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Abstract: High precision and reliable wind speed forecasting have become a chal-
lenge for meteorologists. Convective events, namely, strong winds, thunder-
storms, and tornadoes, along with large hail, are natural calamities that disturb
daily life. For accurate prediction of wind speed and overcoming its uncertainty
of change, several prediction approaches have been presented over the last few
decades. As wind speed series have higher volatility and nonlinearity, it is urgent
to present cutting-edge artificial intelligence (AI) technology. In this aspect, this
paper presents an intelligent wind speed prediction using chicken swarm optimi-
zation with the hybrid deep learning (IWSP-CSODL) method. The presented
IWSP-CSODL model estimates the wind speed using a hybrid deep learning
and hyperparameter optimizer. In the presented IWSP-CSODL model, the predic-
tion process is performed via a convolutional neural network (CNN) based long
short-term memory with autoencoder (CBLSTMAE) model. To optimally modify
the hyperparameters related to the CBLSTMAE model, the chicken swarm opti-
mization (CSO) algorithm is utilized and thereby reduces the mean square error
(MSE). The experimental validation of the IWSP-CSODL model is tested using
wind series data under three distinct scenarios. The comparative study pointed
out the better outcomes of the IWSP-CSODL model over other recent wind speed
prediction models.

Keywords: Weather; wind speed; predictive model; chicken swarm optimization;
hybrid deep learning

1 Introduction

Weather conditions certainly affect various aspects of life in modern society. Unfavorable weather
conditions and events have direct as well as indirect impacts on a large number of businesses and
economic fields, like agriculture, transport, and logistics [1]. Precise and prompt weather predictions are
significant for various applications facilitating management and planning related to climatic conditions
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[2]. Forecasting weather is crucial for predicting natural calamities like hurricanes, extreme rainfall, heat
waves, and floods. As wind power has gained significance as a renewable energy over the past few years,
wind speed prediction is becoming a prominent tool for productive the effectual and adaptive
maintenance of wind parks [3]. However, weather forecasting commonly depends on numerical weather
prediction (NWP) techniques for solving complicated arithmetical equations, which pretend
thermodynamics and fluids within the natural world’s environment as much as possible [4]. This method
needs enormous computational power; with current technological tools and equipment, it may take
numerous hours to process. Because of its wide computational requisites, the application of NWP
methods is practically limited and restricted to more long-run estimations [5]. Therefore, NWP algorithms
are utilized for prediction, for example, 3 h ahead. However, as the time to process this forecast takes
more than 3 h, the practical usage of this method is limited. These results become a significant gap for
short-run weather forecasting, enabling short-term planning [6].

Through technological development and fortifying advocacy for ecological protection, wind energy
production is more commercially competitive than coal-fired power production [7]. As wind power can
be directly linked to the wind speed, the volatility and instability of wind speed would cause instability in
wind energy production, which has a massive effect on the power grid [8]. To minimize the cost of
maintenance caused by system failures and performance degradation, precise forecasting of short-term
wind speed is greatly needed. To precisely forecast the wind speed and overcome the uncertainty of its
changes, several prediction approaches have been devised over the last decades [9]. As per the
forecasting duration and application cases, wind speed prediction is classified into two categories, long-
term prediction and short-term prediction. In short-term prediction, the wind speed once every 10 or
20 min or an hour is predicted. In the long-term prediction, the forecast can be made after some days or a
month [10]. However, the predicting horizon of long-term forecasting becomes comparatively long, and
several unknown elements would affect the forecasting outcomes. Thus, short-term prediction is more
versatile and realistic in real applications.

This paper presents an Intelligent Wind Speed Prediction using Chicken Swarm Optimization with
Hybrid Deep Learning (IWSP-CSODL) model. The presented IWSP-CSODL model estimates the wind
speed using a hybrid deep learning and hyperparameter optimizer. In the presented IWSP-CSODL model,
the prediction process is performed via CNN-based long short-term memory with autoencoder
(CBLSTMAE) model. To optimally modify the hyperparameters related to the CBLSTMAE model, the
CSO algorithm is utilized and thereby reduces the mean square error (MSE). The experimental validation
of the IWSP-CSODL model is tested using wind series data under three distinct scenarios.

The remainder of the paper is organized as follows, Section 2 analysis the related works involved in
Wind Speed Prediction. Section 3 describes the Proposed Wind Speed Prediction Model and estimates the
wind speed using a hybrid deep learning and hyperparameter optimizer. Section 4 then analyses the
experimental data and results, including a performance comparison with alternative methodologies.
Finally, Section 5 concludes the critical results of the proposed research.

