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ABSTRACT: Wound classi�cation is a critical task in healthcare, requiring accurate and e�cient diagnostic tools to
support clinicians. In this paper, we investigated the e�ectiveness of the YOLO11n model in classifying di�erent types
of wound images. �is study presents the training and evaluation of a lightweight YOLO11n model for automated
wound classi�cation using the AZH dataset, which includes six wound classes: Background (BG), Normal Skin (N),
Diabetic (D), Pressure (P), Surgical (S), and Venous (V). �e model’s architecture, optimized through experiments
with varying batch sizes and epochs, ensures e�cient deployment in resource-constrained environments. �e model’s
architecture is discussed in detail.�e visual representation of di�erent blocks of themodel is also presented.�e visual
results of training and validation are shown. Our experiments emphasize the model’s ability to classify wounds with
high precision and recall, leveraging its lightweight architecture for e�cient computation. �e �ndings demonstrate
that �ne-tuning hyperparameters has a signi�cant impact on the model’s detection performance, making it suitable
for real-world medical applications. �is research contributes to advancing automated wound classi�cation through
deep learning, while addressing challenges such as dataset imbalance and classi�cation intricacies. We conducted a
comprehensive evaluation of YOLO11n for wound classi�cation across multiple con�gurations, including 6, 5, 4, and
3-way classi�cation, using the AZH dataset. YOLO11n acquires the highest F1 score and mean Average Precision of
0.836 and 0.893 for classifying wounds into six classes, respectively. It outperforms the existing methods in classifying
wounds using the AZH dataset. Moreover, Gradient-weighted Class ActivationMapping (Grad-CAM) is applied to the
YOLO11n model to visualize class-relevant regions in wound images.
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1 Introduction

According to a survey conducted in 2018, more than 8 million people are dealing with wounds,
with Medicare expenses for wound care estimated between 28.1 billion and 96.8 billion. �is staggering
�gure highlights the scale of wound care and management. Chronic wounds are not only painful but also
require extensive care, including regular cleaning, dressing changes, and the use of antibiotics to ensure
proper healing.

Chronic wounds include Diabetic Foot Ulcers (DFU), Venous Leg Ulcers (VLU), Pressure Ulcers (PU),
and SurgicalWounds (SW). Approximately 34%of individuals with diabetes face a lifetime risk of developing
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a DFU, and more than half of these ulcers become infected. Globally, around 0.15% to 0.3% of people su�er
from active VLU. Pressure ulcers a�ect 2.5 million individuals annually, while roughly 4.5% of people who
undergo surgery develop a surgical wound each year [1]. DFUs are a caused due to serious complications
in diabetes. Two common challenges in treating DFUs are infection and ischemia, both of which can lead
to limb amputation and hospital admission. Following amputation, a patient’s quality of life o�en declines
signi�cantly, with life expectancy typically dropping to under three years. Infection a�ects 40%–80% of
DFUs, while ischemia occurs in nearly 50%. Infection arises when bacteria in the wound cause cell death,
particularly in lower limb areas like foot soles. A chronic complication of diabetes causes ischemia due to
poor blood circulation [2,3].

Classifying wound severity is a crucial aspect of the diagnosis process, as it aids physicians in making
swi� and accurate treatment decisions. �e simplest method of monitoring wounds is a visual inspection,
which has several limitations, including inter-observer variability, visual impairments, and obesity, due
to which the user may struggle to detect subtle changes, making it di�cult to assess wound progression
accurately [4].With the rising prevalence of chronic wounds, there is a growing need for automated solutions
that can support healthcare providers, enhance treatment e�ciency, and help reduce the overall cost of care.
Furthermore, these systems can detect wounds on time and reduce the risk of amputation.

Diagnosing and treating chronic wounds presents a signi�cant challenge for healthcare professionals.
Hence, the physicians must identify the type of wound and then prescribe the correct medication and
treatment plan.�is careful monitoring is crucial in managing the healing process over time.�e traditional
method includes medical practitioners visually inspecting the wound to classify it, but with advancements in
automation, several Machine Learning (ML)-based systems have been developed to streamline this process.
�ese systems typically rely on handcra�ed feature extraction followed by classi�cation. However, they have
limitations, asmanual feature extraction can be time-consuming, prone to human error, andmay not capture
the full complexity of wounds. Furthermore, these systems also fail to perform due to poor illumination
and contrast in images. Hence, the performance of these systems is limited, thus showcasing the need for
more advanced approaches like deep learning, which can automatically learn and extract features from data
without human intervention [5]. With the advancement of AI, this process has become more e�cient. AI
not only saves time and reduces costs but can also outperform human predictions in certain cases. Unlike
earlier rule-based AI systems that heavily relied on expert knowledge, modern AI algorithms have evolved
into data-driven systems that operate independently, without the need for human or expert input [6,7].

Among deep learning approaches, the You Only Look Once (YOLO) family of object detection models
has gained popularity for its balance of speed and accuracy. YOLO performs object detection in a single
forward pass, making it suitable for real-time applications. Since its introduction, YOLOhas evolved through
several versions (YOLOv1 to YOLOv8), each improving in accuracy, architectural e�ciency, and adaptability
to diverse tasks. While widely applied in general object detection and autonomous systems, its application
in specialized domains like medical imaging remains underexplored.

In this paper, we leverage the latest lightweight variant, YOLO11n, to perform automated wound
classi�cation using the AZHwound dataset.�e dataset includes six classes: Background (BG), Normal Skin
(N), Diabetic (D), Pressure (P), Surgical (S), and Venous (V). To evaluate the adaptability and robustness of
YOLO11n, we conducted a series of classi�cation experiments under multiple con�gurations. �ese include
6-way classi�cation for identifying all wound and background classes, and 5-way classi�cation excluding
the background class. Additionally, 4-way classi�cation that focuses on core wound categories, and 3-way
classi�cation to distinguish between three types of wound images. �is multi-scenario approach provides a
comprehensive understanding of YOLO11n’s performance across diverse levels of classi�cation complexity.
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�e contributions of this paper are as follows:

• Exploring the potential of the lightweight YOLO11n model for wound classi�cation under various class
con�gurations, including six-class, �ve-class, four-class, and three-class wound classi�cation.

• Analyzing the adaptability and robustness of YOLO11n in addressing di�erent levels of wound classi�-
cation complexity.

• Providing a detailed evaluation of YOLO11n’s performance metrics, such as accuracy, precision, recall,
and F1 Score, across all classi�cation settings to o�er insights into how class reduction a�ects model
e�ciency and e�ectiveness.

• Visual explainability for wound classi�cation usingGradient-weightedClass ActivationMapping (Grad-
CAM) at di�erent stages of YOLO11n architecture.

�e rest of the paper is organized as follows: Section 2 provides background on wound classi�ca-
tion, Section 3 critically reviews existing systems, Section 4 elaborates the proposed methodology, Section 5
presents experimental results, Section 6 presents discussion on the results, and Section 7 concludes the study.

