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Abstract: With the advent of Reinforcement Learning (RL) and its continuous
progress, state-of-the-art RL systems have come up for many challenging and
real-world tasks. Given the scope of this area, various techniques are found in
the literature. One such notable technique, Multiple Deep Q-Network (DQN) based
RL systems use multiple DQN-based-entities, which learn together and communi-
cate with each other. The learning has to be distributed wisely among all entities in
such a scheme and the inter-entity communication protocol has to be carefully
designed. As more complex DQNs come to the fore, the overall complexity of these
multi-entity systems has increased many folds leading to issues like difficulty in
training, need for high resources, more training time, and difficulty in fine-tuning
leading to performance issues. Taking a cue from the parallel processing found
in the nature and its efficacy, we propose a lightweight ensemble based approach
for solving the core RL tasks. It uses multiple binary action DQNs having shared
state and reward. The benefits of the proposed approach are overall simplicity, faster
convergence and better performance compared to conventional DQN based
approaches. The approach can potentially be extended to any type of DQN by form-
ing its ensemble. Conducting extensive experimentation, promising results are
obtained using the proposed ensemble approach on OpenAI Gym tasks, and Atari
2600 games as compared to recent techniques. The proposed approach gives a state-
of-the-art score of 500 on the Cartpole-v1 task, 259.2 on the LunarLander-v2 task,
and state-of-the-art results on four out of five Atari 2600 games.

Keywords: Deep Q-networks; ensemble learning; reinforcement learning;
OpenAI Gym environments

1 Introduction

Following the success of deep learning [1–10], Deep Q-Networks (DQNs) [11–13] were used in many AI-
based decision making systems like Multi-agent systems (MAS) [14,15] for Reinforcement Learning (RL) [16–
21]. The DQN helps solve many complex sequential decision making problems. In MAS, the emphasis is put
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on data-sharing schemes, inter-entity communication, and novelty of the Q-Network. However the complexity
of these systems is increasing rapidly, leading to issues like difficulty in training, need for more computational
and time resources, difficulty in fine-tuning, etc. An upcoming approach which has been applied successfully to
machine vision tasks is deep ensemble learning [22–24]. Parallelization seems to be one of nature’s best
approaches for massive computation and decision making, as found in the human brain. If this line of
action is followed, much progress can be made in machine learning and other related tasks. Taking a cue
from the same, in order to address these problems, we propose a simple but efficient DQN-based ensemble
RL approach. The DQNs in the proposed approach share the state and the reward, but have their own local
binary actions, which are updated in their experience replay pools.

Using ensembles in deep RL is rare as has been done in [25], where Q-learning agents have been used in
an ensemble for a time series prediction task. In the same work, different agents are trained over different
epochs leading to varied exposure and hence they have varied decision-making abilities. This tendency
may not be suitable in the long run. In addition, if the time series is too long, the number of agents in the
ensemble grows exponentially. In order to address these issues, the proposed approach is used in Deep Q-
Network ensembles (DQN ensembles) and applied to core RL decision-making tasks. In experiments on
some notable OpenAI Gym tasks, Atari 2600 games, etc., the proposed approach shows advantages like
robustness, faster convergence and better performance as compared to state-of-the-art techniques,
including various conventional Deep Q-Network techniques. The proposed approach achieves state-of-
the-art results on the tasks.

The rest of this paper is organized as follows. Section 2 discusses the background of the paper. Section
3 briefly discusses related works. Section 4 describes details of the proposed approach. Section 5 gives the
implementation details, experimental results, limitations and future work. Finally, Section 6 concludes the paper.

2 Background

2.1 Deep Q-Networks

Deep neural network [11] for approximation of the optimal action-value function from Q-learning can be
expressed by:

Q� s; að Þ ¼ max
p

E
X1
s¼0

csrtþsjst ¼ s; at ¼ a; p

" #
(1)

where the expression gives the maximum sum of rewards rt using discounting factor γ for each timestep twhich
is achieved by a behavior policy π = P(a|s), for state s and action a after making an observation of the same.

