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Abstract: Fine-grained image search is one of the most challenging tasks
in computer vision that aims to retrieve similar images at the fine-grained
level for a given query image. The key objective is to learn discriminative
fine-grained features by training deep models such that similar images are
clustered, and dissimilar images are separated in the low embedding space.
Previous works primarily focused on defining local structure loss functions
like triplet loss, pairwise loss, etc. However, training via these approaches
takes a long training time, and they have poor accuracy. Additionally, rep-
resentations learned through it tend to tighten up in the embedded space and
lose generalizability to unseen classes. This paper proposes a noise-assisted
representation learning method for fine-grained image retrieval to mitigate
these issues. In the proposed work, class manifold learning is performed
in which positive pairs are created with noise insertion operation instead
of tightening class clusters. And other instances are treated as negatives
within the same cluster. Then a loss function is defined to penalize when
the distance between instances of the same class becomes too small relative
to the noise pair in that class in embedded space. The proposed approach is
validated on CARS-196 and CUB-200 datasets and achieved better retrieval
results (85.38% recall@1 for CARS-196% and 70.13% recall@1 for CUB-200)
compared to other existing methods.

Keywords: Convolutional network; zero-shot learning; fine-grained image
retrieval; image representation; image retrieval; intra-class diversity; feature
learning

1 Introduction

For the past two decades, extensive research has been done on image retrieval, which has proven
useful [1]. In applications where classes have more significant inter-class variance, prior image retrieval
methods work better, but not for classes with sizeable intra-class variance compared to inter-class
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variance. Conceptually, but in the real World, the search must be meticulous, that is, the relevant sub-
category to be found by its definition, as a concept, in general, may not contain every single piece of
data. For instance, a query for images like birds or dogs, or cars categories must have the same fine-
grain subset of images returned. It becomes complex and challenging to search out. This is because,
e.g., when looking at a single component of the bike or bird, only its textural details, such as the bird’s
feathers and the bike’s headlight, are evident; only in detail comparison is anything identifiable, and
therefore the problem is challenging to solve [2]. Learning robust descriptions is crucial in fine-grained
image retrieval. If an efficient retrieval method is used, it enables images to be associated with similar
features at the front and dissimilar ones at the end. In this regard, most of the prior works were based
on deep metric learning (DML) paradigms. Several methods were built upon contrastive loss [3], triplet
loss [4,5] and quadruplet loss [6,7]. The contrastive loss is usually based on the pair, i.e., a positive pair
consists of images from the same class, while the negative pair consists of images of different classes.
Contrastive loss aims to penalize the case when the negative pair distance is smaller than some margin
and when the positive pair distance is greater. The disadvantage of this loss is that it does not take
relative distances but only focuses on the pair. This was tackled by triplet loss, which is based on the
triplets rather than pairs. A triplet is formed by choosing an anchor image, a positive image from
the same anchor class, and a negative image from a different class. The Triplet loss aims to penalize
the case when a positive pair (anchor-positive) distance is greater than the negative pair (anchor-
negative) distance by some margin. Many previous works employed the triplet loss and improved it by
including more negatives in the loss function [8–10]. These strategies were based on the common goal
of DML, which aims to cluster all similar class images in the embedding space as closely as possible,
resulting in more tightly clustered classes in the embedded space. However, this is not true for large
intra-class variance databases since no image does not necessarily look like all the images within the
same class. In addition, existing efforts [8–12] had limited efficiency since they hugely depended on
sampling strategies. In contrast, this paper deals with instances sampled from the minibatch without
requiring hard-mining strategies. This paper proposes an approach to create positive pairs inside the
class cluster to diversify class instances while separating them from other class instances. The basic
idea is illustrated in Fig. 1.

Contribution:

• A noise-assisted feature learning approach for fine-grained image search is proposed, which
aims to learn diverse features and reduce the costly sampling process of triple loss.

