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ABSTRACT: The Internet of Medical Things (IoMT) is transforming healthcare by enabling real-time data collection,
analysis, and personalized treatment through interconnected devices such as sensors and wearables. The integration of
Digital Twins (DTs), the virtual replicas of physical components and processes, has also been found to be a game changer
for the ever-evolving IoMT. However, these advancements in the healthcare domain come with significant cybersecurity
challenges, exposing it to malicious attacks and several security threats. Intrusion Detection Systems (IDSs) serve as
a critical defense mechanism, yet traditional IDS approaches often struggle with the complexity and scale of IoMT
networks. With this context, this paper follows a systematic approach to analyze the existing literature and highlight
the current trends and challenges related to IDS in the IoMT domain. We leveraged techniques like bibliographic and
keyword analysis to collect 832 research works published from 2007 to 2025, aligned with the theme “Digital Twins
and IDS in IoMT.” It was found that by simulating device behaviours and network interactions in IoMT, DTs not only
provide a proactive platform for early threat detection, but also offer a scalable and adaptive approach to mitigating
evolving security threats in IoMT. Overall, this review provides a closer look into the role of IDS and DT in securing
IoMT systems and sheds light on the possible research directions for developers and the research community.

KEYWORDS: Cybersecurity; digital twin; healthcare security; internet of medical things; IoMT; intrusion detection
system; IDS

1 Introduction
The fourth industrial revolution, known as Industry 4.0, has rapidly transformed industries worldwide

through its innovations. This digital revolution has significantly increased productivity through its adoption
in different areas of industries like Cyber-Physical Systems (CPS) [1] and smart manufacturing. The main
driving components behind today’s Industry 4.0 paradigm include various advanced technologies like
Machine Learning (ML), Deep Learning (DL), Artificial Intelligence (AI), the Internet of Things (IoT),
and Digital Twins (DTs) [2,3]. These technologies have enabled businesses to automate processes, optimize
operations, and create innovative products and services with higher efficiency [4,5].

In the evolving digital ecosystem, advanced technologies are being harnessed to transform physical
assets from the real world into interconnected smart objects or things. This interconnectedness, among other
things, lays the foundation of the IoT [6,7], enabling Machine-to-Machine, or M2M, communication for
things in the network. These devices, including computers, smart sensors, and various mobile devices, are
accessible via Internet Protocol, or IP, over cloud environments. Therefore, the core functional components
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of any IoT system comprise devices, network infrastructure, communication protocols, and an application
layer for device access and management within the IoT network. However, depending on the specific use
case, specialized architectural models have been proposed for IoT solutions. Industrial IoT (IIoT) [8–10]
is one such solution that entirely focuses on leveraging the IoT technology in different industrial contexts
like Industrial Control Systems (ICS) [11,12], CPS [13–15], design and smart manufacturing [13,16], and
many more.

The utilization of IIoT or IoT in healthcare is typically referred to as the Internet of Medical Things
(IoMT) [17–19]. Although, the medical sector has always been adaptive towards technical changes, the
COVID-19 pandemic particularly accelerated the adoption of novel technologies including IoT for a wide
scope of applications such as social distance monitoring [20,21] and patient data collection [21,22]. The
IoMT has successfully been applied in many other medical solutions like personalized assistance [23],
disease diagnosis [24,25], and patient monitoring [18,19]. It has significantly advanced the healthcare domain,
enhancing the capabilities of medical processes in multiple dimensions.

DT, a relatively nascent technology and a crucial element of the industrial metaverse, is another com-
ponent that is making substantial contributions to the success of Industry 4.0. The functional components
of DTs can be presented as a combination of data acquisition, management, modeling, and visualization [4].
These components enable DT to serve as a virtual representation of physical devices, networks, and
simultaneously synchronized processes with the corresponding physical twin [1,3]. It enables professionals
to remotely monitor, manage, and test physical assets in real-time [26,27]. Additionally, the AI and ML-
integrated DTs are also used for smart decision-making and industrial automation. DTs have been used
across industries for numerous applications related to supply chain management [28,29], autonomous
vehicles [30], agriculture [31], and security [12,32,33].

Beyond these multidisciplinary applications of DT, it has also been frequently used in the healthcare
domain [34,35]. As pointed out in [3], DTs are dominating prognostics and health management domains
through various applications. It includes drug development [36–38], disease modeling [39], and medical
training through simulations [40], to name a few. As these DT-based healthcare solutions are closely
integrated with the IoT, this new dimension of technological evolution is further enhancing modern
IoMT solutions.

The interconnected model of devices in an IoT network makes it challenging to maintain the privacy
and security of the system to a large extent. IoT devices can continuously generate data that must be sent
to the edge servers due to their limited storage, processing, and battery capacity [41]. In addition to that,
these devices often suffer from hardware and firmware vulnerabilities, which can be exploited through
various means [42–44]. The IoMT is transforming healthcare by connecting medical devices for real-time
data exchange, advancing the current healthcare sector. However, in IoMT, this connectivity and inherent
limitations introduce substantial cybersecurity risks [35]. These risks potentially compromise patient privacy,
medication effectiveness, and security in healthcare through attacks on hardware, data flow, and the IoMT
network itself [20,45,46]. Intrusion Detection Systems (IDSs) and Intrusion Prevention Systems (IPSs) play
a suitable role in ensuring the security of the network through unwanted traffic [47–50]. Therefore, noticing
the criticality of the healthcare sector and the increasing security threats in this domain, it has become crucial
to review the current security of IoMT networks.

Through a comprehensive synthesis of current research, this paper examines various IoMT architectures
proposed in the literature, which emphasize service and communication efficiency, security, scalability, and
responsiveness. It also highlights the role of DT-based IDS to safeguard IoMT networks against emerging
cyber threats, optimizing operational efficiency and overall cybersecurity. Additionally, we present the
impact of IDS development and its functional components across different scenarios. We also explore
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approaches that incorporate Blockchain Technology (BCT), anomaly detection, AI/ML, and Federated
Learning (FL) as part of distributed data strategies. These approaches offer innovative pathways for threat
detection and improve detection accuracy while preserving data privacy. Through this systematic survey, we
aim to answer the following four Research Questions (RQs):

RQ1: How does the Internet of Medical Things (IoMT) contribute towards the development of the smart
healthcare industry?

RQ2: What are the security challenges in IoMT? How do the various Intrusion Detection System (IDS)
solutions address them?

RQ3: How does Digital Twin (DT) technology play a vital role in IoMT security?
RQ4: What are the issues associated with integrating DTs in IoMT?

The rest of this paper is organized as follows: Section 2 outlines the methodology employed in this
Systematic Literature Review (SLR), including the criteria for literature selection, and analysis. Section 3 pro-
vides an overview of the evolution and applications of the IoMT within the healthcare domain, emphasizing
the integration of emerging technologies. Subsequently, Section 4 elaborates on the concept of DTs, exploring
their architectures and their pivotal role within the IoMT infrastructure, as well. Section 5 investigates the
security challenges prevalent in smart healthcare systems, with a detailed examination of IDS and their
significance. Building upon the insights gained from these sections, Section 6 addresses the RQs formulated
in Section 1. Finally, Section 7 presents potential directions for future research and applications, followed by
the conclusion of the study in Section 8. The abbreviations table is also provided in Appendix A as Table A1.

2 Methodology
This study focuses on the theme “Digital Twins and IDS in IoMT” and aims to answer the four RQs

raised in Section 1. We followed a systematic literature review approach inspired by [44,51]. To ensure a
comprehensive review, we carried out a bibliographic analysis of the data collected from the Web of Science
(WoS) database using two sets of queries, “IDS for IoMT or Healthcare” and “Digital Twin for IoMT or
Healthcare”. To understand the inherent research trends with more depth, a keyword network was generated
using the Visualization of Similarities viewer or VOSviewer software [52], which is shown in Fig. 1. Here,
inter-keyword link strength is only indicated if it is 8 or higher. Moreover, all the keywords shown in Fig. 1
appeared at least 15 times. Four major keyword clusters emerged, with prominent terms including digital
twin(s), healthcare, artificial intelligence, security, internet of things, blockchain, and challenges.

These clusters motivated us to categorize the retrieved articles into three groups, as described later in this
section. We now detail the complete literature selection process followed in this review, which was conducted
in three stages: identification, screening, and final inclusion.

2.1 Identification
This is the first process for selecting the most suitable works for this review. Based on insights from our

initial analysis (Fig. 1), we created the keywords and retrieved 832 research works from various databases,
including Web of Science, and Scopus, using APIs through manually drafted Python scripts. We then
removed 27 duplicate works to have a final set of 805 unique papers. These works were published in major
digital venues including IEEE Xplore, Elsevier, Springer, MDPI, and Wiley. Fig. 2 indicates that most of these
records were published in 2024 and belonged to the “Open Access” category. We also retrieved 16 relevant
research articles through a manual search.
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Figure 1: Network of top keywords from articles published on the theme “Digital Twins and IDS in IoMT”

Figure 2: Year-wise publication count (left), and publication type distribution (right) of 805 records

2.2 Screening
After retrieving the research papers, we applied a systematic screening of all retrieved works to rationally

include or exclude articles. The criteria for including the articles were as follows:

• Publication venue: Articles published in peer-reviewed conference proceedings or journals.
• Citation count: Articles cited at least four times.
• Type of work: Full-length research articles, review papers, or survey papers.
• Peer-review status: Only articles that underwent peer review.

Articles that did not meet these criteria were excluded from the study.
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2.3 Final Inclusion
After the screening process, a total of N = 116 research papers were selected for final evaluation.

Abstracts, results, and conclusions of these papers were manually reviewed, leading to the identification of
N = 53 articles that closely aligned with the core theme of our research. Additionally, N = 13 articles were
manually searched and analyzed by the authors to supplement the study. The final screening process of
abstracts and results substantially minimized the risk of excluding quality papers from the study. Hence, we
finally included N = 66 (53 + 13) articles in this review. Table 1 presents a summary of selected recent survey
and review articles in the domains of IoMT, DTs, and IDS advancements. The complete article selection
process for this review is illustrated in the PRISMA chart shown in Fig. 3.

Table 1: Some existing surveys and reviews on IoT/IoMT, DTs, and IDS

Ref. Focus Relevance Findings
[34] Applications &

challenges
IoMT,

DT
PRISMA-based review of DT in healthcare, emphasizing
current trends and its potential for patient care and other
operations. Lack of implementation research is pointed as

an opportunity.
[35] Healthcare

security
IoMT,

IDS
A systematic review highlighting weakness of the IoMT

and role of IDS to strengthen security.
[19] Healthcare IoT IoT/IoMT Reviews IoT device capabilities & architectures in

healthcare. Highlights security, interoperability, and
scalability challenges; exploring future trends with

TinyML & BCT.
[3] Applications &

challenges
IoMT,

DT
Reviews role of DT in Industry 4.0, emphasizing

prognostics and health management. Deals with modeling
challenges, cyber-physical integration, and the need for

advanced tools.
[1] Cybersecurity

& DT
IoT, DT Explores DTs as a cybersecurity solution for Industry 4.0

CPS, addressing APT threats. It highlights key
vulnerabilities, and proposes secure DT design for

enhanced threat detection and mitigation.
[45] ML/DL-based

IDS for IoMT
IoMT,

IDS
Surveys ML and DL-based IDS for IoMT, highlighting

security challenges, and detection methods. Also suggests
the need for lightweight, adaptive IDS for secure and

efficient healthcare.
[51] AI-based IDS

for IoMT
IoMT,

IDS
Reviews AI-based IDS in IoMT, with a novel taxonomy of

IDS schemes. The work emphasizes architecting
lightweight, real-time, and resource-aware security

solutions for smart IDS.
[20] Security & FL IoMT,

IDS
Surveys FL for privacy-preserving AI in smart healthcare.

It covers real-world IoMT applications, highlights key
benefits, and suggests future directions to enable secure

and collaborative data analysis.

(Continued)
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Table 1 (continued)

Ref. Focus Relevance Findings
[18] Security & FL IoT/IoMT Explores IoMT evolution and benefits with three case

studies and highlights the role of BCT & AI to overcome
staff shortages and long wait times.

[41] FL-based IDS IoT, IDS Reviews FL for anomaly-based IDS in IoT by analyzing
challenges like single-model convergence, and offers

practical insights for privacy-preserving.