It is well known that conventional reinforcement learning (RL) algorithms would become unstable or
even show divergence when non-linear functions were used as in the case of neural network being used
for representation of Q (i.e., the action-value function). In [11], authors discussed some notable reasons.
Firstly, it is due to the correlations present in the observation sequence of the state s. In RL applications,
there is an autocorrelation in the sequence state observations, which is a time-series. However, this could
be true also for the applications of deep networks for modeling of time series data. Secondly, small
updates to Q can significantly alter the policy π, and can hence alter the distribution of data. Finally, there
may be correlations between the action values, Q and the values of the targets, i.e., r + γmaxa’Q(s’, a’).
In [10], they firstly randomize data hence removing correlations in the observation sequence of the state
s, and smooth any changes in the distribution of data. Secondly, they also use an iteration based update
rule which adjusts the action values Q towards the target values Q′ which are only updated periodically
hence reducing target correlations. As it turns out, there can be many techniques of approximation for the
action value function Q(s, a) using a deep network. The sole input to the DQN is the state representation.
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Also, its output layer has a different output for every action. Each output unit corresponds to the predicted Q-
values of the separate action in the input state. The input of the DQN consists of an image (84 × 84 × 4) which
is produced by using a preprocessing map ϕ. The DQN has 4hidden layers out of which 3 are Convolutional
and the last one is fully connected (i.e., dense). All layers use a ReLU activation function. The output layer of
the DQN is also a fully connected layer with one output for every action. The Q-learning iterative update of
the DQN uses the loss function as:

LiðhiÞ ¼ E s;a;r;s0ð Þ � U Dð Þ r þ cmax
a0

Q s0; a0; h�i
� �� Q s; a; hið Þ

� �2

(2)

where Li is the loss function, E is the error function, r is the reward, s is the old state, s′ is the new state, γ is the
discount factor in the horizon of the entity, θi comprises of the parameters of the DQN for the ith iteration, and
h�i comprises of the parameters of the DQN for target computation for ith iteration. The network parameters
of the target h�i are updated with the DQN parameters θi for every C steps and are kept fixed between updates.

2.2 Double Q-Learning

The max operator used in Deep Q-Networks uses the same values both for selection and evaluation of an
action. This leads it to being more inclined towards selection of overestimated values. This issue results in
over-optimistic estimation of values. In order to prevent this, Hasselt, et al. [12] decouples the selection
component from the evaluation component. This is the motivation behind Double Q-learning. In the basic
Double Q-learning technique, two functions are learned by assigning every experience randomly for
updating of any one of these two value functions, in a manner that there will be two sets of weights, θ
and θ`. For every update, one weight-set is used for the greedy policy determination and the other is used
for its value determination. Decoupling the selection component and the evaluation component in Q-
learning and rewriting the target error YQ

t gives:

YQ
t � Rtþ1 þ cQðStþ1; argmaxaQ Stþ1; a; htð Þ; ht (3)

where the variables have their usual connotations as given above.

The error of the Double Q-learning algorithm YDoubleQ
t can now be written as:

YDoubleQ
t � Rtþ1 þ cQðStþ1; argmaxaQ Stþ1; a; htð Þ; h0t (4)

where, the second set of weights h0t is used to evaluate the value of the policy. The second set of weights can
be symmetrically updated by switching the roles of θ and θ’. The other variables have their usual
connotations as followed earlier.

2.3 Return-based Deep Q-Networks

In [13], authors proposed a general framework for combination of a Deep Q-Network and the return-based
RL algorithm called Return-Based Deep Q-Network (R-DQN). They showed that the traditional DQN
performance can be significantly improved by introduction of the return-based algorithm. For further
improvement in R-DQN, they designed a strategy having two measurements for the quality of the policy
discrepancy. They conducted experiments on various OpenAI Gym tasks and Atari 2600 games, achieving
state-of-the-art performance validating the effectiveness of R-DQN. The transitions (xt, at, rt, xt + 1,…,
xt + k) are borrowed from the replay memory. The sequences of these transitions are used by R-DQN for
computation of the value of the state estimate and TD error. The loss L is given by

L hj
� � ¼ ðY xt; atð Þ � Qðxt; at; hjÞÞ2 (5)

where θj is the representation of R-DQN parameters at step j. Also, the target error Y(xt, at) is given by
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Y xt; atð Þ ¼ r xt; atð Þ þ cZ xtþ1ð Þ þ
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where k is the number of transitions and d is the gradient step. Gradient descent is performed for the R-DQN
update having gradient rhj and Loss L as:

rhjL hj
� � ¼ Y xt; atð Þ � Q xt; at; hj

� �� �rhjQ xt; at; hj
� �

(7)

R-DQN uses experience replay [11,26]. The two main differences between R-DQN [27] and DQN [17]
w.r.t. experience replay are that: 1) In the R-DQN, for a state x, the behavior policy μ(⋅|x) is stored in R-DQN.
2) In the R-DQN, the replay memory samples are sequential.

