. Fig. 1 shows
a schematic of the ResNet101 residual block. Using this method, the computational complexity may be kept
from exploding even when deep neural networks with over 100 layers are constructed.
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Figure 1: Residual block proposed for ResNet 101

It is feasible to concentrate on a wide receptive field in order to provide predictions for the picture
categorization issues. However, zeroing in on the item’s location’s receptive field is essential for object
detection. Given the relatively tiny size of the traffic light in relation to the input picture, the semantic
information is either insufficient for traffic light recognition or may even vanish in the later layers of the
feature extraction network. And there can be a variety of sizes of traffic lights in the supplied image. In
order to identify traffic signals of varying sizes, it must extract features from feature maps of varying scales.
Combining high-resolution and low-resolution feature maps to obtain high semantic information is critical
for detecting minor traffic signals. In order to do this, we suggest modifying the classic feature pyramid
network to create a multi-scale feature extraction network. Layers for convolution and upsampling make up
the suggested multi-scale feature extraction network, which enables the integration of ResNet 101 layers.

The usage of upsampling layers in the architecture of the multi-scale feature extraction network will
lead to severe errors in the convolutional neural network [27]. The upsampling layers of the multi-scale
feature extraction network will not be able to reconstruct any traffic light with fewer than 16 pixels, assuming
that ResNet 101 is trained with 4 downsampling layers. When features are pooled, their spatial structure
is lost, and the connection between the traffic light’s position and global features is damaged. We suggest
replacing pooling layers with strided convolution layers [28] to fix the problem. Conventional convolution
layers with a stride of 2 are known as strided convolution layers. In addition, to enhance the receptive field
for detecting tiny traffic lights in high-resolution photos, the dilated convolution [29] was used in lieu of
specific convolution layers. With a dilation ratio of 1, traditional convolution layers are referred to as dilated
convolution layers. Dilated convolution with three distinct dilation ratios (D = 1, D = 2, and D = 3) is shown
in Fig. 2.
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Figure 2: Dilated convolution layers with different dilation ratio

We use a dilated convolution with a dilation ratio of 2 and a D-weight of 4 for ResNet 101. Because of
this, we obtain a bigger receptive field by utilizing 5 × 5 kernels for D = 2 and 15 × 15 kernels for D = 4,
respectively, rather than 3 × 3 kernels. In conclusion, although dilated convolution exhibits an exponential
growth in receptive field, conventional convolution layers have a linear correlation with the quantity of layers.
The enhanced ResNet model using strided and dilated convolutions is summarized in Table 1.

Table 1: Improved ResNet 101 with strided convolution and dilated convolution

Layers Name Kernel Stride Filters Output size
Convolution 1 S1 7 × 7 2 64 320 × 320
Convolution 2 3 × 3 2 64 160 × 160

3× residual block 1 S2
⎡⎢⎢⎢⎢⎢⎣

1 × 1
3 × 3
1 × 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

64
64
256

⎤⎥⎥⎥⎥⎥⎦

160 × 160

Residual block 2 S3

⎡⎢⎢⎢⎢⎢⎣

1 × 1
3 × 3
1 × 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

2
1
1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

128
128
512

⎤⎥⎥⎥⎥⎥⎦

80 × 80

3× residual block 3
⎡⎢⎢⎢⎢⎢⎣

1 × 1
3 × 3
1 × 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

2
1
1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

128
128
512

⎤⎥⎥⎥⎥⎥⎦

40 × 40

23× residual block 4 *dilated, D = 2 S4
⎡⎢⎢⎢⎢⎢⎣

1 × 1
3 × 3∗
1 × 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

256
256
1024

⎤⎥⎥⎥⎥⎥⎦

40 × 40

3× residual block 5 **dilated, D = 4 S5
⎡⎢⎢⎢⎢⎢⎣

1 × 1
3 × 3∗∗

1 × 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

512
512

2048

⎤⎥⎥⎥⎥⎥⎦

40 × 40

Starting with upsampling ResNet 101’s final convolution layers, we merge the network’s low-level high-
resolution feature maps with its top-level high-sematic features to construct the multi-scale feature extraction
network. A 1 × 1 convolution layer was utilized to guarantee a coupling of the ResNet 101 layers with the
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multi-scale feature extraction network. To generate region ideas for traffic signals, the region proposal
network (RPN) [12] was put into action. All of the RPN’s neural connections are convolutional. By checking
a predetermined set of anchors at each feature map region, it produces region recommendations. The next
step is to use a binary classifier to determine if an item is present in the tested region. If an object is
found, the parameters for the predicted bounding box are generated. The suggested method for traffic light
identification, which utilizes ResNet 101 and the multi-scale feature extraction network, is shown in Fig. 3.