2 Related Works

In Trebing and Mehrkanoon [11], a new paradigm based on a convolutional neural network (CNN) is
introduced to predict wind speed. Notably, we have shown that, in contrast to the traditional CNN-based
models, the presented method can be able to better characterize the spatio-temporal evolution of the wind
dataset by learning the basic structure of the input-output relationship from different views (dimensions)
of the input dataset. The suggested technique uses the spatiotemporal multivariate multi-dimensional, past
weather dataset to learn novel representations intended for wind prediction. With the information attained
from the South African Wind Atlas Project, Daniel et al. [12] addressed the prediction of wind speed, an
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initial input needed for wind energy generation. Prediction can be performed on two days in advance time
horizon. Then, we examine the forecasting efficiency of an artificial neural network (ANN) that is trained by
using a decision tree, stochastic gradient boosting (SGB), and Bayesian regularization-based generalized
additive models (GAMs).

Lin and Zhang [13] established a new hybrid mechanism that might forecast the upcoming wind speed
precisely. At first, the original wind speed duration is decomposed through the fast assembling empirical
mode decomposition into different subsets that are additionally incorporated by the run test. The space
reconstruction occurs by energetically choosing every incorporated subset input and output vector for the
forecasting method. In addition, a better whale optimization algorithm was used for optimizing the weight
and bias of the extreme learning machine (ELM) model. The authors in [14] predicted the wind speed at
a target station in the north of Iran. The grouping of a multi-layer perceptron (MLP) with a whale
optimization algorithm (WOA) was utilized for building a novel model with a restricted amount of
information (2004–2014). Next, the MLP-WOA method was applied at every ten target stations, with the
tenth station for testing and nine stations for training to improve the performance of the succeeding
hybrid mechanism. The ability of the hybrid mechanism in wind speed prediction in every target station
was contrasted with MLP improved by the genetic algorithm (GA) called MLP-GA and individual MLP
without the WOA optimizer.

Geng et al. [15] developed a wind speed forecasting model with robust integration of principal
component analysis (PCA) and long short-term memory (LSTM) networks. Initially, PCA is used to
decrease the dimension of the original multi-dimension meteorological information that affects wind
speed. Furthermore, a differential evolution (DE) technique is developed for optimizing the learning rate,
several hidden layer nodes, and batch size of the LSTM network. Liu et al. [16] implement the industry’s
application of the ML method of support vector regression (SVR) and optimization techniques for control
variables that can not only reduce energy use and costs. Also fundamentally improve the efficiency of
filter press operation. This will open up some possibilities for the intelligent dewatering process and other
forms of industrial production optimization. Zhang et al. [17] designed a combined Wind Speed
Prediction Model using a convolutional neural network. The work achieved prediction results that have
significant advantages in the spatio-temporal features of Wind farms. The disadvantages of the work is
utilized limited parameters to measure the performance.

An enhanced deep learning (DL)-based hybrid model for forecasting wind speed is projected in [18].
The new architecture applies stacked LSTM and system architecture evolution (SAE) networks. The SAE
extracts abstract and more profound features from the actual wind speed data. An experimental test was
performed to identify an optimum stacked LSTM. The feature extracted from SAE is later transported to
the optimum stacked LSTM for the wind speed prediction.

3 The Proposed Wind Speed Prediction Model

In this study, a new IWSP-CSODL model has been developed for effectual and precise wind speed
forecasting. The presented IWSP-CSODL model estimates the wind speed using a hybrid deep learning
and hyperparameter optimizer.

3.1 Level I: CBLSTMAE-Based Prediction Process

In the presented IWSP-CSODL model, the prediction process is performed by the CBLSTMAE model.
The architecture encompasses different frameworks comprising 2 CNN layers and an autoencoder (AE)
framework composed of a single LSTM layer as a decoder and a CBLSTM as an encoder [19]. The
proposed IWSP-CSODL model used hybrid deep learning technique that combine long short-term
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memory (LSTM) networks, convolutional neural networks (CNN), and autoencoder (AE) are built and tested
on wind datasets for wind speed prediction.

Especially, CNN is skilled in extracting complicated features and might save many different unequal
trends [20]. Extracting of complicated features decreases the parameters necessary to make the prediction,
hence decreasing the network computation when machinating the performance. The feature extraction of
CNN and its down-sampling model decreased the computational time, which makes them better suited
for the projected applications [21–24]. In this work, the CNN layer receives eight input constraint
parameters influencing the forecasting energy consumption, comprising the week indices (bank, holiday,
and weekday weekends) and weather conditions (temperature, dew point, and humidity wind speed).
They are additionally processed via the hidden layer to generate an output prepared for the AE
framework. The output of the CNN layer was given to the input of CBLSTM, which assists as an input
to the AE layer [25–28]. Although CNN extracts significant features from datasets, the CBLSTM-AE
layer can be used for sequence prediction and data analysis. To reduce the difficulty of the presented
framework, a single LSTM is employed in an AE decoder vs. the CBLSTM of the encoder. Furthermore,
a single LSTM can learn from temporal dependency from one order to others [29–31]. The encoded data
from the output of CBLSTM-AE can be decoded through a single layer of LSTM-AE beforehand, taking
place to 2 total connection layers for the final forecasted output. It can be mathematically expressed in the
following.