• The main goal of the proposed work is to learn a manifold of each class instead of just class
discriminative learning in the triplet-based loss. We do this by contrasting positive pairs (created
by noise) in each class cluster in the embedded space.

• The importance of intra-class diversity in the embedded space is studied as it helps in better
generalization to unseen classes.

• To include more diversity in the learned features, this paper exploits self-supervised constraint,
which further helps to improve retrieval performance.

• Finally, the proposed approach is validated with experiments conducted on well-known fine-
grain datasets, which show improved performance compared to existing techniques.
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Figure 1: The proposed approach focuses on inter-class separability and intra-class diversity learning.
The proposed work lies in the inclusion of intra-class diversity in embedded space. We aim to learn
manifolds for each class because no query image necessarily looks identical to all instances of that
class but only to the most similar instances

2 Related Work

Research into image retrieval was also spurred by the success of the convolutional neural network
(CNN) [13] and other deep learning techniques. For example, a pretrained CNN was used by
Babenko et al. [14] for image retrieval and representation, and the CNN’s responses were used to fine-
tune it on the target images. Using sum pooling on deep features, the feature aggregation method was
proposed in [15,16]. According to Shakarami et al. [17], a descriptor for image retrieval was built on
the fusion of three different features: local binary pattern (LBP), histogram of gradients (HOG), and
CNN. To encode many locations with the convolutional layers’ encodings, Tolias et al. [18] described
a method for producing compact features. A feature learning technique with a cross-batch reference
strategy for picture retrieval was suggested by Yang et al. [19]. The bag-of-words approach was used
by Mohedano et al. [20] to exploit CNN features, while CNN features with vector locally aggregated
descriptors (VLAD) are utilized in [21]. These techniques were good at a coarse level, but fine-grained
images require the detection of subtle locations.

Recently, research on fine-grained image tasks has been done using the deep learning paradigm.
The challenge is how to locate and represent subtle details. An approach to fine-grained vehicle
classification by Watkins et al. [22] is to first locate the item with a trained classifier and then deploy
this detected border-box for vehicle classification. For object localization, the authors in [23] used pre-
trained VGG-16 [24] and removed noise or background to pick its deep descriptors. The author of
[25] made use of convolutional kernels to pick and represent the object’s sections. ResNet18 [26] was
investigated by Kumar et al. [27] for the fine-grained image retrieval (FGIR) task, and its activations
were employed for retrieval. For fine-grained categorization, Zhou et al. [28] investigated the label
hierarchy to exploit rich associations through bipartite graphs and VGG-nets [24]. The centralized
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ranking loss was proposed by Zheng et al. [29] for weakly supervised object localization. The contours
of the CNN response map were then used to extract the features.

In addition, some efforts were made to embed learning. Like, [4] utilized pairwise loss, and [5]
utilized triplet loss on top of CNN for image embedding learning. Other extensions of these works
are [8–12]. Most of these methods ignored inter-class diversity and were based on costly hard mining
strategies. Further, Vasudeva et al. [30] looked for optimal hard mining. In addition, Xuan et al. [31]
showed the importance of intra-class variance in learning embedding. To this end, we focus on
incorporating intra-class diversity into the embedding space while minimizing the sampling costs.

3 Methodology

The main objective of our work is illustrated in Fig. 2. Here, the goal is to learn class manifold
by including both Inter-Class separability and Intra-class diversity. To enhance a network’s potential
for feature representation, noise can aid in the deep CNN’s learning of more accurate representations.
Prior efforts such as [32,33] commonly used noisy labels to train feature representation networks, which
requires a large dataset with noisy labels. Rather than of utilizing noisy labels, we train the network in
this study by inserting randomness (noise) at the input and last layer. At the input layer, a noisy image
is formed, and at the output layer, a noisy feature is created, both of which act as randomness to the
network, which helps in achieving the model’s generalizability.