2.4 Other Notable Techniques

To deal with non-stationary issues in RL systems, Palmer, et al. [27] developed a technique named Lenient-
DQN (LDQN), which applies leniency with decaying temperature values for adjustment of policy updates, which
are sampled from the experience replay pool. This technique has been applied to the coordinated multi-entity
systems and the performance of this work has been compared with the Hysteretic-DQN (HDQN) [28].
Experimentation demonstrates that LDQN is better than HDQN. The concept of leniency coupled with a
replay strategy has also been used in the Weighted Double Deep Q-Network (WDDQN) [29] to deal with
non-stationarity. Experimentation showed that WDDQN performs better than Double DQN in two multi-
entity environments. Hong et al. [30] introduced a Deep Policy Inference Q-Network (DPIQN) for modeling
of MAS and also the enhanced version viz. Deep Recurrent Policy Inference Q-Network (DRPIQN) for
coping with partial observability. Experiments show better performance of both DPIQN and DRPIQN over
their respective baselines, viz. DQN and DRQN [31]. However, these deep network approaches suffer from
complexity issues and are difficult to implement, train and tune.

Gupta et al. [32] examined three separate training techniques: centralized learning, concurrent learning and
parameter sharing. Centralized policy gives a joint action using joint observations of all the entities in the
environment while as the concurrent learning trains entities together with the help of the joint reward signal.
In concurrent learning, each entity learns its private policy, which is independent and is based on private
observation. In the parameter-sharing scheme, entities are trained simultaneously using their experiences
together although each of them has unique observations. Our approach is not as complex as these, as it uses
a robust ensemble scheme. It involves sharing a common state and common reward, with the exception of
the action which is locally updated in the experience replay pool of each DQN. As a result, significant time
and resources are saved during training and execution, because of the reduced complexity. However, it
should be noted that the proposed approach does not go in the direction of multi-entity based RL systems
due to its parallel nature and other aspects; hence, no comparison is made with them. RL-based ensemble
learning is rare, as found in a work using deep Q-learning agent ensembles for time series prediction [25].
The Q-learning agents are trained over different epochs. This mechanism has the disadvantage that the
exposure of the agents to the environment is varied and hence different decision-making abilities may be
acquired. Also, this issue may not be suitable for obtaining the optimum behavior of the ensemble. Also, if
the data series is long, the number of agents in the ensemble grows exponentially. To the best of our
knowledge, the proposed technique is the first one to use DQN ensembles and apply them to RL decision-
making tasks like OpenAI Gym tasks, Atari 2600 games, and maze traversal.