Figure 3: PRISMA chart of the selection of final articles

The selected set of 66 articles contributed to the three main categories—IoMT [18,19], DT [1,53], and
Security. These papers are listed in Table 2, along with their relevance mapped to the four RQs. Here, C
stands for I∩S∩D. Most of the papers selected in our research belong to more than one category, while three
works [4,50,54] were categorized in all groups. Furthermore, papers contributed only to the ‘security’ category
were found to be largely aligned with the IDS technologies. We have represented the relevance of these papers
to the categories using a Venn diagram, as shown in Fig. 4. It indicates that all the papers contributing to the
IoMT were found to be relevant to the RQs.
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Table 2: Mapping RQs with selected literature

I-(D∪S) S-(I∪D) D-(I∪S) (I∩S)-C (I∩D)-C (S∩D)-C C=I∩S∩D
Paper [18–20,22,59] [41,47,49,51,

98,100–
102,104,105]

[1,3,8,53,
63–65,72,
77,121,122,
124,126]

[10,35,45,46,
55,90,74,
106–116]

[21,34,36,37,
40,62,67,68,

75,73]

[11,12,32,70,
117,118,123]

[4,50,54]

# 5 10 13 18 10 7 3
RQ1 � � � �
RQ2 �� �� �
RQ3 �� �� � ��
RQ4 �� � �� �

Note: Legend: �–completely addressed; ��–partially addressed; I, S, D = Set of papers on IoMT, Security, DT,
respectively.

Figure 4: Categorization of selected papers based on three core research themes

Our preliminary analysis suggests a strong interrelationship between DTs and smart healthcare solu-
tions leveraging the IoMT. However, existing research mainly focuses on limited aspects of the IoMT and
its associated technologies, particularly concerning applications and healthcare security. This observation
motivated us to conduct an in-depth investigation into the applications, challenges, and security consider-
ations within the IoMT domain, and to explore the potential of DTs as a viable solution. In this survey, we
initially discuss the existing IoMT and DT architectures and their applications across various domains. We
then present the security challenges faced by IoMT networks and the different types of IDS used to ensure
network security.

3 IoMT for Smart Healthcare
The IoMT is a specialized subset of IoT for the healthcare domain. It is recognized as a transformative

technology with the potential to revolutionize the healthcare system for disease modeling, automated
medication delivery, and many more. IoMT systems consist of numerous interconnected devices that assist
healthcare professionals in collecting real-time data, enabling timely interventions and personalized treat-
ments. Additionally, IoMT facilitates remote monitoring, allowing patient to receive medical care from their
homes. Remote access to healthcare services enhances patient experience and frees up hospital resources.

As healthcare is a vast sector, the complexity of the IoMT system varies depending on the use case
scenario. The complexity of an IoT/IoMT system typically depends on its various components. Based on the
existing literature, three essential components can be identified, as illustrated in Fig. 5.
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• Hardware Components: Hardware provides the foundation for the physical setup of IoMT that can be
used for various purposes like patient data collection or monitoring.

• Software Components: Software is an integral component of any IoT system, serving as the interface
between humans and machines. These components of IoMT are useful in processing and analyzing data,
enabling valuable insights, facilitating seamless interaction, and ensuring the security of the system.

• Communication Management: Just like any IoT system, IoMT rely on some dedicated communication
protocols to ensure the reliable and secure flow of information within the network. Some commonly
used protocols include Message Queuing Telemetry Transport (MQTT), Bluetooth Low Energy (BLE),
Constrained Application Protocol (CoAP), and ZigBee.

Figure 5: Three components of IoMT

Despite their systematic evolution and numerous benefits, the growing use of IoMT devices introduces
significant security concerns. These devices are connected to the internet and rely on various communication
protocols, making them susceptible to cyberattacks. Given that IoMT devices often handle sensitive patient
data, any compromise in their security could lead to disastrous consequences, such as data breaches
and disruption of medical treatments, which could put patients’ lives at risk. To resolve various chal-
lenges and standardize medical IoT development, researchers have come up with several architectures for
IoT/IoMT systems.

3.1 Architectures of IoMT
Based on various IoT system architectures, researchers have emphasized the inclusion of multiple

essential components. Being a subset of IoT systems, these architectures are also applicable for IoMT
solutions. Here we discuss six common architectures of IoT/IoMT systems that are shown in Fig. 6.

3.1.1 Traditional Three-Layer Architecture
IoMT solutions rely on a range of functional components that work collectively to complete the

tasks. These components can be hierarchically layered in three groups. In a traditional IoMT system, these
three layers include perception, network, and application layer [19], as shown in Fig. 7. These layers can be
considered the fundamental building blocks of any IoT system, as they are common across such networks.
The functionality of each layer is as follows.

1. Perception Layer: This layer deals with recording the perception of the physical environment through
different devices, actuators, and sensors for data collection. Hence, typically, the analogue data from the
physical world is converted to a digital signal at the perception layer.
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2. Network Layer: As the name suggests, this layer establishes communication between the device and the
system over standard protocols. Popular IoT protocols such as MQTT, CoAP, ZigBee, BLE, and LPWAN
are commonly used for communication across various network devices, including gateways, hubs, and
switches. The network layer ensures the data transfer from the perception layer for further processing.

3. Application Layer: The processing of collected data and the presentation of insights occur at this final
layer of the IoMT system. At this stage, the user can monitor, analyze, and process data received from
the network layers while also interacting with the IoT system to make informed decisions.

Figure 6: Six types of common IoT/IoMT architectures [18,19,51,55–58]

Figure 7: Traditional 3-layer architecture [19] of IoT/IoMT
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3.1.2 Cloud-Fog Architecture
Cloud-Fog architecture [18,55] is also a three-layered IoMT architecture, where the layers are iden-

tified based on the hardware/software components, and data handling. The three layers in the cloud-fog
architecture are—things layer, fog layers, and cloud layers.

1. Things Layer: The things layer comprises various devices, sensors, and actuators for patient monitoring.
It also includes pharmacy controls, medical records, nutrition regimen generators, and more. This layer
interacts closely with the users within the environment. The data for patient monitoring and remote
care is collected at this layer.

2. Fog Layer: The fog layer operates above the things layer. This layer comprises local servers and gateway
devices, which are essential components of a sparsely distributed fog networking framework. Here,
lower-layer devices harness local processing power to provide real-time responses to users. Following
this step, the gateway devices at this layer are responsible for forwarding data from these devices to the
cloud layer for further processing.

3. Cloud Layer: This layer deals with data storage, computation, and analysis, which supports the decision-
making process. The cloud layer also includes resources for storing data from the medical infrastructure,
which can be accessed for analysis when needed.

3.1.3 Service-Oriented Architecture
In IoMT systems, tasks such as data storage over the cloud, data processing, and retrieval are also

referred to as services. Hence, considering the services as a separate component from the application layer,
the Service-Oriented Architecture or SOA-based architecture of IoT is an advancement over the traditional
three-layer model [56]. Here, an additional layer is placed as the service layer between network and application
layers. The service layer ensures the availability of sufficient services that are essential for the application
layer in this framework. The main components of the service layer are associated with service management,
discovery, composition, and interfacing.

3.1.4 Transportation-Oriented Architecture
As described in [51], three of the four layers in this architecture of the IoMT are identical to the

SOA-based IoT model and have the same placement, as well. However, here the service layer is replaced
with a transport layer. The transport layers aim to lighten the work at the network layer, as it primarily
handles end-to-end data communication, ensuring that information collected from medical devices reaches
the appropriate servers for analysis and storage. It securely transfers physiological data to medical servers
for processing.

3.1.5 Middleware-Based Architecture
It is a five-layer IoT architecture where two extra layers are added along with the three essential layers

of IoT systems. The newly added layers include the middleware and business layers [57].

1. Middleware Layer: This layer is placed between the network and application layers providing services
for data management and communication.

2. Business Layer: The business layer is the final layer in this architecture, positioned above the application
layer. Its primary function is to manage the data received from the application layer and apply processing
steps efficiently.
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3.1.6 Risk-Aaware Architecture
In IoMT networks, the interconnected system of body-area sensor networks, gateways, and cloud

platforms facilitates real-time health data collection and personalized care. However, safety challenges,
including component-level errors, emergent behaviours, and timing mismatches, can propagate through
the system. It potentially leads to hazardous situations, as evidenced by real-world incidents such as
pacemaker malfunctions.

To address these problems, a risk-aware IoMT model was proposed in [58] that introduces a proactive
approach to hazard analysis during the design phase. This model leverages standardized languages like
architecture analysis and design language and tools such as the Open Source Architectural Tool Environment
to model errors, track their propagation, and identify safety constraints.

The methodology comprises four key steps for systematically identifying and analyzing hazards, as
illustrated in Fig. 8. In the given context of [58], these steps are followed as follows:

1. Collecting historical fault data to identify and understand potential failure patterns.
2. Constructing feedback control loop architectures to diagnose abnormal interactions and sys-

tem behaviours.
3. Designing safety architectures using modeling tools, such as architecture analysis and design language

and EMV2, while defining safety requirements to mitigate hazards.
4. Applying the methodology to a pacemaker case study, where hazards and safety constraints are

identified early in the Software Development Life Cycle (SDLC).

Figure 8: Four-step hazard identification and analysis

Timely identification of hazards ensures traceability, enhances the reliability of safety-critical IoT
systems, and eliminates the need for specialized domain expertise.

3.2 Overall Contribution of IoMT
So far, we have examined various IoMT architectures that have guided experts in developing suitable

solutions across diverse medical applications and contexts. These architectures facilitate the integration
of advanced technologies, enabling remote monitoring in smart healthcare systems and supporting the
development of secure and robust medical solutions. As a result, they not only enhance personalized patient
care but also offer more effective learning and training opportunities for healthcare practitioners. A summary
of the overall contributions of IoMT is presented in Table 3.
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Table 3: Contribution of IoMT in healthcare domain

Advancements Technology Examples
Remote monitoring

for patients
AI/ML Solutions, based on the dedicated protocols, have been

developed for healthcare monitoring through various
medical sensors, actuators, and wearable devices for

prompt support [18,19,22].
Smart healthcare

systems
AI/ML, BCT BCT and AI-driven distributive data processing make

the decision making robust while maintaining the
privacy within smart healthcare solutions [20,22,59].

Enhanced security in
healthcare

Edge Computing,
BCT

E-healthcare services maintain patient data privacy
while reducing overall latency when these technologies

are used [22,59].
Personalized and

context-aware
healthcare

Cloud Computing Personalized treatments and context-aware monitoring
are enabled by the processing of large volumes of data

on cloud servers [18,20].
Surgical applications Adaptive Learning,

AR/VR/MR
Immersive simulations of critical medical conditions,
like lung cancer, are valuable for medical training and

adaptive diagnostics [40].
Disease control and

management
FL, BCT Distributed learning techniques and BCT have proven

their importance in overcoming the several challenges
during the COVID-19 [18,20], including social

distancing [21].
Data-driven

diagnostics/Treatment
AI/ML, FL Smart healthcare leverage the AI and FL-based

technologies for precise medication for diagnostics
and treatments based on the historical data [18,19].

In summary, these architectures represent some of the most common IoT/IoMT system designs, each
suited to different application scenarios. While they provide a foundation for connectivity and functionality,
significant enhancements can be made to improve security and robustness. Furthermore, as discussed
in Section 1, the integration of DTs in IoMT solutions is driving advancements in both application and
security within the medical sector. In the following section, we will explore the evolution and adoption of
DTs in the medical domain in greater detail.

4 Digital Twins
DT [53,60] serves as a virtual representation of a physical device or service. By facilitating the creation

of an interactive virtual replica of the physical assets, DTs enable businesses to manage, test, and update
the major industrial components like CPSs and ICSs. In the healthcare domain, DTs are used for numerous
purposes like patient data modeling, drug design, and remote patient monitoring. As DTs can be created for
devices in the physical world, IoT solutions have also started to utilize them in many scenarios [1,61,62]. We
identified five distinct architectures for developing DTs, each adoptable across various domains. These are
described in detail ahead in this section.
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4.1 DT Architectures
The DT technology has evolved into a fundamental component of modern cyber-physical systems,

facilitating real-time monitoring, simulation, and decision-making across various domains. The architecture
of a DT system determines its capabilities, efficiency, and adaptability to different applications. Several
architectural models [33] have been proposed to address challenges related to data integration, security,
scalability, and computational efficiency. This section explores such architectures, each designed to meet
specific functional and operational needs, as shown in Fig. 9.

• 5-Dimensional Model: A modular architecture that organizes the DT systems into five core compo-
nents: physical entities, virtual models, DT data, connections, and services enhancing interoperability
and system integration.

• Digital Twin as a Proxy (DTaaP): A four-layered approach that leverages DTs as logical hubs
within Industrial CPS, ensuring efficient monitoring, diagnostics, and security through a structured
communication framework.

• CanTwin: 6-Layer Architecture: A multi-layered DT model designed for real-time monitoring and
management, particularly applied in environments requiring operational efficiency, such as canteen
management during the COVID-19 pandemic.