Let training images {x1, x2, . . . , xm} ∈ X with associated labels
{
y1, y2, . . . , ym

} ∈ Y in the given
minibatch for training the network. The goal is to learn low embedding for each image with the
following constraint.{

Dy

(
fθ (xi) , fθ

(
xj

)) → 0, if yi = yj;
Dy

(
fθ (xi) , fθ

(
xj

))
> α, if yi �= yj,

(1)

where, fθ

(
xj

)
is the feature embedding of image xj, fθ is the feature extraction network, and Dy may be

Euclidean or cosine distance.

Let fi = fθ (xi), I be the set of indices corresponding to the number of instances in a minibatch,
A(i) be the set of indices of all positives to the ith image instance, and C(i) be the set of indices of all
negatives to ith image instance.

For inter-class variance, the positives from simple transformation operations like rotation, crop-
ping, flipping, etc., are considered. The metric constraint for

(
Xi, Xp, Xn

)
: Yi = Yp, Yi �= Yn in

terms of cosine similarity could be defined as:(
fi � fp

)
> (fi � fn) , ∀i, p, n ∈ I, yi = yp, yi �= yn (2)

and the loss for constraint (2) can be defined as:

Linter =
∑

i∈I

1
|A (i)|

∑
p∈A(i)

(
− log

exp(fi � fp/τ)

exp(fi � fp/τ) + ∑
n∈C(i) exp(fi � fn/τ)

)
(3)
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Figure 2: Overview of the proposed approach under FGIR

3.1 Noise-Assisted Feature Learning (NAFL)
Fine-grain images generally possess a large intra-class variance than an inter-class variance. Hence,

the same should also be true in the embedding space. Prior works focused on separating class clusters
as much as possible, neglecting intra-class variance and resulting in the tightening of class clusters.

Thus, to incorporate intra-class variance, class manifold learning should be utilized. For this, the
positive pairs are formed as: given an input image xi, the positive candidate for xi computed as (4)

x∗
I [a:a + k, b:b + k] = shuffle(xi [a:a + k, b:b + k] (4)

Eq. (4) states that for each non-overlapping window of size k × k in the image xi, do shuffle the
pixel values.

Fig. 3 depicts the noisy images with various-sized windows. On comparing to Gaussian noise,
which adds noise all over the image, this work creates a noisy image by simply shuffling image
intensities in the neighbor. This can be clearly visible in Fig. 3.
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Now, consider the f∗
i be the L2 normalized feature embedding of the noisy image x∗

i . Consider the
cosine similarity

(�, �, �
)

between fi and f∗
i as fi�f∗

i , where � is the dot product. The goal is to maximize
fi�f∗

i for all instances xi ∈ X . Similar to (1), the metric constraint for
(
xi, x∗

i , xj

)
: yi = y

(
x∗

i

) = yj could
be defined as:(

fi�f∗
i

)
>

(
fi � fj

)
, ∀xi, xj ∈ X, yi = y

(
x∗

i

) = yj (5)

where, x∗
i is a noised version of xi which is produced by applying (4).

For constraint (5), the loss can be defined as:

Lintra =
∑

i∈I

[
− log

exp
(
fi�f∗

i / τ
)

exp
(
fi�f∗

i / τ
) + ∑

n∈A(i) exp (fi � fn/τ)

]
(6)

In addition to the noised image, noisy feature f#
i = f∗

i + ft
i is computed to further include it as the

positive sample, where ft
i is the embedding of the transformed version. The loss Lintra can be rewritten

as:

Lintra =
∑

i∈I

∑
p1∈(f∗i ,f#

i )

(
− log

exp(fi � p1/τ)

exp(fi � p1/τ) + ∑
n∈A(i) exp(fi � fn/τ)

)
(7)

The network is trained with backpropagation to jointly minimize the two losses (3) and (7) over
each minibatch m sampled from the database.