2 Background

Wound care is a critical aspect of healthcare, as poorlymanagedwounds can lead to severe complications
such as infections or amputations. Hence, timely identi�cation and classi�cation of these wounds can save
patients from developing serious complications. �e advanced wound care market is projected to exceed
$22 billion by 2024, with a high ratio of patients su�ering from wound infections and chronic wounds [8].
�us, managing postoperative wounds remains a challenging and resource-intensive task for healthcare
professionals and patients alike.

Traditional wound identi�cation methods rely heavily on the expertise of medical professionals who
manually analyze the wound size, depth, and tissue type. �is approach, however, is subject to variability
in accurate identi�cation and delayed treatment, especially in resource-constrained settings or among
non-specialist healthcare providers. Another approach to wound detection involves using traditional
machine-learning techniques to identify wounds from images. However, these methods rely on manually
cra�ed features [9], which limit their ability to e�ectively handle a wide variety of wound types, especially
those with similar features. Due to the growing global burden of chronic wounds, including diabetic ulcers,
pressure ulcers, and post-surgical wounds, there is an urgent need for more reliable and scalable wound
assessment methods that require almost no human intervention. Hence, DL based automated wound image
classi�cation systems hold immense promise here, as they aim to detect and categorize di�erent types of
wounds using advanced computational techniques [1].

Deep learning, a type of AI, has emerged as a powerful tool for image classi�cation and analysis due
to its ability to learn complex patterns and features directly from data without extensive manual feature
engineering. �ese systems are deployed to solve various computer vision tasks, such as image classi�cation
or localization, o�en performing comparable to or better than a trained pathologist. Hence, these automated
systems can perform automated learning of complex features, including tissue composition, edge sharpness,
in�ammation, color, texture, size, etc., which are essential for determining wound type, severity, and healing
progress [10]. Due to their e�cacy, several AI-based medical diagnostic systems have already attained FDA
approval, including so�ware for identifying prostate cancer [11], skin cancer [12], and breast cancer [13].

However, despite the performance, the development of robust deep-learning-basedwound classi�cation
systems faces challenges mainly due to the scarcity of high-quality wound datasets, slight variability in the
wound appearances, as well as poor illumination and contrast in images. As of now, several studies have
explored the application of deep learning for wound image classi�cation, however, gaps remain in terms
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of real-world implementation and deployment. Many existing approaches are limited to speci�c wound
types or rely on small, homogeneous, or imbalanced datasets, making it di�cult to deploy these systems in
diverse clinical settings. Some of these studies are critically analyzed in Section 3. Hence, robust and scalable
solutions should be presented to overcome these challenges so that these systems can be integrated into
clinical work�ows and automate the process of wound classi�cation.

3 Literature Review

With the advancement of deep learning techniques, several models have been proposed for wound
detection and classi�cation frommedical images.�is section presents a critical review of existing literature
and highlights the research gap that our study addresses.

Some existing works are primarily focused on classifying wound types using transfer learning. For
instance, Ahsan et al. [4] proposed a wound classi�cation system using several transfer-learned frameworks
such as AlexNet, VGG16, VGG19, GoogLeNet, ResNet50, ResNet101,MobileNet, SqueezeNet, andDenseNet,
to classify infection and ischemia from the DFU2020 dataset. To address the data limitation, the applied
data augmentation techniques were used. ResNet50 achieved the highest accuracy, with 99.49% for ischemia
classi�cation and 84.76% for infection classi�cation. In another study, Almufadi et al. [14] also used
various transfer learning architectures such as E�cientNetB0,DenseNet121, ResNet101, VGG16, InceptionV3,
MobileNetV2, and InceptionResNetV2 as headmodels alongwith variousMachine Learning classi�ers.�ey
also classi�ed infection and ischemia using the DFU2020 dataset. �eir system attained accuracy of 92.7%
on Infection class samples and 96.7% on Ischemia class samples.

Other researchers have proposed custom CNN architectures to address domain-speci�c challenges.
Alzubaidi et al. [15] proposed a novel Deep Convolutional Neural Network called DFU QUTNet for the
automatic classi�cation of DFU. Rather than increasing the network depth, which could result in gradient-
related issues, their model focused on increasing network width while maintaining depth. �e features
extracted from DFU QUTNet were then supplied to various ML classi�ers, Support Vector Machine (SVM)
and K-Nearest Neighbors (KNN) classi�ers. �e system attained highest F1 Score of 94.5%. �ey used a
custom database containing normal and abnormal (DFU) images to conduct the study.

Anisuzzaman et al. [1] developed a multi-modal wound classi�cation network using both wound
images and their corresponding locations (body map) to classify wounds into di�erent types, such as DFU,
pressure ulcers, surgical wounds, venous ulcers, and normal skin. A body map was also designed to assist
clinicians in documenting wound locations consistently.�e study was conducted using di�erent databases,
i.e., Metdec, custom dataset (AZH), and AZHMT (a combination of Metdec and AZH). �ey performed
classi�cation using VGG16, VGG19, Long Short Term Memory (LSTM), Multi-Layer Perceptron (MLP),
ResNet50, InceptionV3, and AlexNet. �eir system using VGG19 + MLP attained 82.48% accuracy on the
AZH database with 6 classes, namely Background, Normal skin, DFU, Pressure ulcer, Surgical wound,
and venous ulcer. In another study, Anisuzzaman et al. [6] developed a custom CNN for wound severity
classi�cation based on their color, i.e., green, yellow, and red, with green representing wounds in the
early stages of healing, yellow indicating wounds that require more attention, and red denoting the most
severe cases needing urgent care. �ey conducted this study on a custom database gathered from AZH
Wound and Vascular Center and created with the assistance of wound specialists.�ey used various transfer
learned architectures, i.e., VGG16-19, Inception-V3, NasNetLarge, ResNet50, DenseNet101, XceptionNet,
MobileNetV2, InceptionResNetV2. �ey stacked nine models each containing four di�erent models, for
better feature extraction and classi�cation than the individual models. �ey attained an accuracy of 68.49%
for multi-class classi�cation and 77.57% to 81.40% accuracy for binary class classi�cation. �e system,
however, performed poorly due to the very few images.
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Eldem et al. [16] proposed a classi�cation system for pressure and diabetic wounds from images
by developing six variations of the AlexNet architecture. �ese models utilized di�erent combinations of
Convolution, Pooling, and ReLU layers, with classi�cation performance evaluated using both So�max and
SVM classi�ers. �ey also used a custom database to evaluate the model’s performance, on which their
system attained 98.85% accuracy. Moreover, on the Medetec database, they obtained a 95.3% accuracy.
Goyal et al. [17] collected a comprehensive dataset containing normal and abnormal images of DFU from
various patients. �ey proposed DFUNet, a CNN-based framework containing convolutional, parallel
convolutional, max-pooling, and fully connected layers for the classi�cation of images into normal andDFU.
�eir system obtained 92.5% accuracy on the custom database. In another study, Goyal et al. [18] created
a new dataset named DFU dataset to identify infection and ischemia in DFUs. �ey introduced a novel
feature descriptor called the Superpixel Colour Descriptor for a handcra�ed machine-learning approach.
�ey evaluated the performance of various state-of-the-art ML and DL classi�ers and also proposed an
Ensemble CNN for classi�cation. �ey obtained the highest accuracy of 90% for ischemia classi�cation
and 73% for infection class classi�cation using Ensemble-CNN. Giridhar et al. [19] presented a DL-based
approach for DFU detection using transfer learned CNN and image processing techniques. �eir system
attained F1 Scores of 98%, 98%, and 97% for ischemia, none, and infection stages, respectively. However
the system is computationally complex. Huong et al. [20] proposed a Particle Swarm Optimization (PSO)-
incorporated DL framework for classifying infection and ischemia from the DFUC2021 database, using
three deep learning models: AlexNet, GoogleNet, and E�cientNet-B0. �ey obtained the highest accuracy
of 91% for the infection class and 99% for Ischemia class. Liu et al. [2] utilized geometric and color image
augmentation techniques to enhance the DFU dataset and performed binary classi�cation of infection and
ischemia using E�cientNetB1, ResNet50, Inception v3, VGG16, and CNN.�ey obtained F1 Score of 99.3%
on Ischemia samples and 97.14% on Infection using E�cientNet-B5 and E�cientNet-B1 on the DFUC2021
database, respectively.