Figure 3: Proposed approach for traffic light detection

The ResNet 101 model’s feature maps (S1, S2, S3, and S4) were subjected to a 1 × 1 convolution in order
to construct the layers of the multi-scale feature extraction network. In order to construct the P1 layer, the
channel dimension is reduced using a 1 × 1 convolution applied to the S5 feature maps. To get the P2, we take
the feature maps from the preceding P1 and add them element by element, then run a 1 × 1 convolution on
the S4 maps. Similarly, P3 is generated by adding elements of P2 and then performing a 1 × 1 convolution.
P4 is created by applying a 1 × 1 convolution on S2 and then adding the upsampled P3 element-wise by a
factor of 2. The feature maps P1, P2, P3, and P4 were subjected to a 3 × 3 convolution in order to mitigate the
aliasing impact of the upsampling procedure.

Our statistics show that a 640 × 640 picture can only accommodate traffic lights no larger than 60
pixels. Most traffic signals have a maximum size that ranges from sixteen to thirty-six pixels. We recommend
applying a convolution layer to feature maps P1, P2, P3, and P4 using a parameter optimization method
including various scales and ratios in order to extract reliable information from such a small size. In this
way, it is possible to get region suggestions that may be adjusted to the identified traffic lights’ fluctuation
range. The RPN is able to reduce processing time by calculating a lower number of region proposals at
the final decision step, thanks to the suggested procedures, which enable it to create more trustworthy
region proposals.

The RPN is designed as a fully convolutional network (FCN). This structure ensures that the operations
for feature extraction, anchor box generation, and objectness scoring are conducted entirely through
convolutional layers without any fully connected layers. This design aligns with the principles described in
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the Faster R-CNN framework by Ren et al. [12], where RPNs were introduced. Ren et al. [12] highlighted the
efficiency and scalability of using convolutional layers exclusively in RPNs for generating region proposals.

The majority of RPN-based techniques used ROI pooling to combine the convolutional neural network’s
extracted feature maps with the RPN’s region proposals. This allowed the feature maps to be sized according
to the predicted bounding box’s coordinate position. After that, fully linked layers receive the produced
feature maps and process them further. There is a pixel-level classification difficulty in identifying a traffic
light that fills less than 2% of the input picture. The recognition job considers each pixel value as essential
information. A linear regression layer, which calculates floating-point values, yields the bounding box
prediction; nevertheless, completely linked layers necessitate a fixed value. Consequently, two improvements
are required in the ROI pooling layer. When identifying large items, the optimization does not affect the
final judgment, but for tiny objects, the optimizations could cause the bounding box to lose its coordinate
location. This might cause an increase in the false-positive rate by influencing the semantic resolution of
detected pixels.

Instead of ROI Pooling, we suggest using ROI Align to set the sizes of feature maps before connecting
them to completely linked layers. This should eliminate this issue. In terms of balancing detection efficiency
with accuracy, the ROI Align method is tops. Prior to being mapped to the feature map, region suggestions
are not quantized in the pictures. The floating-point value is held on the boundary of each of the n × n bins.
The bilinear interpolation procedure was employed to determine the coordinate values of the locations of
the k sample points. So, using the gradient descent approach, we can optimize the loss function L at the ROI
align as Eq (1).

∂L
∂xi
= ∑r∑ j[d(xi , x∗i (r, j) < 1](1 − Δh)(1 − Δw) ∂L

∂yr j
(1)

x∗i (r, j) is a floating-point value referring to the coordinate of the sampling point calculated through the
mapping function in the feed-forward process. Each point coordinate less than 1 and to different to x∗i (r, j)
in the feature, the map must accept the gradient of yr j returned by the same point. The d(.) function defines
the distance between 2 points in the feature map. Δh and Δw are respectively the horizontal and vertical
difference between the coordinate of 2 points xi and x∗i (r, j). The ROI Align process is presented in Fig. 4.

Figure 4: ROI align algorithm
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Assuming that the sampling factor is 4 and each region proposal is divided into n × n bins and each bin
is divided into 4 squares, P is a pixel in a certain square, and a, b, c, d are the corners of the grid around P,
by applying the linear interpolation algorithm from 2 directions the 4 points pixels take the value of P.