Figure 3: Noisy images under different window sizes (Best view during zoom and in color)

4 Implementation and Dataset Settings

The Imagenet pre-trained model Resnet-50 [26] is used as a base network. The embedding size
is set to 1024. The learning rate is set to 10e-4, and the minibatch size is set to 64 images. For
data augmentation, random rotation, reflection, crop, and color augmentation [34] are used. All the
experiments are performed on MATLAB 2019b with NVIDIA Tesla K40c. Two widely used datasets,
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CARS-196 [35] and CUB-200 [36], are selected to evaluate the proposed method. The CUB-200 dataset
consists of 11,788 images of 200 bird species. Following the state-of-the-art evaluation protocol [37],
the first 100 species are used for training and the next 100 for testing. Similarly, the CARS-196 dataset
consists of 198 car models and 16,185 images. The first 98 models are used for training, and the next
98 for testing.

5 Results

In this section, the FGIR results are reported, which includes an analysis of the effect of noise and
the importance of intra-class diversity in retrieval performance.

5.1 Effect of Noise on the Network
To evaluate the influence of the noise on retrieval performance, the experiments are performed

on the CARS-196 and CUB-200, and the results in the form of recall@k are depicted in Figs. 4 and 5.
It can be observed from the figures that using a gaussian noise image improves retrieval performance
compared to not using noise. Consequently, with the noisy image formed with the proposed method,
performance is further improved, which is reflected in recall@k. This demonstrates that noise helps in
learning the model generalization better.

Figure 4: Recall@k for CARS-196 under different settings of noise

Figure 5: Recall@k for CUB-200 under different settings of noise
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5.2 Importance of Intra-Class Diversity
Next, the importance of intra-class diversity in the embedding space is examined. The fine-grained

classification results by following standard training and testing protocol [35] are depicted in Table 1.
In addition, the retrieval results are depicted in Table 2. As shown in Tables 1 and 2, when the inter-
separability is included as a constraint in the embedding space, the classification accuracy improves
for both datasets. For example, as in Table 1, for CARS-196, the accuracy of 90.2% is improved to
91.72% by training the model with the inter-separability loss compared to the cross entropy loss.
Further, this too improved to 93.68% accuracy when the intra-diversity loss was also added. Therefore,
this demonstrates the importance of intra-class diversity in the embedded space. Table 2 reports the
retrieval results for both datasets where top-1 and top-2 retrieval accuracy improves with the inclusion
of the intra-class diversity loss. This further confirms the importance of intra-class diversity.

Table 1: Top-1 classification accuracy

Base network Loss CARS-196 CUB-200

Resnet50 Standard cross entropy 90.23% 80.12%
Linter 91.72% 81.53%
Linter + Lintra 93.68% 82.44%

Table 2: Top-1 and Top-2 retrieval accuracy

Base network Loss CARS-196 CUB-200

Top-1 Top-2 Top-1 Top-2

Resnet50 Triplet loss 79.03% 84.01% 67.15% 76.23%
Linter 81.16% 86.86% 68.83% 77.11%
Linter + Lintra 84.75% 90.12% 69.67% 78.53%

5.3 Performance Enhancement with Self-Supervision Constraint
To further improve the model’s performance, the self-supervised learning approach can be

explored. For this, the rotation [38], exemplar [39], and Jigsaw-puzzle [40] are tested. For the rotation
task, the rotation angles in the range (0°, 90°, 180°, 270°) are considered. For the exemplar task,
six transformations (translation, scaling, rotation, contrast, adding color intensity) are considered
for each surrogate class. The results are depicted in Figs. 6 and 7, where it can be seen that one
with the Jigsaw-puzzle as additional self-supervised learning (SSL) can improve retrieval performance
compared to others. This appears to be because the jigsaw-puzzle task forces the model to focus on
sub-parts or fine-grained parts of the image. However, rotation and exemplar tasks give the network
a small amount of regularization.

5.4 Comparison to State-of-the-Arts
Next, the comparative analysis of the proposed method with other state-of-the-art are reported in

Table 3, where the proposed method achieves better results with 84.75% Recall@1, 90.12% Recall@2,
93.27% Recall@4, 95.32% Recall@8, 97.21% Recall@16 for CARS-196. Further, this is improved
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by including self-supervision task (Jigsaw-puzzle), and the results are 85.38% Recall@1, 91.90%
Recall@2, 95.1% Recall@4, 97.14% Recall@8, 98.99% Recall@16.