Narang et al. [21] used ResNet-50 with a Channel Attention (CA) Network for the classi�cation of DFU
and healthy images.�eCAmodule extracts channel-wise features, improving the accuracy of the ResNet-50
model, which uses a 3-layer bottleneck architecture.�ey utilized a DFU dataset from the Kaggle repository
consisting of 1048 images. Data augmentation was applied to avoid over�tting, and the model achieved 90%
validation accuracy. Patel et al. [22] introduced a multi-modal deep CNN for classifying wounds into four
categories, i.e., diabetic, pressure, surgical, and venous ulcers.�eir approach combined wound images with
corresponding body location data for precise wound location tagging.�ey used state-of-the-art DLmodels
like VGG16, ResNet152, and E�cientNetB2 by using Squeeze-and-Excitation modules, Axial Attention, and
an Adaptive Gated Multi-Layer Perceptron. �ey conducted their study on the images obtained from on
AZH and Metedec databases. �eir model obtained 87.50% accuracy on the classi�cation of 6 classes from
theAZHdatabase. An ensembleDeepConvolutional Neural Network (CNN)-based classi�er was developed
by Rostami et al. [23] to categorize wound images into surgical, diabetic, and venous ulcers. �ey combined
patch-wise and image-wise classi�cation scores obtained via Multilayer Perceptron. �e system achieved
84.9% accuracy on the AZH database.

Object detection frameworks like YOLO have also been applied in wound classi�cation. Aldughay�q
et al. [24] presented a YOLOv5-based wound classi�cation model that was trained and validated on the
Medetec database along with some random samples collected from the internet. �ey trained their system
for 500 epochs with a patience of 100. �e model achieved an overall mAP50 of 76.9% and mAP50-95 of
39.8% on the validation set. Sarmun et al. [25] proposed a robust deep learning-based system for detecting
DFU images acquired from the DFUC2020 database. �e system employed advanced ensemble techniques
like Non-Maximum Suppression (NMS), So�-NMS, andWeighted Bounding box Fusion (WBF) to combine
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predictions from state-of-the-art object detection models. By integrating YOLOv8 and FRCNN-ResNet101,
their method achieved a mAP50 score of 86.4%. �ese studies demonstrate that while YOLO-based
architectures hold promise, their application towound classi�cation, especially in lightweight con�gurations,
remains underexplored.

Despite these advancements, gaps remain: Most existing studies focus on binary classi�cation (e.g.,
infection vs. ischemia) and do not address the full diversity of wound types. YOLO-based methods for
wound classi�cation are limited ando�en computationally heavy, lacking deployment readiness for resource-
constrained environments. Few works investigate performance across di�erent class granularities (e.g.,
6-class to 3-class classi�cation) for practical adaptation. To address these gaps, our work proposes a
lightweight wound classi�cation system using YOLO11n. Unlike previous studies, we evaluated the perfor-
mance of the YOLO11n at di�erent stages using the Grad-CAM technique. �e performance is compared
with other architectures as well, using the AZH dataset. An overview of prior techniques, datasets, and their
limitations is summarized in Table 1, which provides context for the development and evaluation of our
proposed framework.

Table 1:Overview of wound classi�cation techniques

Reference Technique/s Dataset Performance Limitations

Goyal
et al. [18]
(2020)

Ensemble CNN DFU dataset Accuracy = 90
(Ischemia), 73%

(Infection)

Limited to binary classes;
requires enhancement for

deployment. Computationally
exhausting

Alzubaidi
et al. [15]
(2020)

DFU_QUTNet with
SVM

Custom Dataset
containing
754-� binary
class images

F1 Score = 94.5%
(binary class)

Trained on a small dataset;
requires comprehensive testing

with unseen samples

Rostami
et al. [23]
(2021)

Ensemble CNN AZH Accuracy = 68.69%
(six classes)

Achieved low overall
performance

Anisuzzaman
et al. [1]
(2022)

VGG19 +MLP AZH Accuracy = 82.48% Achieved low overall accuracy,
thus requires validation before

deployment
Liu et al. [2]

(2022)
E�cientNet-B5,
E�cientNet-B1

DFUC 2021 F1 Score = 99.3
(Ischemia), 97.14%

(Infection)

Limited to binary classi�cation;
requires enhancement to cover

multiple wound types
Anisuzzaman
et al. [6]
(2022)

VGG19 AZH Accuracy = 68.49%
(three classes)

Exhibits low overall
performance; needs thorough
evaluation before deployment

Ahsan
et al. [4]
(2023)

ResNet50 DFU2020 Accuracy = 99.49%
(Ischemia), 84.76%

(Infection)

Restricted to binary
classi�cation only; expansion to
multiple wound types is needed.

Aldughay�q
et al. [24]
(2023)

YOLOv5 Medetec + 200
wound images
available over
the Internet

mAP50 = 76.9% Demonstrated lower mAP50

(Continued)
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Table 1 (continued)

Reference Technique/s Dataset Performance Limitations

Almufadi
et al. [14]
(2024)

(modi�ed
E�cientNet-B0+
AdaBoost/Logistic

Regression (Classi�er)

DFU dataset Accuracy = 92.7
(Infection), 96.7%

(Ischemia)

Trained on a limited dataset;
may face challenges with

generalization

Eldem
et al. [16]
(2023)

Custom CNN with
SVM

Custom Dataset
+Medetec

Accuracy = 98.62%
(3 classes), 95.33%

(2 classes)

Training dataset is small;
validation is required before

deployment on state-of-the-art
databases

Huong
et al. [20]
(2023)

E�cientNet-B0 + PSO DFUC 2021 Accuracy = 91
(Infection), 99%

(Ischemia)

Limited to two classes; requires
improvement for broader

categorization
Giridhar
et al. [19]
(2024)

DenseNet201 DFUC 2021 F1 Score = 97
(Infection), 98%
(Ischemia), 98%

(None)

Computationally expensive

Narang
et al. [21]
(2024)

ResNet-50 with CA Kaggle 90% accuracy Dataset contains very few
samples

Patel
et al. [22]
(2024)

Modi�ed Pre-trained
ResNet152, VGG16,
and E�cientNet

AZH Accuracy = 87.50%
(six classes)