3 Related Work

DQNs [11] are typical deep RL representations, which use Convolutional Neural Networks (CNNs) [33] as
models trained with variants of Q-learning [34]. Experiments showed that DQNs surpass their previous
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algorithms on almost the entire Atari 2600 suite of games [35] and perform almost as well and even better than
humans. DQNs have been found to be adaptable and versatile [36]. Subsequent to the success of DQNs many
efficient techniques have been proposed. DDQNs [12] reduce over-estimation bias risks of Q-learning as
explained above. Due to limitations of CNNs, Long Short Term Memory Networks (LSTMs) or other Auto-
encoders, DQNs exhibit other problems like lack of long term memory. Hausknecht, et al. [31] also
investigated the effect of adding recurrence in DQNs. Wang, et al. [37] have since expanded DQNs using a
dueling architecture by generalizing actions. Multistep bootstrapped targets [17,38] used for the
Asynchronous Advantage Actor Critic (A3C) [39] shift the variance-bias tradeoff and help to propagate the
rewards faster. Noisy DQNs [40] use stochastic layer sin the network for exploration. Distributed Q-learning
[41] uses learning based on categorical distributions of the returns. Rainbow [42] combines various types of
DQNs since they use a common framework. Experiments showed that rainbow achieves good performance
on the Atari 2600 games benchmark. After looking closer at Rainbow, it was observed that priority
identification was an important factor for the performance of the agent. Schaul, et al. [43] used one actor for
data collection, leading to efficiency issues. Ape-X [44] used a distributed deep RL architecture having
hundreds of actors for data collection for obtaining a large number of replay-buffers. Experiments showed
that ApeX doubles the performance of rainbow with lesser training time. The success of techniques like
ApeX, reveals the efficacy of distributed computing in deep RL and its importance in the field. However, it
seems that using the technique wherein a large number of agents are used without proper consideration for
the holistic as well as individual behavior(s), needs some improvement. Continuing in this line of distributed
computing, the closest work to the proposed technique is that of [25], wherein Q-learning based agents are
used in an ensemble for time series prediction. Here the agents are trained over distinct epochs, which may
lead to different exposure in turn leading to overall varied decision-making abilities. This issue may create
long term problems. Also, for a long time series, the number of ensemble agents increases exponentially. To
address these issues, we propose a simplified, robust and efficient DQN ensemble based technique.

4 The Proposed Approach

The proposed technique utilizes the ensemble of Deep Q-Networks for deciding the task action by using a
consensus-based decision structure. The DQNs in the ensemble propose their local actions, which are taken up by
the decision structure. The ensemble DQNs have shared state and common reward, but with DQN local-action
update using experience replay [43]. The task environment is either explored by selecting a random action from
the task action set A or is exploited by formulating a consensus action acons using the DQN ensemble. The
freedom of the decision maker to choose between exploration or exploitation is a well-known concept in RL
and it depends on probabilistic parameters. If exploitation is chosen, an ensemble consensus action acons is
formulated using a decision structure based on a chain of if-else statements feeding on local actions suggested
by each of the ensemble DQNs. Otherwise a random action is chosen from the action set A of the task. Once
the final action afinal is applied to the environment, the reward or penalty is obtained depending upon success
or failure of the action taken. This reward or penalty is passed on to each DQN in the ensemble along with
the final action value afinal of the DQN ensemble. The final action is then decomposed into n local actions by
a decomposition structure. This decomposition ensures a binary action space for every DQN based entity
presented in the ensemble. This new feature in turn ensures the following:

1. Straightforward and faster learning due to limited action space.

2. Reduced resource requirement for training or learning.

3. Lesser learning burden on each entity by using a simple load distribution scheme.

For n DQN entities in the ensemble, it can be stated that the mary task action space to be taken up by the
ensemble, e.g., given by A = { a1, a2, a3,…, am} is decomposed into n binary action spaces for n DQNs, all
being present in the proposed ensemble. Thus,
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Length Að Þ ¼ 2n orm ¼ 2n (8)

Having a binary action space is also useful for faster convergence due to lesser entity-learning load, as
has been demonstrated experimentally in the subsequent section. Proceeding further with the discussion of
the proposed approach, next each DQN updates its state using experience replay [43] using its local action
and the common reward. Subsequently task error, score, etc. is calculated and the training loop keeps running
till error decreases below a certain threshold. Fig. 1 illustrates the working of the proposed approach.
Algorithm 1 summarizes steps for training the DQN ensemble using the proposed approach.

Algorithm 1: The proposed DQN ensemble approach for an RL task

1: Input: DQN ensemble having n binary action DQNs; A = task action space; r = reward; E = error
threshold

2: Output: e = Task error; S = Task score

3: while e > E do

4: Take action a ∈ A based on probabilistic exploration (random) or exploitation (DQN ensemble action
consensus)

5: Calculate r

6: Decompose a into its binary representation covering all DQNs in the ensemble

7: for i in range (1, n) do

8: Update ith binary action DQN in the ensemble, based on its local action value and shared
reward using experience replay

9: end for

10: Calculate e, S, etc.