Figure 6: Recall@k for CARS-196 under different self-supervision tasks

Figure 7: Recall@k for CUB-200 under different self-supervision tasks

Table 3: Performance (Recall@k) comparison under zero-shot setting

Method CARS-196 CUB-200
k = 1 k = 2 k = 4 k = 8 k = 16 k = 1 k = 2 k = 4 k = 8 k = 16

Contrastive [3] 21.7 32.3 46.1 58.9 72.2 26.4 37.7 49.8 62.3 76.4
Triplet [4] 39.1 50.4 63.3 74.5 84.1 36.1 48.6 59.3 70.0 80.2
LiftedStruct [9] 49.0 60.3 72.1 81.5 89.2 47.2 58.9 70.2 80.2 89.3
N-pairs [8] 53.9 66.8 77.7 86.3 - 45.4 58.4 69.5 79.4 -
Facility location [10] 58.1 70.6 80.3 87.8 - 48.2 61.4 71.8 81.9 -
PDDM+Quadruplet [7] 57.4 68.6 80.1 89.4 92.3 58.3 69.2 79.0 88.4 93.1
SCDA [23] 58.5 69.8 79.1 86.2 91.8 62.2 74.2 83.2 90.1 94.3
CRL-WSL [29] 63.9 73.7 82.1 89.2 93.7 65.9 76.5 85.3 90.3 94.4
DGCRL [37] 75.9 83.9 89.7 94.0 96.6 67.9 79.1 86.2 91.8 94.8
EPSHN [31] 82.7 89.3 93.0 - - 64.9 75.3 83.5 - -

(Continued)
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Table 3: Continued
Method CARS-196 CUB-200

k = 1 k = 2 k = 4 k = 8 k = 16 k = 1 k = 2 k = 4 k = 8 k = 16

(NAFL) (R50) 84.75 90.12 93.27 95.32 97.21 69.67 78.53 86.82 92.1 95.87
(NAFL + SSL) (R50) 85.38 91.90 95.1 97.14 98.99 70.13 78.88 87.17 92.4 96.8

Similarly, for CUB-200, the proposed method NAFL achieves 69.67% Recall@1, 78.53%
Recall@2, 86.82% Recall@4, 92.1% Recall@8, 95.87% Recall@16. In addition, this is further
improved to 70.13% Recall@1, 78.88% Recall@2, 87.17% Recall@4, 92.4% Recall@8, and 96.8%
Recall@16 by SSL. We also plot the retrieval results for the randomly sampled query from both
datasets in Figs. 8 and 9.

Figure 8: Retrieval results on CARS-196 dataset. The green boundary box indicates the correct
retrieved instance, and the red boundary box indicates the wrong retrieved instance
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Figure 9: Retrieval results on the CUB-200 dataset. The green boundary box indicates the correct
retrieved instance, and the red boundary box indicates the wrong retrieved instance

6 Conclusion

This paper presents a noise-assisted feature learning strategy for FGIR, which avoids the costly
sampling process (as in triplet-based learning). This is accomplished by inserting noise into the input
sample as well as the deep CNN’s embedding. The Resnet-50 architecture is used as the backbone
network and trained jointly with a multi-loss objective, which deals with both class discriminative and
intra-class diversity via noise-assisted learning. The CUB-200 and CARS-196 datasets are considered
to validate our approach. Moreover, it showed that the proposed approach is able to improve over
existing schemes. Future work will test the proposed method for large-scale datasets with the use
of other deeper variants of CNN. In addition, it can be extended to deal with video analysis tasks
like action classification and video retrieval. It can also be tested in the medical domain using both
supervised and unsupervised learning strategies. In addition, it can be tested in self-supervised learning
[41–45] mode.
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