Applying the non-maximum suppression (NMS) method to the output on the regression layer yields
the final bounding box prediction. Finding the most appropriate detecting bounding box and removing
inaccurate predictions is the primary function of this approach. The traditional NMS method uses a
decreasing sorting of the predicted bounding boxes and then chooses the one with the greatest detection
score. Any additional bounding boxes that overlap with the best one, according to a preset threshold, are
removed. Because of the camera’s perspective, using the NMS algorithm to identify traffic lights can result
in the removal of the bounding boxes of other observed lights. We suggest switching from the NMS method
to the Soft-NMS algorithm to address this issue. One key distinction between the NMS method and the
Soft-NMS algorithm is that the latter gradually decreases the score until it finds the best prediction, rather
than eliminating all bounding boxes with a fixed overlap value with the best bounding box. The projected
bounding boxes (BI), their accompanying score (SI), and the final bounding box predictions (BF) are all taken
into consideration. Here is how the Soft-NMS operates: The following steps are taken by the Soft-NMS: (1)
compile all the scores in S; (2) choose the bounding box with the highest score, b fi ; (3) transfer the selected
box from BI to BF; (4) recalculate the score of bi if the IoU of a predicted bounding box bi from BI and b fi
is greater than a predefined threshold t. The score function is smoothed using a Gaussian weight function.
Accordingly, the attenuation function is used to recalcine the scores of neighboring bounding boxes, where
the size of the overlap region between the boxes determines the function. The formula for the function that
recalculates scores is calculated as Eq (2).

Si =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Si , IOU (b fi , bi) < t

0, IOU (b fi , bi) ≥ t
(2)

Si = Si e−
IOU(b f i ,bi)

2

σ ,∀bi∉BF

IOU (b fi , bi) defines the overlap value between the highest score bounding box b fi and a bounding box
bi . Using the continuous Gaussian function, boxes with no overlap keep it score but overlapped bounding
boxes will be demonstratively guarded. Unlike traditional NMS, the Soft-NMS can avoid eliminating
bounding boxes of partially occluded traffic lights by another bounding box. It results in improving the
detection performance of the model.

To prove the efficiency of the proposed approach many experiments have been conducted and the
achieved results prove the performance. More details are presented in the next section.

4 Experiments and Results
A hybrid system with an Intel i7 processor, 16 GB of RAM, and an Nvidia GTX 960 graphics processing

unit would be ideal for our experimental needs. In many ways, the NVidia Drive AGX Pegasus is an
inspiration for the planned system. In Table 2, we can see how the NVidia Drive AGX Pegasus stacks up
against the suggested setup.
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Table 2: Comparison between the proposed system and the NVidia Drive AGX pegasus

Proposed system Nvidia drive AGX pegasus
CPU Intel i7, 8 cores ARM, 8 cores
RAM 16 GB 16 GB
GPU Nvidia GTX 960, 2084 cores 2 Xavier GPU, 2048 cores

With the help of the Nvidia acceleration libraries CUDA and cuDNN, the convolutional neural networks
were built using the TensorFlow deep learning framework. For picture editing, we used the open cv library.
The pre-trained weight from the ImageNet dataset was used to initialize the ResNet 101 model.

Optimizing the loss function was done using the gradient descent approach with momentum. From
a configuration standpoint, we establish the following values: momentum = 0.9, learning rate = 0.001, and
weights decay = 0.1. The attenuation technique was used to maximize the learning rate and select the optimal
one. The output layers were started randomly with a standard deviation of 0.01 and mean values of 0. All
other bounding boxes will be taken as trustworthy forecasts, except for the one with an IOU, which will be
ignored if its value is less than 0.6.

Using the LISA traffic light dataset, we trained the suggested program. It’s a freely accessible dataset
that researchers use to evaluate various traffic light recognition methods and determine which ones are the
most advanced. This dataset is made up of video frames that were captured in real-time while driving in San
Diego, California, USA. The collection includes 113,888 annotated traffic signals and 43,007 frames overall.
The scenes were recorded using a stereo camera that was positioned on top of a moving car. The weather
and lighting conditions varied throughout the day and night. For testing and training purposes, we have
deactivated the stereo functions and restricted ourselves to using only the left camera view. This LISA traffic
light dataset contains photos with a 66○ Field of View with a resolution of 1280 × 960. Separate training and
testing sets were created from the dataset. The remaining footage serves as a test set, while thirteen clips
shot throughout the day and five clips shot at night make up the training set. We take into account seven
categories in the dataset: begin, warning, stop, go left, begin, warning left, stop left, and go forward.

We suggest using the average precision and the mean average precision as metrics to assess the efficacy
of the suggested method. How good the samples that were accurately predicted are may be inferred from the
precision. The suggested method’s efficacy may be demonstrated using this assessment criteria.