Computationally expensive

Sarmun
et al. [25]
(2024)

YOLOv8m +
FRCNN-ResNet101,
NMS, So�-NMS,

WBF

DFUC 2020 mAP50 = 86.4%,
F1 Score = 79.3%

Low F1 Score

4 Proposed Methodology

In this section, the detail of the proposed methodology for the detection of di�erent types of wounds
is presented. �e nano model of YOLO version 11 is �ne-tuned on a dataset that has �ve categories of
wound images and one category containing background images. YOLO11n is utilized in this work because
it is smaller and lightweight as it is designed with fewer layers and parameters compared to the YOLO11
standard model. It is suitable for real-time applications on edge devices or low-powered hardware (e.g.,
mobile phones, drones). �e dataset contains images of various sizes. During the prepossessing of the
dataset, images are resized to 256 × 256 before feeding them to YOLO11n. A�er preprocessing, training of the
pretrained YOLO11n model is carried out on wound images. A�er training, the model is evaluated based on
its performance in distinguishing six types of wound images present in the dataset.�e detection head of the
pretrained model classi�es object into 80 categories. However, in this work, the detection head performed
the classi�cation of wound images into six categories. �e overview of the proposed methodology is shown
in Fig. 1.
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Figure 1: Overview of the proposed methodology for wound classi�cation

Fig. 2 illustrates the detailed architecture of the YOLO11n used in this work. It consists of convolution
(Conv), C3k2, Spatial Pyramid Pooling Fast (SPPF), C2PSA, concatenation, up-sampling, and detection head
blocks. �e C3k2 block is more e�cient in terms of computation, and it is a custom implementation of
the Cross Stage Partial (CSP) Bottleneck. It uses two convolutions instead of one large convolution, which
speeds up feature extraction. CSP networks work by splitting the input feature map into two parts. One
part is passed through a bottleneck layer, which reduces the dimensionality and complexity of the data. �e
other part bypasses the bottleneck and is merged with the output of the bottleneck layer.�is design reduces
computational complexity while improving the network’s ability to learn and represent features e�ectively.

Figure 2: YOLO11n layer architecture
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In YOLO11n, there are a total of eight C3k2 blocks. Each C3k2 block starts with a convolution layer with
a kernel size of 1 × 1 and ends with it. Blocks 1, 2, 5, 6, and 7 consist of one bottleneck module containing
two consecutive convolution layers with a kernel size of 3 × 3. Whereas, Block 3, Block 4, and Block 8 consist
of one C3k module (containing three convolution layers of kernel size 1 × 1) and two bottleneck modules
in sequence. Each of these bottleneck modules contains two convolution layers of kernel size 3 × 3. Every
convolution layer in this architecture is followed by a Batch Normalization layer and a Sigmoid Linear Unit
(SiLU) activation layer. Hence, it is sometimes referred to as the CBS block. Fig. 3 shows the architecture of
C3k2 Block 1 and Block 3.

Figure 3: C3k2 blocks without and with C3k module

�e characteristic of the SPPF block is that it concatenates a�er multi-scale pooling, which is crucial
for capturing diverse information and expanding the number of channels temporarily for richer feature
aggregation. SPPF is used to combine information from di�erent scales. �e detection head outputs
predictions based on 6 classes with a bounding box showing the model’s con�dence in the predicted
class label.

C2PSA is a hybrid module designed to enhance feature extraction by combining convolutional oper-
ations and Parallel Spatial Attention (PSA). Its work integrates key principles of feature transformation,
attention mechanisms, and spatial encoding. �e core functionality of the C2PSA block comes from the
PSA mechanism within the Block. PSA helps the model focus on critical spatial regions of the feature map.
�e feature map is divided into two parallel branches (usually split channel-wise). One branch processes
spatial attention, while the other may bypass the attention for a residual-like structure. A convolution
projects the split featuremap to derive query, key, and value embeddings.�ese embeddings are processed to
calculate attention weights. Positional encoding (via depthwise convolution) introduces information about
spatial arrangements, essential for tasks like object detection or localization. �e use of 1 × 1 convolutions,
channel splitting, and attention mechanisms ensures that the module remains computationally e�cient and
suitable for the lightweight model YOLO11n. �e details of 24 blocks utilized in the YOLO11n model for the
classi�cation of di�erent types of wounds are shown in Table 2. �e index column shows the number of the
block in sequential order. �e input column shows the input to the block, and −1 represents the input of
the block coming from previous blocks. �e Params column shows the number of parameters for each
block of the architecture. It can be seen that at indices 12, 15, 18, and 21, the outputs from two blocks are
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concatenated. Whereas, the last block, known as the detection head, receives input from the last three C3k2
blocks and classi�es it into six classes.

Table 2: YOLO11n architecture for wound classi�cation on AZH dataset

Index Input Blocks Params

0 −1 Conv [3, 16, 3, 2] 464
1 −1 Conv [16, 32, 3, 2] 4672
2 −1 C3k2 [32, 64, 1, False, 0.25] 6640
3 −1 Conv [64, 64, 3, 2] 36992
4 −1 C3k2 [64, 128, 1, False, 0.25] 26080
5 −1 Conv [128, 128, 3, 2] 147712
6 −1 C3k2 [128, 128, 1, True] 87040
7 −1 Conv [128, 256, 3, 2] 295424
8 −1 C3k2 [256, 256, 1, True] 346112
9 −1 SPPF [256, 256, 5] 164608
10 −1 C2PSA [256, 256, 1] 249728
11 −1 Upsample [2, ‘nearest’] 0
12 [−1, 6] Concat 0
13 −1 C3k2 [384, 128, 1, False] 111296
14 −1 Upsample [2, ’nearest’] 0
15 [−1, 4] Concat 0
16 −1 C3k2 [256, 64, 1, False] 32096
17 −1 Conv [64, 64, 3, 2] 36992
18 [−1, 13] Concat 0
19 −1 C3k2 [192, 128, 1, False] 86720
20 −1 Conv [128, 128, 3, 2] 147712
21 [−1, 10] Concat 0
22 −1 C3k2 [384, 256, 1, True] 378880
23 [16, 19, 22] Detect [6, [64, 128, 256]] 431842

5 Results

5.1 Dataset Description

�is study utilizes the AZHWound dataset [6,22], a clinically curated collection of 930 wound images
collected over two years at the AZHWound andVascular Center inMilwaukee,Wisconsin, USA.�e images
are in.jpg format and vary in resolution, with widths ranging from 320 to 700 pixels and heights from
240 to 525 pixels. �e training folder contains 696 images and test folder contains 234 images belonging
to six classes. Each image corresponds to one of four primary wound types: diabetic, venous, pressure,
and surgical wounds. �e dataset was acquired using two imaging devices: an iPad Pro (so�ware version
13.4.1) and a Canon SX620 HS digital camera. Most images in the dataset were taken from unique patients;
however, in some cases, multiple images were captured from the same patient at di�erent body locations
or stages of healing. In such cases, since the wound shapes di�er, these are treated as independent samples.
Labeling was conducted by certi�ed wound specialists. Although the original dataset includes only four
wound classes, additional categories such as Normal Skin (N) and Background (BG) were incorporated
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during preprocessing to facilitate object detection and multi-class classi�cation in this study. �e resulting
six-class dataset includes: BG: Background, Non-wound, non-skin region, N: Normal healthy skin with no
visible wounds, D: Diabetic foot ulcer wounds, P: Pressure wounds, S: Surgical, post-operative wounds, and
V: Venous wounds.