11: end while

12: Task completed

Figure 1: Illustration of the proposed approach
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5 Experiments

This section describes the experiments undertaken during the course of this project. Experimentation
was done on the Python platform using TensorFlow with an Intel Xeon (2 Core) processor, with
26.75 GB RAM and 16 GB GPU (Nvidia T4). The hyperparameters used in the experiments are similar
to those used in [45] as listed in Table 1.

5.1 RL Environments Used for Testing

We investigate the proposed approach using ensembles of some existing Deep Q Networks viz. DQN,
DDQN and RDQN [11–13], on two notable OpenAI Gym tasks viz. Cartpole-v1 and LunarLander-v2, on a
custom maze traversal task and on five Atari 2600 games. The DQNs in the proposed ensembles follow their
original papers with regards to their respective implementations. The standard tasks are chosen because they
can be conveniently used by the proposed approach, besides being extensively benchmarked as follows:

5.1.1 The CartPole-v1 Task
In this OpenAI Gym environment, a pole is attached to a cart by an un-actuated joint, which is moving

along a frictionless track. The whole system is controlled by application of a force of + 1 or −1 to the cart.
Initially the pendulum is upright, and the goal of the governing algorithm is to prevent the pendulum from
falling over. The reward is + 1 for each time step for which the pole remains upright. The episode ends if the
standing pole is more than 15° from the vertical, or if the cart moves beyond 2.4 units from the center. The
available actions are move left (0) and move right (1). The above environment is based on the cart-pole
problem discussed by Barto, Sutton, and Anderson [46].

5.1.2 The LunarLander-v2 Task
In this OpenAI Gym environment, the landing pad is located at coordinates (0,0) corresponding to the

first two numbers in state vector. The reward for landing safely on the landing pad with zero speed is about
100 to 140 points. The episode ends if the lander crashes or comes to rest. These actions lead to additional
−100 or + 100 points respectively. Each leg ground contact gives + 10 points. Firing main engine leads to
−0.3 points each frame. Solved task has 200 points. There is infinite fuel in the lander, so it can learn to fly
and then land on its first attempt. Four discrete actions are available, i.e., do nothing (0), fire left orientation
engine(1), fire main engine (2) and fire right orientation engine (3).

Table 1: Hyperparameters used in the experiments

Hyperparameters Value

Optimizer Adam Optimizer

Learning rate 0.0001

Adam E 0.0001

Adam β1 0.9

Adam β2 0.999

Batch size 64

Replay period 80

Episodic memory capacity 30000

Target Q-Network update period 1500

Target E 0.01
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5.1.3 The Maze Traversal Task
This is a customized framework for a Markov Decision Process (MDP) and consists of amaze

environment (with 8 × 8 cells) and a DQN based entity. The environment is a square maze with three
types of cells i.e., occupied cells, free cells and the target cell. The DQN based entity is a self-
maneuverable entity which is allowed to move only on free cells, and whose goal is to get to the target
cell. The DQN based entity is encouraged to find the shortest path to the target cell by a simple reward
scheme. Four discrete actions are available i.e., move left (0), move up (1), move right (2) and move
down (3). The rewards are floating points ranging from −1.0 to 1.0. A move from a cell to another will
be rewarded by a positive or a negative amount. A move from a cell to an adjacent one will cost the
entity −0.04 points. This discourages the entity from wandering around and encourages it to get to the
target in the shortest route possible. Maximum reward of 1.0 points is given when the entity arrives at
the target cell. Entering a blocked cell costs the entity −0.75 points. An attempt to move to a blocked cell
is invalid and is not executed. However, this attempt will incur a −0.75 points penalty. The same rule
holds for an attempt to move outside the maze boundaries i.e., −0.8 points penalty. The entity is also
penalized by −0.25 points for moving to a cell which it has already visited. To avoid infinite loops and
wandering, the game ends if the total reward of the entity is below a negative threshold i.e., −0.5 ×Maze-
size. It is assumed that under this threshold, the entity has lost its way and has made too many errors
from which it has learned enough, and should proceed to a new episode.

5.1.4 Atari 2600 Games
We also investigate the performance of the proposed technique on computer games. For this, we choose

five Atari 2600 games [35] using end-to-end RL vision setup, since its games are popular and contain varied
challenge sets. Fig. 2 shows rendering screenshots for some of the tasks.