• Open-Source Architectures: Leveraging open-source tools such as Eclipse Ditto, Apache Kafka, and
InfluxDB, these architectures enable flexible and cost-effective DT implementations in Industry 4.0 and
smart manufacturing.

• Security-Oriented Architectures: DT frameworks designed to enhance IoT and IoMT security by
providing virtual replicas of physical devices, facilitating intrusion detection, anomaly analysis, and
proactive cybersecurity measures.

Figure 9: Architectures for the development of DTs [8,21,33,50,63–65]
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Each of these architectures offers distinct advantages tailored to specific industry needs. The following
sections provide an in-depth discussion of their structure, functionality, and real-world applications.

4.1.1 5-Dimensional Model
In [63], authors describe makeTwin, an architecture for digital twin systems, as fundamental to their

functionality. It is characterized by a five-dimensional (5D) model consisting of the following components:

1. Physical entities
2. Virtual models
3. Digital twin data
4. Connections
5. Services

These components collectively facilitate robust interactions within the virtual environment. Along
with the interactive components (DTs and physical devices) in this architecture, the perfect segregation of
data handling and communication emphasizes modularity, which incorporates ten core functional modules
to support the creation and deployment of digital twin applications. It allows the integration of various
services like data processing, simulation, and visualization with the system, as exemplified by the makeTwin
platform. The makeTwin platform also provides a comprehensive, flexible, and user-friendly architecture to
meet diverse requirements by addressing challenges related to security and privacy concerns, and ultimately
driving digital transformation and innovation across various industries.

4.1.2 DTaaP: Digital Twin as a Proxy
A DT emphasizes the Industry 4.0 characteristics of a device, product, and system. Therefore, it can

be considered a logical hub in this context. It can be implemented for monitoring, diagnostics, prediction,
and control in ICPS. In [64], the authors describe some challenges that affect the lifespan of the ICPS, and
the concept of a DTaaP is proposed to overcome these challenges. The authors came up with a four-layer
architectural model for the DTaaP that successfully meets the identified properties. All four layers of DTaaP
are described below.

1. Device Layer: This layer of the proposed DTaaP model sets up the main industrial environment for the
desired ICPS. The layer encloses all observable devices that should be monitored. It also includes the
devices that can be remotely controlled and actuated.

2. Communication Layer: Each physical device also has a corresponding virtual replica. A communica-
tion layer is created to establish the communication between these synchronous physical-virtual device
pairs. This layer can utilize a suitable communication architecture such as an Event-Driven Architecture
(EDA) [66] or a SOA [56] according to the requirements.

3. Proxy Layer: The proxy layer acts as an abstraction between digital and real-world devices. The Digital
Twin Framework (DTF) is deployed in this layer, which stores DTs according to device models. DTF
is also responsible for providing connectivity and message translation to communicate with DTs. It
ensures that DTs are only accessed by authorized parties. Authorized access is achieved by policies that
can manage access rights for every single feature of a DT.

4. Application Layer: Interaction between users and DTs is realized at this layer. For interaction with a DT
through the application layer, a user must be authorized and have sufficient access rights to the desired
features of the DT.

The DTaaP architectural model implementation is based on the open-source Eclipse Ditto DTF in the
proxy layer, which offers four main improvements to DT-based solutions: energy efficiency, availability and
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state persistence, remote control, and security. These properties of the DTaaP model address issues associated
with resource-constrained devices in an ICPS environment, such as a long lifespan, continuous service
availability, and secure access and control. The experimental evaluation shows that this model is energy
efficient, and the DT serves as an effective and efficient anchor point for security.

4.1.3 CanTwin: 6-Layer Architecture
The CanTwin model was applied in a real-world case study to manage a canteen during the COVID-19

pandemic [21]. The CanTwin architecture is designed to facilitate real-time monitoring and management of
a canteen environment, particularly regarding social distancing measures. However, this architecture could
be adopted for any of the similar use cases. The detailed overview of the 6 layers of this DT architecture is
provided below:

1. Physical Layer: It represents the real-world environment where IoT devices are deployed. Sensors and
actuators are used to monitor activities, environmental conditions, or device states. In this layer, privacy
is maintained by tracking objects or individuals as abstract points.

2. Data Layer: This layer manages data collection, storage, and secure transmission. Sensor data is stored
in scalable databases (e.g., MongoDB) and processed for insights. Security is ensured through encrypted
communication and access controls for authorized users.

3. Cognitive Unit Layer: This layer transforms raw data into actionable insights. It helps to calculate
metrics such as proximity, occupancy, or system efficiency and identifies patterns to improve system
operations. This layer helps to optimize performance and ensure compliance with rules.

4. Event Source Unit Layer: This layer monitors the system anomalies and generates alerts.
5. Service Layer: It provides high-level services such as real-time monitoring, visualization, and predictive

analytics. It offers ease in managing resource utilization, tracking compliance, and optimizing systems.
6. User Interface Layer: This layer offers an interactive dashboard for users to visualize system status and

alerts. It allows monitoring and control of real-time IoT system. The interface simplifies interaction,
making complex data accessible to end-users.

This comprehensive architecture not only addresses immediate health concerns but also enhances
operational efficiency, making it a valuable model for similar applications in various environments.

4.1.4 Open Source Architectures
The open-source architectures are developed using free and open-source tools. Combined with the IoT

for smart factories within Industry 4.0, DTs emphasize data acquisition, virtual representation, analytics, and
visualization in real-time [8,65].

In [8], the authors proposed a universal architecture for DT-based systems by integrating five key open-
source tools in the context of IIoT: Eclipse Hono, Eclipse Ditto, Apache Kafka, InfluxDB, and Grafana,
as shown in Fig. 10. This architecture encompasses the main components of DT systems, including device
connectivity, data streaming, storage, and interactive analytics. The significance of these tools in the proposed
system is outlined below.

• Eclipse Hono provides a standardized interface for connecting, monitoring, and controlling IoT devices
remotely across different protocols.

• Eclipse Ditto enables digital twin creation and secure interaction between physical and virtual assets.
• Apache Kafka facilitates real-time data streaming with scalability and fault tolerance.
• InfluxDB supports efficient time-series data storage.
• Grafana delivers a flexible analytics and visualization solution.
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Figure 10: Open source DT architecture in [8]

Another novel DT framework was developed as per the concept of an open-source architectural model
to manage a temperature-controlled physical system in real time [65]. Along with the Eclipse Ditto, this
framework also includes Raspberry Pi and OpenPLC for remote monitoring and control. The role of Eclipse
Ditto remains the same as in [8]. Fig. 11 shows a sequential coordination between three new open-source
components in this DT architecture.

• OpenPLC is a program that automates the physical system by processing analog temperature data
coming from the sensor.

• Raspberry Pi is used to integrate the physical devices.
• Arduino manages different tools to capture sensor data.

Figure 11: Open source DT architecture in [65]

Overall, we have noticed that open-source architecture significantly advances digital twin technology in
smart manufacturing. It provides access to advanced tools and technologies, fostering collaboration between
academia and industry. This collaborative approach accelerates innovation, enabling the development of
new use cases and features. Additionally, open-source solutions make digital twins more affordable and
accessible, empowering organizations of all sizes to leverage their benefits [8,65]. By facilitating rapid
prototyping, experimentation, and knowledge sharing, open-source architectures drive the adoption of
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digital twins, ultimately leading to improved operational efficiency, predictive maintenance, and enhanced
system reliability.

4.1.5 Security-Oriented Architectures
Along with improving efficiency, maintenance, and system reliability, DTs play a vital role in security

as well. In [50], authors emphasize the critical role of DTs in enhancing IoT/IoMT network security and
management. Similar to [8], this security-oriented DTs model also leveraged Eclipse Ditto, InfluxDB, and
Grafana, enabling real-time monitoring, interaction, and secure communication by setting up a testbed to
create virtual representations of physical IoT/IoMT. Key properties of this framework are:

• DTs mirror physical counterparts and provide a unified and secure interface for managing device
operations.

• Facilitating the cross-device and DT data exchange through standard protocols like MQTT and HTTP.
• Real-time data management and analysis to understand the device performance and system behaviour.
• Physical device abstraction through dynamic replication, centralized management, and enhanced

security of the digital entities.

A security-oriented DTF strengthens the capability of systems to simulate real-world scenarios, allowing
researchers to evaluate lightweight AIDS under various conditions.

We have noticed that DTs can significantly enhance the security of IoT/IoMT networks by creating a
virtual replica of things and systems in the network. Such a kind of replication in the medical sector allows
real-time monitoring and analysis of potential threats without disrupting actual medical operations. It also
enables security professionals to detect anomalies, simulate cyberattacks, and evaluate vulnerabilities in a
controlled environment, helping to proactively address weaknesses before they are exploited. Additionally,
the DT can integrate with advanced technologies like BCT and ML for data security and automated threat
detection. These advances provide a safe platform for testing incident response strategies through attack
simulation, which ultimately strengthens the overall security of IoMT networks and keeps sensitive patient
data protected.

4.2 Applications and Evolution
In this section, we will present the various roles that DT plays in different scenarios. As DTs are used

in various domains as a virtual proxy, these can be grouped based on their roles or types of usage. Fig. 12
shows some common roles of the DT across different domains. These applications of the DTs in IoT/IoMT
and their security are described in this section.

• A Proxy: DTs are used in industrial and human-centric CPSs to represent the entities or individuals in
real-time [64,67]. It is also used to replicate the devices in ICSs and healthcare sectors to monitor and
interact with the systems. DTs are also built for the corresponding body parts for medical diagnosis and
drug development [36].

• Testing and Validation: Being capable of strongly replicating the behaviour of physical twins, DTs act
as a sandbox for testing new solutions. It allows the developer to validate solutions before deploying
them on the physical twins [36]. In the medical sector, drug designing and development leverages this
property of DTs [37].

• Training and Assistance: DTs provide remote access to the replica of physical assets. Considering its
safety and cost efficiency, these models are used in educational and training environments. As they can
improve work efficiency, DTs are helpful in critical medical scenarios like surgical training [40].
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• Synthetic Data Generation: DTs operate in synchronization with their corresponding physical entities,
making them uniquely specialized for their respective counterparts. Consequently, DTs are frequently
utilized to generate synthetic data tailored to specific devices. This capability is particularly valu-
able for data anonymization to enhance privacy preservation and for addressing data imbalance
challenges [1,68,69].

• Security: Since DTs can seamlessly integrate with advanced technologies such as BCT and AI/ML,
they not only reduce the computational burden on physical devices but also enhance their security by
incorporating robust protection mechanisms [1,70]. Research has demonstrated that each DT can deploy
its own IDS to ensure a secure IoT/IoMT network [32].

Figure 12: Common roles of DTs in medical domain

DTs enable parallel processing and automation by providing access to complex industrial and non-
industrial systems while simultaneously interacting with their physical counterparts [71]. Additionally, they
enhance security by serving as an abstraction layer [50], particularly for devices in critical environments
such as ICS. Communication within DT systems follows three key paradigms: a) Physical-to-Virtual (P2V),
b) Physical-to-Physical (P2P), and c) Virtual-to-Virtual (V2V) interactions, each requiring low latency,
high reliability, and fault tolerance [53]. DTs primarily support P2V and V2V communication, with V2V
interactions in complex networks extending across a vast number of participants, forming the foundation
for DT Networks (DTNs).

DTNs mark a significant advancement in digital twin technology [72]. Unlike conventional DTs, DTNs
facilitate seamless communication between physical and virtual entities, enabling real-time monitoring,
control, and optimization across diverse domains. By leveraging IoT, cloud computing, 6G, and big data
technologies, DTNs support advanced applications [53], including aviation and intelligent transportation,
manufacturing and predictive maintenance, virtual commissioning, and remote operations. However, to
fully harness their potential, challenges related to data security, privacy, and scalability must be effec-
tively addressed.

4.3 Digital Twins in the Internet of Medical Things
DTs are widely utilized across various application domains. Their prominence is also evident in the

medical sector, especially in prognostics and health management solutions [3]. Some common applications
of DT in IoMT are illustrated in Fig. 13 and Table 4.
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Figure 13: Applications of DT in IoMT development

Table 4: Examples of using DT in smart IoMT systems

Categories Examples
Medical devices Wearable devices or sensors are mapped with the corresponding DT

for real-time interaction and management [50].
Personalized treatment Using DT for actively monitoring the patient and personalized drug

recommendation is found to be effective [21,34,68].
Disease-specific applications Disease-specific management like in case of COVID-19 and

dengue [21,73], and drug development [37] are some novel applications
of DT.