�e images were divided into training and testing sets, with a balanced distribution maintained across
all classes. Due to the absence of ground-truth bounding box annotations, dummy bounding boxes covering
the entire image were used to adapt the dataset for YOLO-based object detection. All images were resized to
256 × 256 pixels and normalized before training. Fig. 4 displays a few sample images from each class from
the AZH wound dataset.

Figure 4: Sample images from each class of AZH dataset
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5.2 Experimental Setup and Evaluation

�e YOLO11n model was trained on the AZH Wound dataset, which consists of 930 wound images
divided into six classes: Background (BG), Diabetic (D), Pressure (P), Venous (V), Surgical (S), and Normal
Skin (N). �e training was performed on the Kaggle platform, utilizing a computational environment with
access to GPUs for faster training.

During the training, the model’s architecture was modi�ed to handle six wound types, overriding
its original con�guration designed for 80 classes. �e model’s training spanned from 75 to 125 epochs,
using batch sizes of 4, 8, and 16. Input images were resized to 256 × 256 pixels. YOLO11n is a lightweight
neural network and, in this case, required 6.4 giga �oating point operations per second (GFLOPs), which
is a measure of the computational complexity of the model. A lower GFLOP count typically signi�es a
faster model, especially suitable for real-time applications such as autonomous detection. In this work, we
performed two sets of experiments. �e e�ectiveness of the model is evaluated in terms of Precision, Recall,
F1 Score, and mean Average Precision 50 (mAP50).

Fig. 5 displays the learning curves of the YOLO11n model on the AZH wound dataset over 75 epochs
with a batch size of 8. Whereas, Figs. 6 and 7 show the training curves of the model over 100 and 125 epochs,
respectively. �ese learning curves show training and validation loss as well as precision, recall, and mAP

over 75, 100, and 125 epochs. Fig. 8 shows a few sample training batches that were given to the model. Fig. 9
shows images from a validation batch with actual labels and predictions made by the model during training
at 125 epochs.

Figure 5: Learning curves of YOLO11n over 75 epochs with 8 batch size
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Figure 6: Learning curves of YOLO11n over 100 epochs with 8 batch size

Figure 7: Learning curves of YOLO11n over 125 epochs with 8 batch size

Figure 8: Di�erent training batches of size 8 during training of YOLO11n model
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Figure 9: Validation performance of YOLO11n model over 75, 100, and 125 epochs during training

During the �rst set of experiments, we set the number of epochs to 100 and changed the batch size value
to 4, 8, and 16. Table 3 shows the performance of the YOLO11n on the test images at a batch size of 4, and the
model was trained for 100 epochs. Similarly, Table 4 shows the results when the model was trained using a
batch size of 8. �e results using batch size 16 are shown in Table 5. It can be seen that the YOLO11n model
demonstrated strong performance across the six wound classes of the AZH Wound dataset, achieving an
overallmAP50 of 0.893. Notably, the BG class had the highest precision, recall, and F1 Score with the highest
mAP50 on batch sizes 8 and 16. It highlights the model’s ability to e�ectively di�erentiate between wound
and non-wound regions. �e diabetic and venous classes also exhibited robust performance, with mAP50

values of 0.901 and 0.935, respectively, on batch size 8. It indicates that the model was particularly adept at
identifying these wound types. �e results for the Normal Skin class suggest that the model is reliable in
identifying healthy skin, which is crucial in di�erentiating wound margins. However, some challenges were
observed with the Pressure wound class, which had the lowest precision of 0.568 and recall of 0.438, and
mAP50 of 0.640 at batch sizes 8, 4, and 16, respectively.�is indicates that themodel struggledmore with this
wound type, likely due to overlapping features with other classes or a smaller number of training examples.
�e Surgical wound class also had slightly lower metrics compared to others, with anmAP50of 0.897, though
the recall was still relatively high at 0.881 with a batch size of 8, indicating that the model was able to detect
most surgical wounds but had room for improvement in terms of precision.

Table 3: Precision, Recall, and F1 Score for YOLO11n on AZH wound dataset with 4 batch size over 100 epochs

Class Precision Recall F1 Score mAP50

BG 0.789 1.0 0.882 0.985
N 0.830 1.0 0.907 0.989
D 0.890 0.761 0.820 0.897
P 0.680 0.438 0.531 0.659
S 0.631 0.952 0.759 0.921
V 0.836 0.902 0.868 0.916
All 0.776 0.842 0.808 0.895
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Table 4: Precision, Recall, and F1 Score for YOLO11n on AZH wound dataset with 8 batch size over 100 epochs

Class Precision Recall F1 Score mAP50

BG 0.922 0.951 0.936 0.981
N 0.787 0.960 0.865 0.954
D 0.892 0.848 0.869 0.901
P 0.568 0.619 0.592 0.687
S 0.722 0.881 0.794 0.897
V 0.803 0.919 0.857 0.935
All 0.782 0.863 0.821 0.893

Table 5: Precision, Recall, and F1 Score for YOLO11n on AZH wound dataset with 16 batch size over 100 epochs

Class Precision Recall F1 Score mAP50

BG 0.998 1.0 0.999 0.995
N 0.958 0.912 0.934 0.975
D 0.857 0.804 0.830 0.886
P 0.719 0.441 0.545 0.640
S 0.684 0.721 0.702 0.846
V 0.927 0.817 0.868 0.944
All 0.857 0.817 0.836 0.881

During the second set of experiments, we kept the batch size to 8 and changed the number of epochs
to 75, 100, and 125. With a batch size of 8, training images were fed to the YOLO11n model during
learning. Tables 6 and 7 show the performance of the YOLO11n model on the classi�cation of wound images
a�er training the model for 75 and 125 epochs, respectively. Overall, the highest recall of 0.863 is obtained at
100 epochs, the highest precision of 0.826 is achieved at 125 epochs, and the highest F1 Score of 0.828 is also
obtained at 125 epochs.