5.2 Consistency Evaluation

For evaluation of consistency with earlier benchmarking on the tasks used here, the interpretability
metric M is used as in [47]:

M ¼ �0:2þ 0:2l þ 0:5no þ 3:4nnao þ 4:5nnaoc (9)

where l is formula size, no is the number of operations, nnao is the number of non-arithmetical operations, and
nnaoc is the number of consecutive compositions of non-arithmetical operations. For assessing the statistical
repeatability in the experiments, 10 independent runs are performed for every setting.

5.2.1 Performance on the CartPole-v1 Task
Fig. 3 shows the reward v/s episode variation for Cartpole-v1 for DQN [11] and that of its proposed

ensemble. The red horizontal line corresponds to reward for solving the task. The dark brown and light
brown vertical lines correspond to the episode number for which the task is solved by the original and
proposed techniques, respectively. Fig. 4 shows the results within same environment and set of rules

Figure 2: Screenshots of the three tasks. Left: Cartpole-v1, middle: LunarLander-v2, right: Maze traversal
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using DDQN [12] for the conventional and proposed approaches respectively. The horizontal red, vertical
light-brown and vertical dark-brown lines have the same meanings as the previous Fig. 3. It is noted from
Figs. 3 and 4 that the proposed approach converges much earlier (in 125 episodes) as compared to the
conventional approach (in 146 episodes). After training, both of the competing techniques are allowed to
run to evaluate their respective performances, which stay well above the minimum reward line. Table 2
shows the state-of-the-art results including those of our technique. It can be seen that the proposed
ensemble R-DQN ensemble achieves the highest task score as shared by two other state-of-the-art
techniques, while it achieves the second rank for the interpretability metric (M) among various competing
techniques.

Figure 3: Rewards v/s Episodes obtained using DQN and the proposed DQN ensemble for Cartpole-v1

Figure 4: Rewards v/s Episodes obtained by using single DDQN and the proposed DDQN ensemble for
Cartpole-v1

CSSE, 2023, vol.46, no.3 2659



5.2.2 Performance on the LunarLander-v2 Task
Fig. 5 shows the episode score v/s episodes for DQN and its proposed ensemble on the LunarLander-

v2 task. It should be noted that the proposed ensemble is able to outperform the conventional DQN approach
by converging in 671 episodes, whereas the conventional DQN approach lags behind by converging in
749 episodes. The performance of the state-of-the-art techniques including ours on the Lunarlander-
v2 task is shown in Table 3. It can be seen from the table that the proposed R-DQN ensemble achieves
first rank for the task score, and the second rank for the interpretability metric M among various
competing techniques, respectively.

Table 2: Performance comparison on the Cartpole-v1OpenAI gym task

Methods Score M

DQN [11] 208.33 10174.80

DDQN [12] 214.23 4014.72

R-DQN [13] 327.30 1157.20

Tree-backup(λ) [13] 494.70 1157.20

Importance-sampling [13] 498.90 1157.20

Qπ [13] 489.90 1157.20

Retrace(λ) [13] 461.10 1157.20

Watkins’s Q(λ) [13] 484.30 1157.20

Peng & williams’ Q(λ) [13] 496.70 1157.20

General Q(λ) [48] 499.90 1157.20

Bayesian DRL [49] 113.52 8090.40

Bayesian DRL weighted [49] 136.75 8090.40

K-F approximate curvature [50] 321.00 70786.20

Differentiable decision Trees [51] 500 53.40

Oblique decision trees [47] 500 24.08

Ours: DQN ensemble 212.14 2346.13

Ours: DDQN ensemble 215.76 635.32

Ours: R-DQN ensemble 500 51.26

Figure 5: Score v/s episode performance on the LunarLander-v2 task. Left: For DQN and right for the
proposed DQN ensemble
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5.2.3 Performance on the Maze Traversal Task
For the custom maze traversal task, Fig. 6 shows the episode length per epoch v/s epochs for DQN and