Cyber attack resilience Centralized and decentralized anomaly detection [74] offer robust
intrusion defense for secure smart healthcare IoMT systems [4] that

can be addressed by DTs [69].
Education, training, and research Surgical simulations (e.g., lung cancer) [40], and ogran cloning (e.g,

virtual liver) [36] leverage DT and immersive technologies for better
medical training.

The examples highlighted in Fig. 13 are categorized into five distinct groups. These examples are further
elaborated in Table 4, which highlights the examples we analyzed in this work. More detailed discussions on
each category of IoMT applications are provided in the following subsections.

4.3.1 Medical Devices
Separate DTs could be developed for the medical devices that are useful for patients. Such devices are

either implantable or wearable [50,75], which are often found to be weak in terms of security, design, and
authentication [35]. Implantable Medical Devices (IMDs) are placed in the human body, either permanently
or temporarily, to support specific organs or tissues for direct treatment and monitoring. DTs of such devices
can make it easier for continuous patient monitoring from remote locations. Internet of Wearable Medical
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Devices (IoWDs) are hands-free gadgets with practical uses, powered by multiple sensors and enhanced with
the ability to transfer and receive data over the network for supplementary health and fitness tracking. A
fitness band or smartwatch can be considered an IoWD, whose DT can be used to monitor patient health in
real time.

4.3.2 Personalized and Remote Treatment
The DT plays a pivotal role in providing personalized healthcare solutions and treatment, mainly in

critical situations. To support such conditions, DTs can be used to replicate a human body part or to represent
a patient’s persona. Several DT-based solutions have been developed for patient monitoring through real-
time data collection using various sensors [21,62,75]. Due to the real-time synchronization, these DTs can
perform simultaneous analysis and make suitable proactive treatment adjustments, as well. One study also
presented a DT-based solution for lung cancer care [68]. Such solutions indicate that DTs can significantly
enhance the quality and effectiveness of modern healthcare systems.

4.3.3 Disease Specific Applications
COVID-19 has accelerated adoption of technology in healthcare. It led to the solutions developed using

DT for monitoring social distancing [20] and diagnosis [20]. CanTwin [21] was one such solution that
could consistently detect social distancing violations with 4-s latency. Moreover, the work showcased the
applications of DTs for many other healthcare services.

Many diseases require special attention due to their novelty or uncommon transmission patterns, which
may also evolve over time. DTs can be developed for such disease-specific scenarios to analyze the current
progression and predict associated risks. A DT-based solution was proposed in [73] for managing dengue
infections, where continuous patient health monitoring enabled early prediction of dengue likelihood. Such
disease-specific DT implementations are also valuable for remote diagnosis and patient-centric disease
modeling, enhancing personalized healthcare solutions [39].

4.3.4 Cyber Attack Resilience
The medical sector is not only embracing new technologies [3], but it is also increasingly becoming a

target for cyber attacks [4,76]. DTs can be leveraged to address such challenges in IoT and IoMT solutions.
In [1], the potential of DTs as a cybersecurity solution for CPS is explored. The study highlights that DTs
can enhance the detection, response, and mitigation of cyber threats in IoT environments. Since IoMT is a
subset of IoT, similar DT-based security solutions can be applied to safeguard IoMT systems from potential
attacks. Additionally, DTs have been employed for privacy-preserving solutions through data anonymization
techniques [1,68,69].

4.3.5 Education, Training, and Research
Education, training, and research represent critical applications of DTs, with the potential to sig-

nificantly enhance the current state and future advancements in the smart healthcare sector. DT-driven
surgical training and medical education can substantially improve the quality of healthcare services [21].
Furthermore, integrating DTs with AI has been demonstrated to be effective in various applications [36–38].

By combining DT-based solutions with advanced technologies such as ML, DL, Generative Adversarial
Networks (GANs), Explainable AI (XAI), and BCT, robust, secure, and scalable healthcare solutions
can be developed. These technologies not only automate repetitive tasks but also enable the creation of
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intelligent systems capable of making informed decisions, thereby enhancing efficiency and accuracy in
healthcare operations.

4.4 Issues Associated with DT
4.4.1 Security Issues

DTs can be vulnerable not only in terms of the CIA triad—confidentiality, integrity, and availability—
but also to threats targeting their physical counterparts and associated locations [4]. In the context of IoMT,
the creation and maintenance of digital-physical links within a Digital Twin Network (DTN) require the
exchange of sensitive patient data between the IoMT layer and the DT environment. Consequently, these
factors raise significant concerns regarding data privacy and the integrity of medical information across
various application scenarios [36,37,40,54]. Cyberattacks on DTs may exploit vulnerabilities in virtualization
or cloning capabilities [4,33], potentially resulting in device spoofing or identity theft of the physical twin
through a compromised digital counterpart.

Beyond these common security threats against numerous digital assets, the smart DTs could be
vulnerable to adversarial attacks, as well. Such smart systems operate on advanced communication protocols
like 6G and collaboratively tend to leverage the ML and FL methods for smart decision making. Hence, the
malicious client-DT could lead to a data poisoning attack [77] against ML models.

4.4.2 Other Challenges
As the number of DTs in smart networks increases to support scalability, significant computational

complexity is introduced within the DTN. Researchers also found that there have been limited work towards
the implementation and DT lifecycle management [34]. In the case of ML-based DTNs, this challenge can
be addressed through techniques such as ensemble modeling and optimized node arrangement [78,79].
Additionally, federated learning (FL)-based approaches [54], along with distributed and parallel simulation
methods, can significantly accelerate the analysis of large-scale networks [80]. Furthermore, the use of
sampling and modular techniques enables scalable DTN generation by focusing computational resources on
critical network segments, thereby effectively managing complexity as the network grows [81].

Beyond these computational and security concerns, designing a robust IoMT system suitable for
integration within a DTN must also adhere to regulatory frameworks such as HIPAA [82], which govern
data ownership and privacy in the healthcare sector. These compliance requirements can present barriers to
the seamless and widespread adoption of this promising integration. Navigating these trade-offs effectively
is essential for realizing the full potential of DTs in enhancing IoMT security and advancing smart
healthcare systems.

5 Smart Healthcare and Security
With the rapid advancement of Industry 4.0 technologies, the integration of smart healthcare systems

with the IoMT has revolutionized patient care and medical services. However, this increased interconnec-
tivity has also led to a significant rise in cyber threats. The impact of these attacks largely depends on the
criticality of the targeted sector, and healthcare, being a highly sensitive domain that deals with vast amounts
of confidential patient data, is particularly vulnerable.

IoMT, a key enabler of smart healthcare, connects medical devices, wearables, and healthcare infras-
tructure to facilitate real-time monitoring and data-driven decision-making. However, this interconnected
ecosystem also creates opportunities for cybercriminals to exploit vulnerabilities, allowing attacks to spread
rapidly across networks [1,46]. As a result, ensuring robust security measures in IoMT-based smart healthcare
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systems is crucial to safeguarding patient privacy, data integrity, and overall system reliability. Some of the
most common security threats in IoMT solutions are outlined below:

• Device Vulnerabilities: The hardware and firmware vulnerabilities associated with the lightweight
IoMT devices [35] as well as high-end solutions like Computed Tomography (CT) scan and Magnetic
Resonance Imaging (MRI) can be exploited to launch various attacks. These can include device failure,
data manipulation, and privilege escalation [20,42,44].

• Battery Drainage Attack: IoMT solutions often consist of lightweight devices. These devices are
designed to perform specific tasks only due to their limited battery capacity. Attackers generally exploit
the resource constraint of these devices to drain the battery, which eventually puts the device to sleep or
energy saving mode [83,84].

• Eavesdropping Attack: Due to the lack of privacy preserving in the communication channel of IoMT
solutions, the attacker can eavesdrop on the information flow [85,86].

• Advanced Persistent Threats (APTs): The interconnected IoMT devices are also vulnerable to APT
attacks, which can stay unidentified in the system for a longer duration and can also infect other devices
in the network [1].

• Other Attacks on IoMT: Many of the previously mentioned attacks can be launched over the network
through malicious requests. Such attacks on IoMT directly target the confidentiality, integrity, and
availability constraints of the system [20,45]. Some of the most common threats against IoMT networks
include Distributed Denial of Service (DDoS), Spoofing, and Man-in-the-Middle (MitM) attacks.

It is essential to identify and mitigate any cyber threats in IoMT for its seamless operation. The
vulnerabilities within the network and its components are primarily responsible for these cyber attacks,
which can mostly be classified into five distinct types, as explained in Table 5. Additionally, Fig. 14 provides
a hierarchical summary of these vulnerabilities and their impacts.

Table 5: Potential cyber attacks in IoT/IoMT

Category Attack types Description
Availability

attacks
DoS/DDoS, Smurf Disrupt access to resources, rendering systems unusable

for legitimate users by overwhelming them with traffic or
exploiting network protocols.

Integrity
attacks

Injection, Backdoor,
Worms, Data exfiltration

Compromise the trustworthiness and accuracy of data or
system functionality through malicious code insertion,
unauthorized access points, self-replicating malware, or

unauthorized data theft.
Confidentiality

attacks
MitM, Reconnaissance,

Spoofing, Scanning,
Heartbleed, Password

Attack, Bruteforce,
Patator (SSH/FTP),

Ransomware, Botnet (like
Mirai)

Aim to expose sensitive information to unauthorized
parties by intercepting communications, gathering

intelligence, disguising identities, probing for weaknesses,
exploiting vulnerabilities, or gaining unauthorized

credentials.

Access control
attacks

Bruteforce, Patator
(SSH/FTP), Password

Attack, Backdoor

Focus on gaining unauthorized entry to systems or
resources by attempting numerous login combinations,

exploiting automated tools, or utilizing hidden entry
points that bypass normal security mechanisms.

(Continued)
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Table 5 (continued)

Category Attack types Description
Malware Worms, Ransomware,

Botnet or Mirai
Involve malicious software designed to harm or exploit

systems, including self-propagating programs,
data-encrypting extortionware, and networks of

compromised devices controlled for malicious activities.

Figure 14: Security threats in IoT/IoMT

As a solution, the IDSs/IPSs are responsible for identifying malicious traffic in the network and
preventing the system from various attacks, discussed so far. Most of the smart IDSs leverage advanced
technologies like ML and DL for improved efficiency and responsiveness [45]. However, in order to develop
such solutions, the data is a crucial requirement. Many of the benchmark datasets have been prepared to
train these smart IDSs for security of IoT/IoMT networks. Table 6 covers the summary of attacks considered
in four IoMT datasets.

Table 6: Attacks considered in different IoMT datasets

Attack type IoMT-TrafficData ECU-IoHT CICIoMTDataset WUSTL-EHMS-2020
DoS/DDoS ✓ ✓ ✓ ✗

Injection ✓ ✓ ✗ ✗

MitM ✗ ✗ ✗ ✓

Reconnaissance ✓ ✗ ✓ ✗

Spoofing ✓ ✓ ✓ ✗

Scanning ✓ ✗ ✗ ✗

Smurf ✗ ✓ ✗ ✗
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In addition to the network datasets from IoMT, we also examined commonly used IoT and IIoT datasets
related to the covered attacks, as summarized in Table 7. In total, we reviewed 11 datasets that have contributed
to the development of various robust security solutions for IoT, with a particular focus on IoMT systems.

Table 7: Attacks considered in different IoT/IIoT datasets

Attack type TON_IoT CICIDS 2017 IoTID-20 UNSW-NB15 Edge-IIoTset N-BaIoT
DoS/DDoS ✓ ✓ ✓ ✓ ✓ ✗

Injection ✗ ✓ ✗ ✗ ✓ ✗

MitM ✗ ✗ ✓ ✗ ✓ ✗

Reconnaissance ✗ ✗ ✗ ✓ ✓ ✗

Backdoor ✗ ✗ ✗ ✓ ✓ ✗

Ransomware ✓ ✗ ✗ ✗ ✓ ✗

Mirai ✗ ✗ ✓ ✗ ✗ ✓

Bruteforce ✗ ✓ ✗ ✗ ✗ ✗

Others ✗ FTP-Patator,
SSH-Patator,
Heartbleed

Scan Fuzzers,
Exploits,

Shellcode,
Worms

Password
attack

Bashlite

5.1 Benchmark IoT/IoMT Datasets
Benchmark datasets are indispensable for developing and evaluating IDS in the ever-evolving IoT/IoMT

landscape. These datasets provide standardized, real-world data, enabling researchers and developers to
train, evaluate, and compare IDS models effectively. A robust benchmark dataset should accurately represent
real-world traffic patterns, encompass a diverse range of attack scenarios, be correctly labeled, scalable, and
publicly accessible. Creating such datasets poses significant challenges. Ensuring data privacy and security is
paramount, especially when dealing with sensitive IoT/IoMT data. Simulating dynamic and adaptive attacks,
which mimic real-world threat actors, is crucial for evaluating the robustness of IDS solutions. Developing
datasets that capture the evolving tactics of attackers is essential to ensure the effectiveness of IDS.