Table 6: Precision, recall, and F1 score for YOLO11n on AZH wound dataset with 8 batch size over 75 epochs

Class Precision Recall F1 Sore mAP50

BG 0.975 0.96 0.967 0.991
N 0.9 1.0 0.947 0.990
D 0.884 0.665 0.757 0.879
P 0.579 0.647 0.611 0.673
S 0.767 0.864 0.813 0.894
V 0.797 0.885 0.839 0.923
All 0.817 0.837 0.827 0.892
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Table 7: Precision, Recall, and F1 Score for YOLO11n on AZH wound dataset with 8 batch size over 125 epochs

Class Precision Recall F1 Score mAP50

BG 0.982 0.96 0.971 0.987
N 0.864 1.0 0.927 0.975
D 0.832 0.826 0.829 0.896
P 0.555 0.559 0.557 0.640
S 0.837 0.735 0.782 0.888
V 0.888 0.893 0.890 0.946
All 0.826 0.829 0.828 0.889

Fig. 10 displays results obtained from a YOLO11n model applied to test images from the six classes
in the AZH Wound dataset. It shows the performance of the YOLO11 model a�er training it on the AZH
dataset over 100 epochs with 8 batch sizes. Each row corresponds to a speci�c class, with four examples per
class. �e model’s predictions are shown along with con�dence scores (ranging from 0 to 1), which indicate
how con�dent the model is in classifying each wound type. �e �rst row contains images from the Normal
Skin class of the dataset. �e model shows near-perfect con�dence with scores of 0.99 to 1.00. �is strong
performance suggests that themodel can di�erentiate betweenwound and healthy skin very e�ectively, likely
due to clear visual di�erences. �e second row displays images from the Diabetic class of the dataset. �e
model has high con�dence for diabetic wounds, with scores like 0.93 and 0.97. �is demonstrates that the
model reliably identi�es the characteristic features of diabetic ulcers. �e third row has images from
the Pressure class. �e model’s con�dence for pressure wounds is also relatively high, with scores of 0.85
and 0.88. �e third image, with a con�dence of 0.82, suggests consistent recognition across various pressure
wound cases, even though it sometimes exhibits slightly lower certainty. Surgical class images are shown in
the fourth row. �e model generally performs well with con�dence scores above 0.70. �e second image
has a slightly lower con�dence (0.71), while others range from 0.79 to 0.97. �is indicates good recognition
of surgical wounds, though it occasionally shows moderate con�dence. Venous class images are displayed
in the ��h row. �e model performs quite well, with scores ranging from 0.53 to 1.00. However, the �rst
image of the venous wound shows a notably lower con�dence score (0.53), indicating that the model may
struggle with certain variations or unclear visual features in this class. �e last rows has images from the
Background class of the dataset. �e background class has high con�dence scores, with most images close
to 1.00. �e last image in the row, however, has a slightly lower score (0.93), but overall, the model performs
well at distinguishing wound sites from background scenes.
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Figure 10: Performance of YOLO11n across di�erent classes of wounds with training on 100 epochs with 8-batch size

It is observed through the results that the YOLO11n model shows high con�dence in distinguishing
clear cases of healthy skin and background, as well as certain wound types like diabetic and venous wounds,
especially when the wound features are prominent. However, the model shows slightly reduced con�dence
in some cases, such as the �rst venous wound (V 0.53) and the second surgical wound (S 0.71), where wound
features may overlap with characteristics from other wound types or the background. Overall, the model
appears to be consistent in predicting the correct classes, with most predictions yielding high con�dence
levels. �e lower con�dence cases are exceptions and may require further investigation, such as adjusting
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model thresholds or improving the quality of training data for those wound types. �e con�dence curves of
YOLO11n on testing images from the AZH dataset are shown in Fig. 11 with six classes of wounds. Similarly,
the precision-recall plot is shown in Fig. 12.

Figure 11: Con�dence curves of YOLO11n on testing images from AZH dataset (a) Precision, (b) Recall, (c) F1 Score

Figure 12: Precision-Recall curves of YOLO11n on AZH dataset

�e results demonstrate that the YOLO11n model performs well across most classes, with a few
challenging cases where con�dence levels drop slightly. Improving the dataset’s diversity and re�ning model
hyperparameters could further enhance its ability to distinguish between visually similar wound types or
backgroundnoise.�emodel demonstrates a promising capacity to detect and classify di�erentwound types.
Further analysis of the confusion matrix and detection results provides valuable insight into potential areas
for re�nement, such as the handling of background or unannotated regions.

�e model completed training and testing, with all six classes represented in both the training and
validation sets. However, during the generation of the confusion matrix, a 7 × 7 matrix was observed
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instead of the expected 6 × 6 matrix as shown in Fig. 13. �is discrepancy likely results from the inclusion
of an additional class, such as a “background” or “other” category, introduced automatically during the
object detection process. In object detection tasks, background or empty images without any objects
may be classi�ed separately to di�erentiate between actual objects and irrelevant regions, which explains
the presence of an additional class in the confusion matrix. Despite this, the model’s performance in
correctly detecting and classifying the six wound types was robust, aided by various data augmentation
techniques, including blurring, gray-scaling, Contrast Limited Adaptive Histogram Equalization(CLAHE),
and horizontal �ipping. �ese augmentations helped the model generalize across the di�erent wound types
and capture the essential features of each.

Figure 13: Confusion matrix of trained YOLO11n over 100 epochs with 8 batch size on AZH dataset

To further assess the �exibility and adaptability of the YOLO11nmodel, we performed wound classi�ca-
tion using the AZH dataset under three additional scenarios, i.e., 5-way Classi�cation, 4-way Classi�cation,
and 3-way Classi�cation. For each scenario, the dataset was appropriately reorganized, and YOLO11n
was retrained to ensure optimal model performance. �e performance of the model is shown in the
following subsections.

5.3 Five-Way Classi�cation

In this experiment, the YOLO11n model is trained without the BG class.�emodel achieved promising
results across di�erent wound types as shown in Table 8. �e model attained a Precision of 0.776, a Recall
of 0.796, and an mAP50 of 0.861. �e model achieved exceptional results with Precision and Recall values
exceeding 0.95 and a near-perfect mAP50 value of 0.992. �is suggests that distinguishing normal skin is
straightforward for themodel, likely due to distinct visual characteristics. Despite a strong Precision of 0.843,
the Recall of 0.701 indicates some di�culty in consistently identifying all diabetic wounds. �e moderate
mAP50 of 0.854 shows room for improvement in recall-sensitive scenarios. With Precision and Recall both
around 0.57, the P class presented themost signi�cant challenge.�emAP50 of 0.630 suggests that additional
training data or re�ned augmentation techniques might enhance performance. A high Recall of 0.929 but a
lower Precision of 0.624 implies the model tends to over-predict surgical wounds. Nonetheless, the strong
mAP50 of 0.888 shows that most predictions are correct. On V class, the model performed well with a
Precision of 0.894 and Recall of 0.816, resulting in a high mAP50 of 0.939, demonstrating reliable detection.
�e confusion matrix of the �ve-way classi�cation is shown in Fig. 14.
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Table 8: Five-way wound classi�cation

Class Precision Recall F1 Score mAP50

N 0.952 0.960 0.956 0.992
D 0.843 0.701 0.766 0.854
P 0.566 0.575 0.570 0.630
S 0.624 0.929 0.746 0.888
V 0.894 0.816 0.853 0.939
All 0.776 0.796 0.786 0.861

Figure 14: Confusion matrix of �ve-way wound classi�cation on AZH dataset

5.4 Four-WayWound Classi�cation

In this experiment, the BG and N classes were excluded from the training and testing datasets. �e
wound classi�cation is performed using only four classes of wounds.�emodel achieved a precision of 0.757
and a recall of 0.737 across all classes, with amAP50 of 0.832 as shown in Table 9. �e diabetic class shows a
high precision of 0.906, indicating that most predictions for diabetic wounds are correct. However, the recall
is lower at 0.632, suggesting that the model misses a signi�cant number of diabetic wounds. �e surgical
wound class exhibits a balanced performance compared to the D class, with a precision of 0.691 and a high
recall of 0.857. �is indicates that most surgical wounds are correctly detected, though precision could be
improved. �e performance for the pressure wound class is the lowest among all classes, with a precision of
0.576 and a recall of 0.588. �emAP50 is 0.642, indicating di�culty in accurately identifying and localizing
pressure wounds. �is could be due to variations in wound appearance or fewer instances in the dataset.
Venous wound class is well detected with high precision (0.856) and recall (0.871), indicating robustness in
identifying this class. �e confusion matrix of the four-way classi�cation is shown in Fig. 15.