the proposed DQN ensemble respectively. The lesser the episode length, the lesser is the number of steps
which the entity takes to reach the target cell for the particular epoch. The training stops when the win-
rate becomes one. It should be noted that the proposed DQN ensemble approach converges in lesser
number of epochs viz. 58, as compared to the conventional approach viz. 61 epochs which is an
indication of the robustness of the proposed technique. Convergence takes place in this task when win-
rate becomes one. Fig. 7 shows the total win count for both approaches till win-rate becomes one. Note
that the total win count towards the end of training is higher for the proposed DQN ensemble compared
to the original [11]. Table 4 shows the performance of DQNs on the Maze Traversal task, along with that
of their respective proposed ensembles. The values are obtained till win-rate for the task becomes one.
The proposed R-DQN ensemble achieves best results among various competing techniques. At this point,
we would like to emphasize that the better performance of our ensemble technique can be attributed to
parallelization of the decision-making, which offers distributed decision-making, allowing for more
liberty per DQN entity, which in turn makes it more aware and efficient by reducing its load as compared
to conventional single entity based techniques. All deep Q-Networks used in the proposed ensemble
technique are as per their respective papers [17,26,27].

5.2.4 Performance on Atari 2600 Games
Experimentation for five Atari 2600 games [49] is also been done using an R-DQN based ensemble

because of its superior performance. The results of the competing state-of-the-art techniques are from [45]
and are shown in Table 5. It can be seen that the proposed the R-DQN ensemble generally outperforms
other state-of-the-art techniques and achieves top results on 4 out of 5 Atari 2600 games.

Coming to the limitations of the proposed approach, it should be noted that the ensemble approach can
perform many times faster using parallel processing hardware for better distribution of the load as mandated
by the ensemble approach. Also, due to use of a limited local action space for every DQN in the ensemble and
straightforward action decomposition rule, the performance can be improved if these aspects are improved.
Also, finding better and more efficient DQNs for the proposed ensemble technique will be a fruitful exercise.

Table 3: Performance comparison on the LunarLanderv2 OpenAI gym task

Methods Score M

DQN [11] 201.4 2137.3

DDQN [12] 220.3 979.4

R-DQN [13] 238.4 298.3

Advantage-weighting [52] 229 581153.20

Value-difference [53] 248.2 632620.2

Shallow NN [54] 258.8 77.6

Rule list [ 51] −78.4 89

NLDT [55] 132.8 136.7

Oblique decision trees [47] 246.1 123.3

Ours: DQN ensemble 201.6 1362.5

Ours: DDQN ensemble 232.3 978.3

Ours: R-DQN ensemble 259.2 83.4
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Further using a larger action spaces can hopefully enrich the technique. We intend to take up these issues in
the future. Another task which we intend to take up is applying the technique to real-world tasks like robotics
and financial predictions.

Figure 6: Episode length v/s epochs for maze traversal task using DQN [17] and the proposed DQN

Figure 7: Total win count v/s epochs for the maze traversal task using DQN [17] and the proposed DQN

Table 4: Performance on the maze traversal task (Custom)

Methods Average Epochs

DQN [11] 25.3 61

DDQN [12] 25.1 57

R-DQN [13][27] 22.8 55

Ours: DQN ensemble 20.9 58

Ours: DDQN ensemble 20.2 56

Ours: R-DQN ensemble 19.7 55
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6 Conclusion

In this paper, the efficacy of using parallel decision making in the DQN based systems for reinforcement
learning has been highlighted in light of the difficulties faced by the contemporary techniques, like training
issues and limited performance. Consequently a simple but efficient DQN ensemble technique is proposed
using an ensemble of binary action based DQNs. For experimentation, ensembles of DQN, DDQN (Double
Q-learning) and R-DQN have been used. The performances of the single DQNs, their respective ensembles,
and other state-of-the-art techniques have been compared. The proposed Deep Q-network ensemble
technique is able to outperform other state-of-the-art techniques on different RL tasks. For example, the
proposed technique achieves first rank on scores of the Cartpole-v1 task, of the LunarLander-v2 task, and
of four out of five Atari 2600 games. Issues associated with the proposed approach include having a
limited local action space for each DQN-based entity in the ensemble. This action space needs to be
augmented with richer information for more complex tasks. In addition, the action decomposition
structure needs to be made more accommodating for extended decision-making in more complex tasks.
Future work would involve applying the proposed approach to tasks that have a large action space and
that are more complex, such as those found in real-world environments like robotics and others.
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