To address the challenges outlined above and foster innovation in IoT/IoMT security, researchers and
practitioners have developed a variety of benchmark datasets. These datasets provide a valuable resource
for training, evaluating, and refining IDS models. In the following section, we will delve into some of the
prominent benchmark datasets used in IoT/IoMT security research.

5.1.1 CICIoMT2024
The CICIOMT2024 dataset [87] addresses the growing security challenges in the healthcare IoMT

landscape by providing a benchmark dataset designed to enhance cyber threat detection. A key contribution
of this research is its IoMT testbed and innovative approach to simulating cyberattacks across different
protocols. IoMT testbed comprises 40 IoMT devices, of which 25 are real devices and 15 are simulated devices.
They divided these devices based on 3 protocols (eg, WiFi, MQTT, Bluetooth). In this IoMT testbed, they
performed 18 different cyber attacks and stored the network traffic to develop the dataset. Additionally, the
dataset facilitates the development of ML models for detecting and classifying cyberattacks, providing a
robust resource for real-time threat detection and prevention. By integrating automated ML techniques, it
enhances IoMT security, enabling more effective cyber defense in healthcare settings.
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5.1.2 IoMT-TrafficData
The rapid growth of IoMT devices has introduced new security challenges. To address this, researchers

have developed IoMT-TrafficData [88], a comprehensive dataset containing both benign and malicious
network traffic [46]. This dataset enables the evaluation of IDSs specifically designed for IoMT environments.
The study [46] highlights the effectiveness of flow-based features over packet-based features in detecting
malicious traffic. By leveraging ML algorithms, researchers can develop robust IDSs capable of identifying
and preventing attacks. The paper presents a detailed methodology for dataset creation, including scenario
composition, attack generation, and data collection.

5.1.3 ECU-IoHT
The ECU-IoHT dataset [89] offers a significant contribution to the field of IoT/IoMT security. It

addresses the critical need for publicly available datasets that reflect real-world cyberattacks targeting Inter-
net of Healthcare Things (IoHT) systems. By capturing a diverse range of attack scenarios, including ARP
spoofing, DDoS, SMURF, and injection attacks, this dataset enables researchers and security professionals
to gain invaluable insights into the tactics, techniques, and procedures employed by malicious actors.

5.1.4 WUSTL-EHMS-2020
This dataset, collected from a real-time Enhanced Healthcare Monitoring System (EHMS) testbed, offers

a unique blend of network flow metrics and patient biometric data. By combining these two data streams,
the WUSTL-EHMS-2020 dataset [90] provides a comprehensive view of potential cyberattacks in IoMT
environments. It is particularly useful for developing and evaluating IDS capable of detecting a wide range
of cyber threats, including man-in-the-middle attacks and data breaches. The WUSTL-EHMS-2020 dataset
contributes to advancing the security of IoT/IoMT systems and protecting sensitive patient data.

5.1.5 Other IoT Datasets
Some other notable IoT datasets, such as WUSTL-IIOT-2021 [91] (similar to WUSTL-EHMS-2020),

Edge-IIoTset [92], TON_IoT [9], CICIDS2017 [93], IoTID20 [94], N-BaIoT [95], and UNSW-NB15 [96],
have significantly contributed to the field of IoT security research. KDDCUP99 [97] and NSL-KDD are two
network traffic datasets. These datasets encompass a broad spectrum of normal and anomalous behaviours,
including network traffic patterns, device interactions, and system logs. Analyzing these datasets provides
researchers with valuable insights into potential vulnerabilities, attack strategies, and emerging threats.
They have played a crucial role in the development and evaluation of intrusion detection systems, anomaly
detection techniques, and other security solutions for IoT systems.

5.2 Role of IDS in Network Security
IDSs aim to identify any unwanted traffic flowing through the network. Hence, an IDS mainly relies

on the network data and its properties. This data may contain information related to network traffic like
packet size, protocol, ports, IP-address and many more. A robust IDS efficiently processes this information
to distinguish between genuine and malicious data. Moreover, smart IDSs not only recognize the malicious
traffic among the genuine flow but are also capable of analyzing further and detecting the type of attack
among the malicious traffic.

Most of the modern IDSs are developed using ML/DL and ensemble methods [47,49,98–100]. However,
researchers have come up with various models for securing IoT networks from intrusions and presented
meaningful insight from the same. Some of the takeaways about the IDS in IoT are discussed in this
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section. Table 8 provides a comprehensive summary of aforementioned benchmark IoT and IoMT datasets
utilized for IDS development. It categorizes datasets based on their domain (IoT, IoMT, or IIoT) and
highlights the types of cyberattacks they cover. Additionally, it presents key features such as network traffic
patterns, device-specific behaviours, and attack diversity, which are essential for evaluating and improving
IDS models. These datasets span various application areas, IoHT, IIoT, and general IoT security, making
them valuable resources for cybersecurity research.

Table 8: Summary of benchmark IoT/IoMT datasets for IDS development

Dataset Domain Attacks covered Key features
CICIoMT2024 IoMT 18 cyberattacks (WiFi, MQTT,

Bluetooth)
IoMT testbed with 40 devices

(25 real, 15 simulated);
ML-based intrusion detection

IoMT-TrafficData IoMT Various attack types Flow-based vs. packet-based
feature comparison; IDS

development
ECU-IoHT IoHT ARP spoofing, DDoS, SMURF,

Injection
Real-world healthcare

cyberattacks; IoHT-specific
security analysis

WUSTL-EHMS-2020 IoMT Man-in-the-middle, data
breaches

Network flow + patient
biometric data; EHMS testbed

WUSTL-IIOT-2021 IIoT Various industrial cyber
threats

Industrial IoT dataset; ICS
security applications

Edge-IIoTset IIoT Botnets, DDoS, MitM,
Scanning

Edge-based IIoT security; attack
diversity

TON_IoT IoT DDoS, Data exfiltration,
Backdoor

Telemetry and log-based IoT
dataset

CICIDS2017 IoT/Network DoS, DDoS, Web attacks,
Botnet

Network traffic with labeled
attacks; IDS benchmark

IoTID20 IoT Various IoT cyber threats IoT-specific malicious
behaviour analysis

N-BaIoT IoT/Botnet Botnet attacks on IoT devices IoT botnet behaviour profiling;
anomaly detection

UNSW-NB15 IoT/Network Generic network-based threats Hybrid feature-based IDS
evaluation

5.2.1 Feature Selection vs. Feature Extraction
The characteristics of network traffic utilized by IDS as input are known as features. Given the potentially

large number of features in network data, selecting the most relevant ones for analysis is crucial for effective
anomaly detection: a process referred to as Feature Selection (FS). However, in many cases, new features
need to be generated either by transforming existing features or through direct data analysis. This process,
known as Feature Creation (FC), has been shown to enhance the performance of IDS.
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The study by [101] addresses a key challenge in Network IDS (NIDS) for the IoT by comparing two
feature reduction techniques: FS and Feature Extraction (FE). The results demonstrate that while FS improves
classification accuracy, FE offers greater robustness to variations in feature count and enables the detection
of a broader range of attacks. These findings can significantly improve the efficiency and accuracy of NIDS,
particularly in resource-constrained IoT environments, including IoMT.

5.2.2 Process Awareness
Processes in IoT/IoMT systems are crucial operational technologies that are important for their func-

tioning. Hence, the liveness of these processes is essential for these systems. However, identifying processes
is a difficult task. It was found that IoT messaging protocols like MQTT and corresponding communication
patterns also carry contextual information. The contextual information is helpful in identifying specific
processes that could further assist in detecting the intrusion in IoT networks [102]. This novel framework,
named MISSION, leveraged distributed tracing and process mining for process-aware intrusion detection in
MQTT networks. It improved the explainability of anomaly-based NIDS. A process-aware IDS can effectively
identify process-aware attacks like unauthorized data publishing and malicious topic subscriptions.

5.2.3 Centralized Approach
A centralized IDS is a single and only entity that offers intrusion detection to the complete network.

This enables the IDS to have access to the entire network’s traffic. Being a centralized system makes such a
lightweight IDS most suitable for a small group of IoT devices [48]. It is found that the centralized IDSs are
not only efficient to address security risks, but also more cost-effective [103]. However, such an IDS is not
suitable for large or complex IoT networks and does not offer scalability.

5.2.4 Decentralized Approach
Decentralized approaches for IDS development utilize the concept of FL to offer a promising solution

for enhancing the security of IoMT systems [41,98–100,104]. Through a collaborative learning process across
multiple devices without sharing raw data, FL addresses privacy concerns and improves the robustness
of IDS. In this approach, local ML/DL-based IDS models are trained on individual devices using their
respective datasets. These models are then aggregated to create a global model, which is shared with all
devices. This decentralized learning process ensures that sensitive medical data remains localized, mitigating
the risk of data breaches. Additionally, FL allows for more efficient and scalable IDS deployment in large-
scale IoMT networks, as it can accommodate diverse and heterogeneous data sources. By leveraging the
collective intelligence of multiple devices, FL-based IDS can be scalable [105] and better detect and respond
to emerging threats, safeguarding the integrity and security of IoMT systems.

5.2.5 Combining Network and Medical Data
IDSs typically analyze network traffic; however, their approach can be significantly adopted based

on specific use cases. Researchers have observed that incorporating ML-based intrusion detection can
enhance the security of healthcare systems by integrating biometric data or contextual environmental
information [74,90] alongside network flow metrics. Studies indicate that such a hybrid data approach can
lead to the development of more robust IDS solutions. Furthermore, research in [90] demonstrates that
combining advanced ML/DL techniques with real-time monitoring systems effectively addresses critical gaps
in healthcare security, improving both intrusion detection accuracy and the overall performance of IDSs in
these environments.
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5.3 IDS for Secure IoMT
IDSs leverage different techniques to detect attacks in a network. These techniques can be of three

types—a) signature-based, b) anomaly-based, and c) specification-based attack detection [45]. In this section,
we will elaborate on the technical aspects including the benefits and limitations of these IDSs.

5.3.1 Signature-Based IDS
Signature-based intrusion detection techniques operate by matching known intrusion signatures, mak-

ing them effective for identifying previously recognized attack patterns. A similar approach was proposed
by Ghubaish et al. [22] to enhance security in IoMT systems. IoMT devices enable smart healthcare
applications, allowing users to monitor essential health metrics such as blood pressure and heart rate.
However, as discussed earlier in this section, these solutions remain vulnerable to cyberattacks targeting data
collection, transmission, and storage. To secure these three phases, Ghubaish et al. [22] introduced state-of-
the-art techniques for detecting and mitigating various known attacks on IoMT devices. Their framework
defines 11 security requirements to ensure data confidentiality, integrity, availability, nonrepudiation, and
authentication. The proposed approach incorporates multiple cryptographic methods, including a) sym-
metric, b) asymmetric, and c) keyless cryptographic techniques, to enhance IoMT security. Furthermore,
ensuring efficient communication between sensors and gateways is critical in resource-constrained IoMT
environments, which can be addressed using the CoAP [22].

5.3.2 Anomaly-Based IDS
Signature-based IDS effectively detect known attacks but rely on an up-to-date signature database.

Research has demonstrated that the uniqueness of human biometrics can be leveraged for various appli-
cations, such as IoMT-based EHMS [90]. Studies have found that integrating physiological metrics like
heart rate and blood pressure with network data enhances intrusion detection efficiency, even when attack
signatures are unknown. This approach addresses the limitations of signature-based IDS, which struggles
with detecting zero-day attacks due to the absence of predefined signatures. The solution also strengthens
customized healthcare services by incorporating additional security layers.

ML, including Random Forest (RF), K-Nearest Neighbor (KNN), Support Vector Machine (SVM),
and Artificial Neural Networks (ANN), have been tested against potential threats like MitM attacks within
EHMS, improving intrusion detection accuracy by 25%. To further enhance zero-day attack detection [10],
AIDS [50,74,102,106] have emerged as a viable solution. Unlike signature-based IDS, AIDS detects intrusions
by analyzing behavioural patterns in network traffic, allowing for more dynamic threat identification. These
systems integrate AI, ML, and Deep DL-based approaches to efficiently detect anomalies [90] and are
evaluated using the metrics outlined in Table 9. Here, TP, FP, TN, and FN represent true positive, false
positive, true negative, and false negative counts, respectively.