Table 9: Four-way wound classi�cation

Class Precision Recall F1 Score mAP50

D 0.906 0.632 0.745 0.865
S 0.691 0.857 0.765 0.872

(Continued)
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Table 9 (continued)

Class Precision Recall F1 Score mAP50

P 0.576 0.588 0.582 0.642
V 0.856 0.871 0.863 0.948
All 0.757 0.737 0.747 0.832

Figure 15: Confusion matrix of four-way wound classi�cation on AZH dataset

5.5 �ree-Way Classi�cation

In three-way classi�cation, we conducted two experiments. In experiment I, we trained the model on
D, S, and P classes, whereas in experiment II, D, S, and V classes were used. In experiment I, the model
achieved a precision of 0.711 and recall of 0.729, with amAP50 of 0.811. While precision and recall improved
signi�cantly to 0.867 and 0.812, respectively, with higher mAP50 (0.904) during experiment II. It can be
observed from Table 10 that experiment-II demonstrates notable improvements in overall precision, recall,
and mAP score compared to experiment I. �e enhanced performance suggests that adjusting the dataset
distribution improved the model’s ability to distinguish between classes, particularly in handling venous and
diabetic wounds e�ectively. However, there is still room for improvement in detecting pressure wounds in
both experiments. �e corresponding confusion matrices are shown in Fig. 16.

Table 10: Results of 3-way wound classi�cation experiments

Class Instances Precision Recall F1 Score mAP50

Experiment-I
D 46 0.868 0.713 0.782 0.889
S 42 0.719 0.833 0.772 0.879
P 34 0.547 0.640 0.590 0.666
All 122 0.711 0.729 0.720 0.811

Experiment-II
D 46 0.972 0.783 0.867 0.910

(Continued)
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Table 10 (continued)

Class Instances Precision Recall F1 Score mAP50

S 42 0.885 0.733 0.802 0.879
V 62 0.745 0.919 0.823 0.924
All 150 0.867 0.812 0.839 0.904

Figure 16: Confusion matrix of 3-way wound classi�cation on AZH dataset (a) D vs S vs P, (b) D vs S vs V

5.6 Comparison with Existing Models

Table 11 presents a comparative evaluation of existing deep learningmodels on theAZHdataset using six
wound classes. �e model proposed by Anisuzzaman et al. [1] employed various VGG-based architectures,
with the VGG+MLP con�guration achieving the highest accuracy at 82.48%.�e E�cientNet-based model
with Swish-ELU activations, SEEN-B4, introduced by Aldoulah et al. [26], reported an improved accuracy
of 83.19%. In contrast, the YOLO11n approach achieved a signi�cantly higher performance with a mAP@0.5
of 89.3%. �is demonstrates the advantage of using an object detection framework for �ne-grained wound
localization and classi�cation, especially in scenarios where multiple wound types or background elements
may coexist.

Table 11: Comparison with existing models on the AZH dataset with six classes

Model Architecture Accuracy (%)

[1] VGG16, VGG19, VGG+MLP 75.64, 64.96, 82.48
[26] Swish-ELU E�cientNet-B4 (SEEN-B4) 83.19

Proposed work YOLO11n 89.3 (mAP@0.5)

�e architecture-based comparison is also carried out with the YOLOv8 model using the AZH dataset.
�e YOLO11n architecture comprises 181 layers with approximately 2.6 million parameters and 6.4 GFLOPs,
indicating a lightweight yet e�cient model design. In contrast, YOLOv8 consists of 129 layers but includes a
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larger number of parameters (over 3million) and a higher computational complexity of 8.2 GFLOPs. Despite
YOLOv8’s architectural complexity and increased resource demands, YOLO11n demonstrates competitive
detection performance on the AZH wound dataset. Its smaller footprint in terms of parameters and
�oating-point operations makes YOLO11n particularly attractive for deployment in resource-constrained
environments, such as portable edge devices or embedded clinical systems. Table 12 shows the summary of
the comparison in terms of number of layers, parameters, etc. It was observed that YOLOv8 o�ersmarginally
higher performance but incurs a higher computational cost.While YOLO11n is a faster and lighter alternative
that maintains competitive accuracy and is ideal for real-time applications in low-power clinical settings.

Table 12: Comparison of YOLO11n and YOLOv8 model architectures

Feature YOLO11n YOLOv8

Layers 181 129
Parameters 2,591,010 3,012,018
Gradients 2,590,994 3,012,002
GFLOPs 6.4 GFLOPs 8.2 GFLOPs

Transferred weights 448/499 319/355
Frozen layer model.23.d�.conv.weight model.22.d�.conv.weight

5.7 Architectural Component Evaluation and Robustness

To investigate the contribution of intermediate architectural blocks in YOLO11n, we conducted addi-
tional classi�cation experiments using feature outputs from Block 9 (SPPF) and Block 10 (C2PSA). �ese
features were passed into a custom classi�cation head comprising batch normalization, dropout, and a two-
layer MLP. Results indicated that Block 10 yielded superior classi�cation performance (79.0% accuracy)
compared to Block 9 (70.0% accuracy). We also evaluated model robustness under common clinical degra-
dations such as blur, low-light, and high-light conditions. Block 10 features exhibited improved resilience
across all perturbations (blur: 64.9%, low-light: 78.6%, high-light: 49.6%) relative to Block 9 (blur: 51.7%,
low-light: 70.5%, high-light: 47.0%).�ese �ndings suggest that deeper attention-based modules like C2PSA
contribute meaningfully to both classi�cation accuracy and robustness in visually degraded scenarios. A
comprehensive ablation with statistical testing will be pursued in future work to further isolate and quantify
the impact of these architectural components. Table 13 shows the classi�cation performance using the SPPF
block and using the SPPF and C2PSA blocks of the YOLO11n architecture with and without degrading the
test images.

Table 13: Classi�cation accuracy and robustness of features extracted from SPPF and C2PSA

Feature source Test accuracy (no degradation) Blurred Low light High light

Block 9 (SPPF) 70.0% 51.7% 70.5% 47.0%
Block 10 (C2PSA) 79.0% 64.9% 78.6% 49.6%

5.8 Grad-CAM Visualization

To evaluate the spatial attention of the YOLO11nmodel on wound classi�cation, we applied Grad-CAM
at multiple depths of the backbone. Speci�cally, we selected three convolutional layers—Block 5 (shallow),
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Block 9 (intermediate, SPPF), and Block 22 (deep, near detection head). For each test image, we extracted the
feature maps and gradients at these layers and computed class-agnostic Grad-CAM heatmaps by averaging
the gradients over spatial dimensions. �ese maps were up-sampled and overlaid onto the original RGB
image to visualize the regions in�uencing model decisions. Fig. 17 shows the Visualization of Grad-CAM
activationmaps at three di�erent stages of the YOLO11n model for wound classi�cation on the AZH dataset.
Column (a) shows the original input image. Column (b) presents the YOLO11n detection results with
predicted class labels and con�dence scores. Columns (c), (d), and (e) display Grad-CAM overlays at layers
Block 5, Block 9, and Block 22, respectively.