Due to the restricted memory of the employed GPU, the suggested technique has been trained for
200,000 iterations with a batch size of 16 photos. We refined the loss function and got it down to 0.004.
In Table 3, you can see the average accuracy for each class as well as the overall accuracy for the whole dataset.
A mean average accuracy of 96.73% was reached by the suggested technique when assessed on the test set.

We used the same dataset settings to ensure a fair comparison with state-of-the-art studies. In Table 4,
we can see how our results compare to those of previous studies using the LISA traffic light dataset. On the
LISA traffic light dataset, the suggested strategy achieves better results than state-of-the-art approaches, as
shown in Table 4.
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Table 3: Achieved average precision per class and mean average precision

Traffic light class Average precision (%)
Go 98.45

Warning 97.56
Stop 97.12

Go left 95.35
Warning left 96.84

Stop left 96.45
Go forward 95.39

Mean 96.73

Table 4: Comparison against existing works on the LISA traffic light dataset

Method Mean average precision (%)
YOLO [19] 58.3
TTTL [30] 84.95

BSSNet-full-size & TLC3Net [31] 78.31
[32] 92.6
Ours 96.73

Our model achieves an accuracy of 96.73% which outperforms [32] by 4.13% in urban scenarios with
complex backgrounds. This improvement can be attributed to our use of multi-scale pyramid feature maps
and Soft Non-Maximum Suppression (Soft-NMS).

Unlike [30], which struggles with detecting small and occluded traffic lights, our method demonstrates
a detection rate of 96.73% for these objects, highlighting the effectiveness of our dilated convolutions. The
improved performance of our model is rooted in its architectural innovations.

By leveraging pyramid feature maps, the network captures context at multiple resolutions, significantly
enhancing its ability to detect traffic lights in varying scales and orientations. This directly addresses
limitations identified in other works.

The adoption of Soft-NMS mitigates issues of false positives, especially in densely populated urban
environments, a recurring challenge in prior studies such as [19].

Our focus on parameter optimization ensures that the model operates seamlessly in real-world settings,
unlike the computationally intensive approaches of [31].

The robustness of our framework in handling diverse environmental conditions underscores its
potential for deployment in Intelligent Transportation Systems (ITS) and Advanced Driver Assistance
Systems (ADAS). This scalability is a notable advancement over previous work, which often lacks real-
world applicability.

With a processing time of 7 FPS, the suggested technique offers a decent balance between speed and
accuracy. Depending on the vehicle’s speed and the distance from the traffic light, this period might be
thought of as real-time processing. The maximum speed in an urban context is 60 KM/H, which is 16 m/s.
The system requires a minimum of two frames per second to detect and identify the traffic light, considering
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the ten-meter distance between the car and the light. Thanks to the finished processing time, the system may
function in real-time.

Our proposed convolutional neural network, utilizing multi-scale pyramid feature maps, has demon-
strated remarkable efficiency based on the presented findings. The incorporation of multi-scale pyramid
feature maps has significantly improved detection and classification accuracy. The method effectively detects
and identifies small traffic signals even in complex backgrounds. The use of an ensemble of RPN networks
has further enhanced the detection rate and expedited processing by generating highly confident region
proposals, thereby reducing the number of regions requiring evaluation. This optimization has notably
improved the performance of the traffic light detection application. With the availability of advanced
hardware, the proposed approach is viable for practical implementation in ADAS systems.

5 Conclusion
Traffic light detection is one of the most critical applications of Advanced Driver Assistance Systems

(ADAS). However, developing a reliable detector poses significant challenges due to complex backgrounds,
small traffic lights, occlusion, and other factors. This work focused on designing an efficient and dependable
traffic light detection system. To achieve this, we proposed a convolutional neural network (CNN) leveraging
multi-scale pyramid feature maps for robust feature extraction.

The CNN incorporates residual links to enhance feature learning, while multi-scale pyramid feature
maps are utilized to accurately detect small traffic lights against complex backgrounds. Regional proposal
generation is facilitated by the Region Proposal Network (RPN), and ROI Align is employed to preserve pixel-
level feature information and minimize the impact of quantization deviations. The bounding box selection
and refinement processes are further optimized using Soft-NMS algorithms.

In testing, the proposed approach demonstrated exceptional performance, effectively recognizing and
identifying small traffic signals in high-resolution images. The results highlight the cutting-edge functionality
of our method. However, the model remains sensitive to extreme lighting conditions and adverse weather.
Future work will focus on incorporating adaptive mechanisms and domain generalization techniques to
overcome these limitations and further enhance system robustness.
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