Various approaches have been explored to develop optimal AIDS. These approaches incorporate diverse
data preparation methods, effective model development techniques, and advanced learning paradigms such
as ensemble learning [107–109] and federated learning [110,111]. An ensemble classifier designed for IDS
proved effective in mitigating attacks on IoMT devices, including DoS/DDoS and Sybil attacks [107]. This
research utilized the KDD Cup 1999 dataset, where data preparation involved Principal Component Analysis
(PCA) for feature reduction, followed by the development of six different ensemble classifiers for comparative
analysis. Among these models, bagged decision trees demonstrated the best performance, achieving an
accuracy of 93.2%.
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Table 9: Metrics used for performance evaluation of AIDS

Evaluation matrix Formula Description
Confusion Matrix – A combination of TP, FP, TN, and FN.

Accuracy TP + TN
TP + TN + FP + FN

Proportion of correctly classified (true) instances out of the total number of
instances.

Precision TP
TP + FP

Proportion of true predictions among all positive predictions.

Recall TP
TP + FN

Recall/sensitivity is the proportion of true predictions among all true
instances.

F1-Score 2 × Precision × Recal l
Precision + Recal l

It is the harmonic mean of precision and recall. Useful with unbalanced
datasets.

FAR FP
FP + TN

False Prediction/Acceptance Rate (FAR or FPR) is the proportion of FP
among all false instances.

FRR FN
FN + TP

False Rejection Rate is the proportion of FN among all true instances.

Further advancements were proposed in [108], where an explainable ensemble-based IDS method for
IoMT applications was developed using boosting techniques such as XGBoost, AdaBoost, and CatBoost.
These models were tested on the CICIoMT-2024 dataset, with XGBoost achieving the highest accuracy of
95.01% in distinguishing between various attacks and benign traffic. This study highlights the potential of
explainable AI to enhance the interpretability of modern AIDS solutions.

To overcome the limitations of conventional ML classifiers, including low accuracy and difficulties
in detecting novel attacks, a protocol-based IDS was introduced as an enhancement to AIDS [112]. This
approach focuses on monitoring IoT application protocols such as MQTT, AMQP, and CoAP. The novel ML
model, IDS-ADP3, was trained on the CICIoMT-2024 dataset and optimized through hyperparameter tun-
ing. The evaluation of IDS-ADP3 using four different metrics, including accuracy and F1-score, demonstrated
its effectiveness, achieving an accuracy of 97% for the AMQP protocol.

Despite the advantages of these IDS approaches, the resource constraints of IoMT devices must be
considered [54,74]. Addressing this challenge, Yamuna et al. [109] developed an AIDS solution that integrates
a Modified Whale Optimization Algorithm (MWOA) for feature selection and RF for classification. The
MWOA-RF approach achieved an impressive accuracy of 99.82% on the WUSTL-EHMS-2020 dataset.
Preprocessing techniques, such as data normalization and feature selection, significantly enhanced detection
efficiency, with RF outperforming SVM across multiple evaluation metrics.

Apart from the centralized IDSs, distributed IDS architectures, as proposed in [113], also offer a promis-
ing approach to secure IoMT environments, particularly for resource-constrained devices. By leveraging
mobile agents and ML techniques, these hierarchical and distributed systems can effectively detect and
mitigate attacks at both local and global levels in the network. It was also found that profiling of normal
device behaviour can be done using polynomial regression for anomaly detection. Here the best case
accuracy ranged between 99.80% and 97.93% and that for the worst case was 95.21% and 93.17%. However,
energy efficiency remains a critical concern for such distributed systems. In continuation, [114] presents an
intelligent and explainable IDS by combining edge computing, AI, and advanced techniques like PSO and
ensemble learning. This IDS achieved high accuracy (96.56%) on the WUSTL-EHMS-2020 dataset while
minimizing resource consumption. The framework combines efficient feature engineering through Particle
Swarm Optimization (PSO) and ensemble learning techniques, achieving robust intrusion detection. The
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integration of shapley additive explanations enables explainability, fostering trust and understanding among
healthcare professionals, and also provides a scalable and efficient approach to securing IoMT devices. It
ensures the integrity and confidentiality of sensitive healthcare data.

While traditional ML-based IDSs offer effective anomaly detection, they often rely on centralized data
collection, raising privacy concerns. FL offers a privacy-preserving alternative by enabling collaborative
model training across decentralized devices (Section 5.2). In the context of IoMT, such a decentralized
approach can enhance data security and privacy [20,54,59,115]. In this series, BEdgeHealth [59] leverages
Mobile Edge Computing (MEC) and BCT to secure data sharing and offloading (storing data from edge
devices to the server). BCT provides high security for health data sharing as well. By combining smart
contracts with the Interplanetary File System (IPFS), this architecture ensures data integrity, traceability, and
efficient retrieval. Here, the smart contract ensures data integrity and traceability, while IPFS accelerates data
retrieval. This decentralized approach reduces latency, energy consumption, and memory usage, making it a
promising solution for secure and efficient data sharing in IoMT environments. Furthermore, the IDS-Chain
framework [116] offers a decentralized collaborative approach to intrusion detection in IoMT networks. By
leveraging blockchain technology, IDS-Chain provides a secure and trusted platform for sharing information
and detecting attacks. The three-layer architecture, including DaaS and CaaS, enables efficient and distributed
attack detection. However, scalability, latency, and computational resource limitations in fog computing
remain significant challenges for the practical implementation of this framework. Later in 2022, Ali and
others [20] explored various FL architectures, including horizontal, vertical, and transferred FL, each for the
different data distribution scenarios (Fig. 15).

• Horizontal FL: Here, the features of the dataset remain identical across all of the participating nodes,
where the IDS model is trained. Therefore, features overlap for multiple nodes in this model of FL.

• Vertical FL: In this approach of FL, data is vertically distributed among the modes making all features
not available for every node. Therefore, data overlaps for multiple nodes in this model of FL.

• Transferred FL: It is a specialized type of FL designed for scenarios where datasets across participant
nodes have neither overlapping features nor overlapping data samples.

Figure 15: Three types of FL

Additionally, authors introduced privacy-enabled and incentive-enabled designs, to address potential
attacks and incentivize participation. Overall, the paper emphasizes the potential of FL in revolutionizing
healthcare by enabling collaborative research, improving diagnostic accuracy, and safeguarding patient
privacy, while addressing the challenges of data heterogeneity, computational efficiency, and secure commu-
nication in 5G and 6G networks.
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So far, we have explored several works on addressing the privacy issues using FL. Gupta et al. [54]
also addressed the significant privacy concerns associated with centralized data collection and analysis by
leveraging Hierarchical FL (HFL) and DTs that will be discussed in Section 5.4. However, HFL has also been
used for attack detection in IoMT. In one of the recent works [110], a novel Dew-Cloud-based framework
utilizing HFL and Hierarchical Long Short-Term Memory (HLSTM) was introduced for IDS in IoMT. The
proposed framework combined decentralized and centralized architectures to enhance data privacy and
scalability to address data breaches and attacks on medical devices. The inclusion of components such as
networks of wearable devices, edge devices, dew servers, and cloud servers creates a robust system for IoMT
applications. The solution was evaluated on the TON-IoT and NSL-KDD datasets, and demonstrated that
the HFL-HLSTM model achieves superior performance compared to existing methods in both binary and
multi-class classification for intrusion. Some other advancements in FL-based IDS for IoMT include transfer
learning [115] and BCT [111]. A novel federated transfer learning-based IDS approach was proposed by
developing a privacy-preserving IDS capable of high accuracy and adoptability [115]. The method aimed
to secure IoMT networks by effectively combining FL and Transfer Learning (TL), and utilized a Deep
Neural Network (DNN) for knowledge transfer. The FL and TL-based IDS was trained and evaluated
with CICIDS2017 dataset and was found to offer a scalable and privacy-centric intrusion detection. IDS
demonstrated its capability to detect various attack types while maintaining low prediction times and high
detection rates.

Considering the benefits of using FL and BCT to improve the performance of AIDS, authors of [111]
proposed the concept of a novel architecture that integrates both BCT and FL for an IDS in IoMT environ-
ments comprising wearable health devices for data collection. Overcoming the limitations of conventional
ML-based AIDS, this work presented that the IDS framework consisting of FL with BCT-based learning
channels, ensures secure and decentralized model training. Demonstrated on Hyperledger Fabric, this IDS
solution enhanced security through permissioned access, immutable ledgers, and smart contracts for policy
enforcement. While the conceptual framework is robust, its implementation and performance are yet to
be validated.

5.3.3 Specification-Based IDS
The integration of ML/DL techniques has significantly advanced the field of AIDS for IoMT networks.

While ML-based IDSs offer lightweight and interpretable solutions, DL approaches provide superior accu-
racy and scalability. However, these AIDS approaches face challenges such as false positives, false negatives,
and susceptibility to adversarial attacks.

To address these limitations, researchers have proposed various innovative solutions. A Specification-
Based Intrusion Detection System is a security mechanism that detects malicious behaviour by defining
strict rules or specifications of expected system behaviour and flagging any deviations as potential attacks.
It operates based on predefined policies and does not rely solely on anomaly detection or signature-based
techniques. The specification-based IDS could be advantageous over AIDS as these systems also integrate
the abilities of signature-based IDS [90]. Meta-IDS [10] is one such IDS that combines signature-based and
anomaly-based detection techniques. Meta-IDS leverages a two-stage meta-learning approach to improve
the performance of weak learners like Decision Trees, Random Forest, and AdaBoost, and a meta-learner,
XGBoost. The IDS was trained on WUSTL-EHMS-2020, IoTID20, and WUSTL-IIOT-2021 datasets and
achieved 99.57%, 99.91%, 99.99% of accuracy, respectively. By integrating advanced feature engineering
and anomaly detection techniques like RFE and LDA, Meta-IDS offers a robust and adaptable solution for
securing IoMT networks against both known and zero-day attacks.



32 Comput Mater Contin. 2025

5.4 Digital Twins for Advanced IDS Development
An IDS significantly strengthens the security of an IoMT network by providing advanced threat

detection and response capabilities, when combined with a DT. The IDS monitors network traffic and
device behaviour to identify suspicious activities or potential security breaches, such as unauthorized access,
malware, or abnormal data flow. By using a DT, the IDS operates in a virtual replica of the IoMT network,
allowing for more accurate and risk-free detection of intrusions and improved maintenance.

5.4.1 System-Oriented
CPS are the new generation of digital systems that can seamlessly integrate computational and physical

components. IoT has significantly supported the implementation of CPS. As the DTs can be created for
the corresponding physical devices in IoT networks, DT solutions for CPS have recently become an area of
interest for the businesses [12,117,118]. Authors of [117] proposed an Anomaly deTection with digiTAl twIN
(ATTAIN) for addressing the complexities of CPS anomaly detection using DTs. The DTs are integrated with
a robust GAN to automate the system behaviour representation and anomaly detection. A key innovation is
the use of the Online-Timed Automaton Learning Algorithm (OTALA) [119] to construct probabilistic real-
time automata for modeling CPS behaviour. ATTAIN’s superior performance over state-of-the-art methods
has been demonstrated on three different datasets, including SWaT [120], which gave the best precision,
recall, and F1-score (97.59%).

ICS are a subset of CPS. Unlike the CPS, which may include a wider range of systems like autonomous
vehicles and healthcare devices, ICS are developed for distinct industrial processes like water treatment. A
hybrid digital twin-based IDS was introduced in [118] for the SWaT dataset. A physics-based modeling and
data-driven techniques were used to simulate the SWaT behaviour with DT. The DT solution demonstrated
effective detection of eight out of nine attack types. Hence, the proposed IDS was found to be adaptive to the
different cyber attacks and demonstrated strong performance.

Another study [12] focused on attack detection in ICS, which are increasingly exposed to the internet
and often lack built-in security mechanisms. The authors developed an ML-powered DT to replicate
the ICS environment in real-time while integrating intrusion detection capabilities. The proposed model
included three Programmable Logic Controllers (PLCs) and sensors to monitor flow levels and other
industrial processes. To evaluate its effectiveness, multiple attack scenarios, such as command injection
and network-based Denial-of-Service (DoS) attacks, were simulated without impacting the physical system.
The paper introduced a stacked model combining traditional ML techniques with a Multilayer Perceptron
(MLP) algorithm, achieving an accuracy of 92.70% and surpassing the performance of individual models.
Additionally, an earlier work on ICS security [11] explored a cloud-based IDS leveraging DTs to detect and
mitigate MitM attacks.

5.4.2 Attack/Threat-Oriented
DDoS is a very common attack on IoT networks. A DT-enabled intelligent DDoS detection system

was proposed for autonomous core networks, which utilized the online learning methods for real-time
adaptation [121]. The solution reduces data complexity by employing a YANG model and an AutoFS module
for feature selection. Here, synchronized real-time communication was set up between physical and digital
twins. The DDoS detection model was developed using a semi-supervised approach as unlabeled data
were handled by combining clustering and ensemble learning methods. The proposed MLP-based DDoS
classifier was tested on CICDDoS2019 and ToN_IoT datasets, and it was found that it outperformed existing
methods like RF, DNN, and Long Short-Term Memory (LSTM), achieving an accuracy of 97%. The work
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highlighted the significance of integrating router health monitoring and IGP protocols for comprehensive
network management.