Figure 17: Visualization of Grad-CAM activation maps at three di�erent stages of the YOLO11n model for wound
classi�cation on the AZH dataset

It is evident from Fig. 17 how the attention of the YOLO11n model evolves across di�erent network
depths. At Block 5 (column c), the model attends to low-level textures and edges, o�en highlighting
background structures or skin folds. �ese early features exhibit broader and less localized responses. In
contrast, Block 9 (column d), the SPPF module, exhibits mid-level semantic focus, with attention beginning
to concentrate on wound shapes, exudate zones, and lesion boundaries.�is layer captures richer contextual
information compared to Block 5. By Block 22 (column e), the attention becomes highly discriminative
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and localized, tightly conforming to the wound core, borders, and in�ammatory regions. �ese �nal-
stage activations are most aligned with the YOLO detection heads and show strong agreement with the
predicted bounding boxes in column (b). Across all wound types (diabetic, pressure, venous, and surgical),
the Grad-CAM overlays at Block 22 consistently emphasize the model’s focus on pathologically relevant
regions.�ismulti-layer visualization demonstrates the progressive re�nement of spatial attention, a�rming
the hierarchical learning structure of the YOLO11n backbone and enhancing the interpretability of model
predictions in a clinical setting.

6 Discussion

�e trend of results showed that as the number of classes decreased, both precision and recall increased.
�is is expected as the model faces less complexity in distinguishing between fewer categories. Classes like
V and D consistently performed well across all experiments, indicating robust feature extraction for these
wound types. In contrast, the P class remained challenging, showing lower precision and recall, suggesting
the need for more diverse or higher-quality training data. Excluding the BG and N classes led to better
performance, as these classes might introduce noise or ambiguity in the training process. Removing them
allowed the model to focus on wound-speci�c features.

6.1 Limitations

While the proposed YOLO11n-based framework achieved strong performance across several wound
classes, certain limitations must be acknowledged. �e dataset contains an uneven number of samples per
class, especially fewer Pressure wound images, which a�ected the model’s ability to generalize across all
categories equally. �e original dataset lacked localized wound annotations. As a workaround, synthetic
bounding boxes covering the entire image were used, which may have reduced the e�ectiveness of localiza-
tion and Explainable AI techniques. �e dataset consists of only 930 images. Although these were collected
in a clinical setting, a larger dataset with richer variations would help improve the robustness of deep
learning models.

First, the dataset contains an uneven number of samples per class, particularly fewer pressure wound
images, which a�ected the model’s ability to generalize equally across all categories. As a result, the model
achieved strong overall performance but exhibited comparatively lower precision and recall for underrepre-
sented classes such as pressure wounds.�is suggests that class imbalance in the training data in�uenced the
model’s performance. Although standard augmentation techniques (e.g., mosaic, color jittering, horizontal
�ipping) were automatically applied during YOLO11n training, no explicit class-rebalancing strategies-such
as class-aware oversampling or targeted augmentations used to mitigate this imbalance. In future work, we
plan to incorporate targeted data augmentation and sampling methods to improve recognition of minority
wound classes. Second, the original dataset lacked region-level ground-truth wound annotations, which
are critical for training and evaluating object detectors. As a workaround, synthetic bounding boxes were
generated to cover the entire image, allowing the YOLO11nmodel to function in a classi�cation-likemanner.
However, this approach limits themodel’s ability to learn precise spatial localization features andmay reduce
the validity of explainable AI techniques such as Grad-CAM, which rely on spatial gradients to highlight
class-discriminative regions. Consequently, the generated attentionmapsmay not accurately re�ect clinically
relevant wound features. �is limitation underscores the importance of properly annotated datasets for
both accurate localization and interpretable decision-making in medical imaging applications. Additionally,
althoughGrad-CAMvisualizations were included to provide interpretability, the analysis remains qualitative
due to the absence of expert-annotated wound region masks in the AZH dataset. As a result, we were
unable to compute region-level agreement metrics such as Intersection Over Union (IoU) or Dice scores
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to quantitatively validate the alignment of attention maps with wound regions. �is is acknowledged as a
key limitation, and future work will involve validating explainability outputs against expert annotations to
ensure clinical reliability. Future work may include expert evaluation of explainability outputs to ensure
clinical trust and usability. Furthermore, this study includes an ablation analysis to isolate the contributions
of architectural components such as C3k2, SPPF, and C2PSA. However, incorporating more experiments in
future work would help clarify the impact of each component on overall model performance.

�ird, the dataset size remains relatively small (930 images), even though images were captured in a
clinical environment. A larger dataset with richer intra-class and inter-class variation, including di�erences
in wound shape, size, lighting, and anatomical location, would likely improve the robustness and generaliz-
ability of deep learning models in real-world clinical scenarios. Addressing these limitations through more
balanced and diverse datasets, inclusion of precise wound region annotations, and dedicated class-balancing
augmentation strategies will be important for future work. �ese improvements would enhance the model’s
localization capability, improve interpretability via explainable AI, and ensure reliable performance across
all wound types.

7 Conclusions

In this work, we highlighted the e�ectiveness of the latest light version of YOLO, known as the
YOLO11n model, in classifying wounds across six categories using the AZH dataset. Extensive experiments
are carried out to evaluate the e�ectiveness of YOLO11n on wound classi�cation. �e experimental results
underscore the importance of tuning hyperparameters, particularly batch size and epochs, in achieving
optimal performance. �e lightweight architecture of the model and optimization through hyperparameter
tuning resulted in competitive performance, with an overall F1 score of 0.83 and mAP50 of 0.893. �e
YOLO11n model demonstrated excellent potential for wound classi�cation, particularly in scenarios with
fewer distinct classes. However, for broader multi-class classi�cation tasks, further improvements are
necessary to ensure reliable performance across all wound types. �ese results highlighted the model’s
versatility and e�ectiveness in both simple and complex classi�cation tasks, making it a promising tool for
wound diagnosis in clinical settings. For explainable wound classi�cation, Grad-CAM highlighted the most
in�uential regions for each prediction made by the YOLO11n model.

�is study encountered several challenges, including class imbalance, inter-class visual similarity, and
the absence of bounding box annotations, all of which a�ected classi�cation accuracy for certain wound
types. In future work, we intend to apply class-rebalancing techniques such as data augmentation and
oversampling, and to expand the dataset with localized wound annotations. Incorporating multimodal
inputs (e.g., body location) and testing on larger, real-world datasets will further validate and extend the
applicability of our proposed model.

Beyond technical performance, real-world deployment of AI models requires attention to regulatory
compliance, ethical considerations such as patient privacy, and seamless integration into clinical work�ows.
�ese factors are essential for safe and e�ective clinical translation. Future work can focus on validating the
model in real-world settings and addressing these practical challenges.
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