CNN and Bi-directional LSTM are also used along with DTs for IoT attack detection [122]. This
approach effectively fuses spatial and temporal features for better collection. A DNN-based classifier trained
on the UNSW-NB15 and CICIDS2017 datasets in a simulated IoT environment performed well for attack
detection. However, the solution needs to address attack detection, especially for minority classes, in
case of imbalanced datasets. The solution achieved F1-scores of 99.08% and 99.91% on UNSW-NB15 and
CICIDS2017 datasets, respectively.

In the same series, another work introduced an AI-based IDS for DT-enabled critical infrastruc-
ture [123]. This framework uses DTs to monitor real-time system behaviours for anomaly detection.
This work specifically targeted the vulnerabilities in PLC-based data transmission and utilized ML classi-
fiers, including logistic regression, SVM, Quadratic Discriminant Analysis (QDA), and random forest, to
effectively detect IoT attacks.

5.4.3 Behaviour-Oriented
Each instance of the network traffic data is spatial information in itself and hence can be processed using

algorithms like CNN. However, contextual information can further improve the performance of intrusion
detection and may require the consideration of temporal information as well. Researchers have introduced
a concept of intelligent digital twins for identifying the behaviour of IoT attacks through spatio-temporal
feature fusion [32]. Here, DTs utilize deep learning techniques to smartly simulate realistic IoT environments.

The authors used multivariate correlation analysis and feature selection for data pre-processing, ensur-
ing high-quality input for the model and developed a hybrid model for spatial and temporal feature extraction
using CNN and Bi-directional LSTM, respectively. Softmax activation function and Adam optimizer were
used for the model convergence. Evaluated on UNSW-NB15 and CICIDS2017 datasets, results indicated that
such a behaviour-based hybrid DL IDS performs significantly well. It not only addresses class imbalance
issues but also underscores the importance of spatio-temporal feature fusion in improving detection rates
for diverse cyberattacks.

5.4.4 Recent Approaches
Apart from securing the DT-based systems through IDS, researchers have also tried integrating DTs to

develop IDS systems. As discussed in Section 5.2, the performance of IDSs can be improved if trained with
medical data along with the network traffic. However, due to the sensitivity of medical information and its
privacy concerns, IDS should not directly use it for analysis. This problem can be addressed in the following
ways.

1. Integrating ML-based IDS within each DT
2. Adopting FL approach for smart IDSs

A DT-based IDS addresses this challenge by integrating the intrusion detection system within the
DT of the device, ensuring security while simultaneously enabling the use of medical data for predictive
analysis. In a related study [70], the increasing security challenges in smart infrastructure networks were
tackled by integrating DTs of physical assets with AI in real-time. The proposed AI-driven IDS leveraged a
hybrid approach combining Autoencoders and Recurrent Neural Networks (RNN) for continuous network
monitoring. This method enhanced complex threat identification by enabling timely anomaly detection and
proactive security measures, supported by advanced data preprocessing techniques.



34 Comput Mater Contin. 2025

FL-based local IDS models [54] further ensure data privacy by sharing only model parameters for
aggregation and optimal model creation. He et al. [124] extended this concept by integrating FL with
DTNs, developing a Federated Continuous Learning (FCL) framework, FCL-SBLS, for intrusion detection
in Unmanned Aerial Vehicle (UAV) networks. This hybrid IDS addressed the limitations of traditional
centralized ML-based intrusion detection methods. Additionally, the term SBLS in the framework stands
for Scalable Broad Learning System (SBLS) [125] that combines incremental learning, enabling adapta-
tion to emerging intrusion patterns while preserving prior knowledge, thereby mitigating catastrophic
forgetting. Furthermore, DTN-assisted unmanned aerial vehicle selection can be optimized using a Deep
Reinforcement Learning (DRL) algorithm, enhancing both data utility and training efficiency.

5.5 DT-IDS and IoMT
Considering the various benefits of using DT in IDS development, it can significantly contribute to the

security of IoMT systems. Table 10 highlights the scope of using DT for security in IoMT. It also lists some
requirements that should be considered while working towards these scopes. The IoMT systems consist of
various types of medical devices and entities. Hence, ensuring medical data privacy and network security
can be challenging to enable every corresponding physical twin to be equally productive in real-time due to
various limitations.

Table 10: Examples of DT in IoMT security

Scope of DT for security Example
Layer of Abstraction Device as a Service [50,53] to avoid direct interaction with the

physical device.
Security Monitoring Virtual resources security [4], and decentralized training using

FL [54] to maintain the privacy.
Threat Intelligence Inter-DT communication [53] for fast and robust threat

intelligence.
Predictive Security Real-time prediction [70] of unusual health conditions or

anomalous data patterns.
Anomaly/Intrusion Detection AI/ML and FL-based IDS [35,54,74,106] for detecting zero-day

attacks.
Security Testing and Validation DT/DTN Cloning [33], IDS/IPS integration, testbed [50] setup is

done for experimentation and educational purposes.
Risk Mitigation and Incident Response Integration with security toolkit and other technologies for

implementation [34,50], and event management within
DTN [4].

As with conventional IoT systems, devices used in IoMT solutions are typically lightweight and possess
limited processing capabilities. While it is feasible to design individual DT-based security mechanisms for
each device, accessible through the DTN, such mechanisms necessitate real-time, synchronous communi-
cation with their physical counterparts. This continuous interaction can result in rapid battery depletion,
posing a significant cost in terms of DT utilization.

Moreover, in a DTN consisting of multiple identical digital twins linked to various physical devices,
training traditional data-driven anomaly detection models becomes challenging due to data heterogeneity.
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As discussed earlier, federated learning (FL)-based models offer a promising approach for building dis-
tributed classification models that can effectively address this heterogeneity. However, as illustrated in Fig. 16,
FL-based intrusion detection systems (IDS) involve trade-offs between adaptability and performance, which
are further elaborated in Table 11.

Figure 16: Performance and adaptability trade-off in FL-based IDS

Table 11: Trade-offs between the properties of FL-based IDS and their impacts

System Property Possibility Impact

Rapid Data Flow Real-time Processing High resource consumption
Delayed Processing High latency

IDS Model Performance Valid Data from Clients High performance
Invalid or Corrupt Data (Adversarial

Attacks, e.g., Data Poisoning)
Low performance

FL Architecture Dynamic Network with Variable
Clients

Dynamically Adaptive
Architecture

Static Network with Fixed Clients Static and Less Flexible
Architecture

Therefore, as highlighted by the inherent trade-offs in designing and deploying an FL-based IDS, issues
like rapid data flow optimization can reduce the resource usage without compromising the robustness of
the IDS. The performance of the IDS model is directly dependent on the integrity of data from potentially
vulnerable IoMT devices within the FL framework, and architectural choices in the FL setup significantly
impact the adaptability of the security solution in a dynamic IoMT environment. Hence, while offering
significant potential to enhance smart medical infrastructure, these interconnected challenges require an
in-depth exploration for the holistic and secure development of DT-integrated IoMT systems.
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6 Insights and Answers to the Research Questions
So far, we have conducted a comprehensive review of existing research on advancements in the IoMT

domain, highlighting their benefits and limitations. Based on our analysis, this section presents insights and
answers to the research questions raised in Section 1.

6.1 IoMT’s Role in Smart Healthcare Development
The evolution of Industry 4.0 through rapid advancements in technologies, like IoT, has led to

an increased demand for scalable and adaptable healthcare systems. The COVID-19 pandemic further
accelerated this need by amplifying the demand for remote healthcare services. It highlights the critical role
of IoMT in addressing global health challenges. We discussed in Section 3 that as an integral part of this
technological revolution, IoMT has significantly contributed to the development of the smart healthcare
industry. IoMT facilitates real-time data collection, analysis, and sharing by interconnecting medical devices,
software applications, and systems, which leads to enhanced patient care and improved operational efficiency.

The rise of telehealth practices [18] during COVID-19 underscores the potential of IoMT in providing
remote healthcare services, especially in underserved areas. It has been used for numerous applications like
monitoring social distancing, disease diagnosis, etc. Another notable example is the use of CanTwin [21],
a DT-integrated IoMT technology, to facilitate social distancing during the pandemic. By creating virtual
representations of individuals and their interactions, CanTwin helped in monitoring and controlling the
spread of the virus.

Apart from the aforementioned specific use cases, various IoMT devices, like smart pacemakers, fitness
bands, and other wearable devices, assist both healthcare professionals and patients in quick and real-time
health monitoring. Additionally, IoMT-enabled personalized services offer a significant advantage in the
smart healthcare industry.

6.2 Security Challenges in IoMT and Current Solutions
IoMT systems rely on diverse technologies and specialized devices, each comprising hardware and

software components that face various security challenges [35], as discussed in Section 5. Fig. 17 illustrates
the four most common types of attacks targeting IoMT networks and devices. The likelihood of cyberattacks
in these systems is heavily influenced by the specific components within the IoMT infrastructure.

Figure 17: Common security threats in IoMT
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Furthermore, while offering numerous benefits, the interconnected nature of IoMT devices also
increases the risk of cyberattacks. Adversaries exploit this connectivity to launch network-based attacks
and propagate malicious code across the system. Table 6 lists common IoMT attacks, which are typically
mitigated using an IDS.

Most of the cyberattacks target the network and involve malicious traffic, making IDSs essential
for securing IoMT infrastructure [35]. Anomaly-based and specification-based IDSs enhance traditional
signature-based models by leveraging ML, DL, FL, and AI techniques to detect zero-day attacks (Section 5.3).
In addition to IDSs, data and communication security challenges are mitigated using advanced encryption
methods and secure protocols [22].

6.3 Role of Digital Twins in IoMT Security
DT technology enhances IoMT security by creating virtual replicas of physical entities, such as the

human body and connected medical devices, enabling real-time monitoring and anomaly detection [36].
Integration of IMDs and IoWDs within the IoMT framework supports continuous monitoring, predictive
analytics, and adaptive IDS without disrupting medical operations.

As an abstraction layer [50], DT ensures external entities interact only with the digital replica, securely
processing data while safeguarding patient information and device functionality. This isolation shields
physical systems from direct interaction and mitigates potential cyber threats. Additionally, DTs generate
synthetic data [69], crucial for training ML/DL models to enhance IDS efficiency. Their integration with
advanced technologies like BCT and AI/ML further strengthens security [1,70], facilitating automated
anomaly detection and proactive threat mitigation. DTs also enable comprehensive modeling and simulation
of IoMT systems, helping identify vulnerabilities, simulate attacks, and predict security risks before they
occur. Built-in security features, such as integrated IDS [32] and enhance system resilience by providing a
testing platform for incident response strategies.

Beyond security, DTs also improve accessibility and cost efficiency in healthcare by enabling remote
medical services. The integration of cloud storage and edge computing ensures scalability and decentralized
data processing, reducing the risks associated with data transmission and storage. These capabilities make
DTs essential for building secure, efficient, and resilient IoMT ecosystems, ensuring patient safety, data
integrity, and uninterrupted medical operations.

6.4 Challenges in Integrating DTs in IoMT
The integration of DT has the potential to significantly enhance the security and overall functionality

of IoMT systems by enabling virtual replicas that support advanced intrusion detection systems (IDS). DTs
allow for sophisticated threat analysis, simulation of attack scenarios, and implementation of active security
measures, without impacting the physical devices. However, given the nascent stage of DT technology,
integrating DTs into advanced IoMT environments remains a complex challenge [4,34,77,126].

Table 12 outlines several key requirements for DT integration and their associated dependencies, many
of which present significant practical challenges. The main challenges in ensuring these dependencies can be
broadly categorized into: a) Resource Constraints, b) Implementation Complexity, and c) Security Risks. These
three categories are discussed in detail in the following subsections.

1. Resource Constraints: While DT offers a powerful solution for advanced IDS development in IoMT
through real-time monitoring and complex security analytics, its substantial computational and storage
demands create a significant trade-off. The capabilities that make DTs ideal for sophisticated threat
analysis often exceed the limited resources available on many IoMT devices and within edge network
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infrastructures. For instance, due to the limited computational capabilities of medical IoT devices,
rapid exchange of real-time data and instructions could lead to battery drainage. However, integrating
higher computation capabilities of DT could reduce both data dependency and decision-making latency.
Therefore, achieving near real-time synchronization between DTs and their physical counterparts can
be more challenging in dynamically scalable IoMT environments, due to the growing number of DTs
and interactions within the DTN.

2. Implementation Complexity: While DTs offer significant potential in accurately replicating IoMT
environments for improved security and IDS testing, their implementation is inherently complex [50].
Capturing the intricate behaviour and interactions of IoMT devices and networks demands specialized
domain knowledge and substantial computational resources. Achieving a synchronized system between
physical devices and their digital counterparts, while managing heterogeneous data streams with low
latency and high security, poses a considerable challenge.

3. Security Risks: Although DTs enhance IoMT security through real-time monitoring and proactive
threat detection, their reliance on continuous data exchange introduces new vulnerabilities [4]. The
transmission of sensitive patient data between physical IoMT devices and their virtual twin creates
potential attack points. Additionally, DT-integrated IDS systems that employ ML and DL techniques
are susceptible to adversarial threats, such as data poisoning attacks [77].

Table 12: Challenges associated with integrating DT in IoMT

Requirements Dependencies
Real-time

Synchronization [36,62,67]
Ensure frequent, high-speed communication to optimize

interaction with physical devices DTs, while minimizing latency.
System Scalability and Stan-

dardization [19,34,36,40,67,75]
Systematic method to architect DTN synchronized with IoMT

that can dynamically vary based on the applications.
Heterogeneous Data

Management [4,21,68]
Robust data handling across the DTN that originates from

nonidentical DTs and medical devices.
AI/ML and FL-based

IDS [54,70,77,110,111,115]
Dataset validation and automation in IDS training and

deployment.

Fig. 18 illustrates the key challenges associated with integrating DTs into IoMT systems. These challenges
must be addressed to ensure effective adoption of DT in IoMT. Addressing resource constraints involves
careful allocation and optimization to avoid performance degradation or excessive energy consumption in
resource-limited IoMT devices. As discussed in Section 4.4, scalability further impacts resource usage and
associated costs [78]. Tackling implementation complexity [34] requires streamlining the modeling process,
designing robust and scalable DT-IoMT architectures, and addressing regulatory considerations related to
patient data ownership and privacy. These steps are critical to facilitate the broader adoption of DT in
healthcare. Finally, mitigating the security risks that arise from continuous data exchange between physical
and virtual entities necessitates strong security frameworks and privacy-preserving mechanisms. These are
essential for realizing the full security benefits of DT integration without introducing new vulnerabilities to
the IoMT environment.
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Figure 18: Scope of integrating DT in IoMT and associated challenges

7 Future Directions
In this paper, we explored the transformative evolution of smart IoMT solutions and examined

the role of DTs in enhancing medical applications. These technologies improve outcomes for end-users
and significantly assist healthcare professionals by streamlining the management and operation of digital
healthcare infrastructures. The inherent capabilities of DTs—such as dynamic synchronization, real-time
monitoring, and seamless integration with physical medical devices—present promising opportunities for
advancing remote healthcare delivery and improving access to personalized services.

However, in addition to these developments, we also discussed the existing vulnerabilities and security
challenges within IoMT systems and the broader healthcare context [85,86]. Existing DT-based solutions still
require substantial enhancements, particularly in intelligent integration for achieving adaptive and robust
system responses. Table 13 outlines the scope of our findings for the four research questions (RQs) presented
earlier in Section 6, offering a clear view of existing gaps and future research opportunities.

Table 13: Scope of findings of this review

RQ Focus Findings Scope
RQ1 IoMT Con-

tribution to
Smart

Healthcare

The evolution in architectures,
components, and applications of

IoMT leads to its wide adoption in
the medical domain.

Emphasizes standardization of
context-aware IoMT for robust and
seamless smart healthcare solutions

and development.
RQ2 Security

Challenges
in IoMT and

IDS

Ensuring data privacy and
real-time intrusion detection is
crucial in interconnected IoMT
devices operating across diverse

technologies.

Leverage the advanced
technologies like FL and BCT to

address the existing limitations of
traditional IDS in

resource-constrained IoMT.
RQ3 Role of DT

in IoMT and
its Security

DT enables comprehensive
modeling for remote healthcare

solutions. It also provides security
through real-time threat detection

and mitigation.

Develop a privacy-aware DTN to
enhance security and address the

limitations of traditional ML-based
IDS to improve the incident

response time.

(Continued)
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Table 13 (continued)

RQ Focus Findings Scope
RQ4 Issues

Integrating
DTs in
IoMT

Scalable DTN lag adaptive
management and security due to
the various resource constraints

and complex network traffic.

Propose a standard development
and operational framework for DTs

in the healthcare domain that
complies with regulations like

HIPAA and GDPR.

Based on the findings in Table 13, we suggest three future directions for the continued advancement
towards robust DT-based smart IoMT solutions. These potential future directions are described in the
following subsections.

7.1 Context-Aware and Privacy Preserving IDS Systems for IoMT
Inspired by the findings of RQ2, we suggest that efforts could be made to create a more intelligent secu-

rity model for the IoMT by leveraging real-world medical and environmental context alongside advanced
ML within IDS solutions [35]. This unique integration of technology with real-world medical context will
introduce a dynamic security mechanism for IoMT. The approach involves designing privacy-preserving
techniques like homomorphic encryption (HE) [127] and FL [98,100,105] to train and operate these systems
without compromising sensitive patient data. The HE can ensure building insights from sensitive patients’
data without disclosing the original information. Additionally, using the FL model to develop IDS will speed
up the model training process, preserving the data belonging to the individual clients or nodes in the IoMT.

Developing such a systematic framework for the medical domain can be realized in four phases, as
shown in Fig. 19. Starting with identifying the application use-case, complexity of the IoMT should be
defined. It should be followed by selecting the most suitable IoMT architectures for setting up the network.
This phase will also address the appropriate data encryption and processing. However, certain challenges
related to the HE-based data encryption and FL should be addressed. Phase 3 may involve the development
of an initial proof of concept, which can serve as a foundation for the final standardized framework in
Phase 4, including detailed specifications to support broader adoption.

Figure 19: Four phases for context-aware and privacy-preserving IDS for IoMT
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7.2 DT-Based IDS for Fast Incident Response IoMT
The abstraction offered by DT technology can be leveraged to enhance security operations in IoMT.

Based on the findings related to the RQ3 and RQ4, embedding the IDS capabilities within the DT can be
very helpful. Training robust IDS collectively through individual DTs and deploying it for the entire DTN
can enable an optimal threat detection and mitigate issues like unauthorized access, data manipulation, and
zero-day attacks. Furthermore, empowering every DT for localized security checks will reduce latency and
improve overall responsiveness of the system against cyberattacks. To create such a resilient IDS solution,
the work can be structured into three major milestones.

1. Defining the DT for devices within the IoMT solution.
2. Secure data handling and IDS development for DTN.
3. Adaptive threat detection and incident response.

This initial stage focuses on establishing clear criteria to determine which devices and components
within an IoMT solution are suitable for DT development. It will emphasize the most essential properties
of DTs for enhanced security and management. Once the traditional DTs are successfully created, the next
phase should start with developing secure mechanisms for handling data within the DTN, while adhering
to regulations like HIPAA [82]. The development and deployment of IDS, specifically designed to monitor
and protect the DTN infrastructure, should be followed simultaneously. Finally, adaptive threat detection
and response need to be introduced in the last stage that leverages individual DTs for localized monitoring
and the DTN-level IDS for comprehensive analysis for quick response. It can enable the system to adapt to a
dual-level security through a weighted decision-making process based on the specific security situation.

7.3 Standard Framework for Secure DT Development in the Medical Domain
The findings of RQ1, RQ3, and RQ4 collectively indicate that a standard framework is necessary for

the secure DT-based healthcare infrastructure. However, the standards like ISO 23247 [128] have been
introduced for DT in manufacturing, while security-oriented DT development standards can uniquely
integrate real-world medical context. Utilizing the existing development standards and explicitly incorpo-
rating regulations, like HIPAA, as a part of the framework, will make a unique and necessary step towards
responsible DT adoption in medicine. Such a framework will advance the DT development beyond tools to
ensure the placement of domain-specific security considerations.

It was pointed out in [34] that there is a crucial requirement for research in implementation side
of the DT technologies, especially in the medical sector. Therefore, as shown in Fig. 20, secure medical
DT development is possible in four phases. Starting with analyzing healthcare regulations and security
requirements a framework that incorporates the necessary specifications and guidelines for secure data
management. In the later stage, developing methods for regulatory compliance and governance specific to
medical DTs should be followed. Finally, the solution must be validated via experiments and case studies to
promote its adoption within the healthcare industry.

Beyond the suggested future scope, the ongoing evolution and early adoption of DT technology in
dynamic real-world scenarios create ample research opportunities. This is particularly relevant for the highly
sensitive and cyberattack-prone medical sector [76] that requires application-focused security solutions.
Therefore, the effective use of advanced technologies like AI and BCT can enable the development of adaptive
security measures to counter evolving threats.
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Figure 20: Framework for secure DT development in IoMT

8 Conclusions
This paper carried out a systematic literature review guided by four research questions aligned with

the theme “Digital Twins and IDS in IoM.” We collected 805 unique papers from diverse publishing venues
and categories for our initial analysis. These papers were collected from 2007 to 2025. Following the initial
insights, we finalized 66 most suitable works for answering the RQs. It was found that among the screened
articles on IoMT, DT, and Security, only three showed close relevance to all three domains. The work compre-
hensively explored the evolving field of the IoMT and its critical role in revolutionizing healthcare delivery.
In the first part of the paper, we began with RQ1 by examining the fundamental architecture, components,
and diverse applications of IoMT, emphasizing its potential to enhance patient care, improve healthcare
efficiency, and facilitate remote monitoring. Subsequently, we elaborated on the transformative power of DTs
across various industries, including their significant contributions to the Industry 4.0 revolution. We then
highlighted the pivotal role of DTs in advancing healthcare by enabling predictive maintenance, personalized
treatment plans, and improved patient outcomes.

Furthermore, the study acknowledged the inherent security vulnerabilities within the IoMT ecosystem,
arising due to the factors like device limitations and vulnerabilities, issues with communication protocols,
and interoperability challenges. Recognizing the critical need for robust security measures, we investigated
the role and types of IDS employed to mitigate these threats. We also explored emerging trends in IDS
technology, including ML, DL, and AI integration for enhanced threat detection and response capabilities.
Such application and security-oriented analysis of DTs and IoMT addressed the issues raised in RQ2 and
RQ3. Finally, this paper not only underscored the profound potential of leveraging DTs to develop more
secure, efficient, and adaptive IDS solutions for IoMT environments, but also provided insights into the
significant challenges associated with DTs as an answer to RQ4.

By creating virtual replicas of IoMT systems, DTs can facilitate real-time threat simulations, rapid
prototyping the security measures, and optimizing IDS performance through continuous learning and
adaptation. This synergistic approach, combining the power of DTs with advanced AI/ML techniques, holds
immense promise for building a more secure and resilient future for healthcare in the age of the IoMT. This
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paper not only provides clear insight into the future of IoMT with DTs but also paves the way for research
toward securing modern and future healthcare infrastructure.
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Appendix A

Table A1: Abbreviations used in this paper

Abbreviation Definition Abbreviation Definition
AI Artificial Intelligence ICS Industrial Control Systems

AIDS Anomaly-based IDS IDS Intrusion Detection System
ANN Artificial Neural Network IIoT Industrial IoT
BCT Blockchain Technology IoHT Internet of Healthcare Things
BLE Bluetooth Low Energy IoMT Internet of Medical Things

CoAP Constrained Application
Protocol

IoT Internet of Things

CPS Cyber-Physical Systems IoWD Internet of Wearable
DDoS Distributed DoS Medical Devices

DL Deep Learning LSTM Long Short-Term Memory
DNN Deep Neural Network ML Machine Learning
DoS Denial of Service MitM Man in the Middle
DT Digital Twin MLP Multi-layer Perceptron

DTaaP Digital Twin as a Proxy MQTT Message Queuing Telemetry
DTF Digital Twin Framework Transport
DTN Digital Twin Network NIDS Network IDS

EHMS Enhanced Healthcare P2P Physical-to-Physical
Monitoring System P2V Physical-to-Virtual

(Continued)
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Table A1 (continued)

Abbreviation Definition Abbreviation Definition
FC Feature Creation PLC Programmable Logic

Controllers
FE Feature Extraction RF Random Forest
FL Federated Learning RQ Research Question
FS Feature Selection SOA Service-Oriented Architecture

FTP File Transfer Protocol SSH Secure Shell
GAN Generative Adversarial Network SVM Support Vector Machine
HFL Hierarchical FL TL Transfer Learning

HLSTM Hierarchical LSTM V2V Virtual-to-Virtual
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