Assume the input vector xmi ¼ x1; x2; � � � ; xnf g, whereby xm indicates the different input vectors,
containing weather data, energy consumption, week index, and so on., of m 2 M , and n refers to the
number of normalized thirty min units for each observation window, which fed as an input vector xim
into CNN layer, the resultant the output is formulated as follows.

ymij ¼ r bmj þ
XM
m¼1

w1
m;jx

0
iþm�1;j

 !
(1)

In Eq. (1), ymij denotes output vector x
m
ij of the preceding layer. b

m
j indicates the bias for j‐th feature maps,

m shows the index value of the filter, w indicates the weight of the kernel, and r denotes the activation
function for CNN. Eq. (2) indicates the output vector for k‐th convolution layers. In such case, the next
convolution layer in the architecture is equated as

ym kð Þ
ij ¼ r bm kð Þ

j þ
XM
m¼1

wm kð Þ
m;j x0iþm�1;j

 !
(2)

The pooling layer of the convolution layer samples the activation from mapping features to decrease the
parameter count and computational network cost. The max-pooling layer characterized in Eq. (3) uses the
maximal values from the preceding layer for its downsampling that assists in adjusting the overfitting model.

Pm kð Þ
ij ¼ max

rER
yk�1
i�Tþrj (3)

where y characterizes the pooling size and T denotes stride determining the length of the input dataset.

The output from the maximal pooling layer was given to the input of the BLSTM layer via the gate
components. BLSTM comprises dissimilar gates (forget, input, and output gates) in forward and
backward directions, and every gate is activated. At the same time, memory cells upgrade the state,
characterized as follows in Eqs. (4)–(6) respectively.
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it ¼ r WpiPi þWhiht�1 þWci � ct�1 þ bi
� �

(4)

ft ¼ r Wpf
Pt þWhfht�1 þWcfct�1 þ bf

� �
(5)

0t ¼ r WPopt þWhoht � 1þWC0 � ct þ b0ð Þ (6)

In the following equation, r denotes the activation function, b indicates the bias, and ct shows the cell
state. Pt indicates the output of the max pooling layer at t time that encompasses the energy utilization dataset
and additional parameters utilized as input to AE through the CBLSTM layer. it; ft, and 0t indicates the
input, forget, and output gates; correspondingly, ht denotes the hidden state of the BLSTM cell that was
upgraded at each t step in backward and forward directions [32–36]. Fig. 1 depicts the infrastructure of
the AE technique.

The cell and hidden states are defined by the gate function of CBLSTM for the hidden and cell states,
correspondingly in Eqs. (7) and (8)

ct ¼ ft � ct�1 þ it � r Wpcpt þWhcht�1 þ bc
� �

(7)

ht ¼ 0t � r ctð Þ (8)

The output of the BLSTM layer was concatenated with backward and forward directions, formulated in
Eq. (9).

ŷ ¼ r Wyht
��!þ by
� �

(9)

The output of BLSTM ŷ was given as an input of the LSTM decoder, whereby the resultant output
ŷ ¼ r Wyht þ by

� �
signifies the input to the two fully connected (FC) dense layers for the last projected

output in Eq. (10).

dki ¼
X
j

wk
ji � 1 r ŷk�1

i

� �þ bk�1
i

� �
(10)

Figure 1: Structure of AE
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The CNN layer extracts spatial characteristics from the input dataset, and CBLSTM-AE accepts the
feature from a CNN for learning temporal dependency from an estimated output.

3.2 Level II: CSO-Based Hyperparameter Tuning Process

To optimally modify the hyperparameters related to the CBLSTMAE model, the CSO algorithm is
utilized and thereby reduces the mean square error (MSE). The CSO approach is preferred over other
optimization techniques due to its high parallelism and simplicity [37–40]. The CSO mimics the
performance of a chicken swarm and the chicken movement; the CSO is described in the following: CSO
contains various groups, and each group has some chicks, hens, and a predominant rooster [41]. The
number of chicks, roosters, and hens in the group is established based on the fitness function. The rooster
(group head) refers to the chicken that is an optimal fitness value. However, the chick is the chicken that
contains the worst fitness value. Most chickens are hens and are arbitrarily chosen to remain in that
group. The mother-child and dominance connections in the group stay unchanged and upgraded in the
(G) time step. The chicken movement is formulated below is used for rooster updating location given as
follows in Eq. (11).

X rþ1
ij ¼ X t

i;j � 1þ randn 0; r2
� �� �

(11)

where:

r2 ¼
1 if f i � f k

exp
f k � f i
f i þ ej j

� �
Otherwise

8<
:

where k 2 1; Nr½ �; k 6¼ i; and Nr denote the rooster count. Xi;j denotes the position of rooster count i in jth

dimension at t and t þ 1 iteration, randn O; r2ð Þ generates arbitrary Gaussian number with mean 0 and
variance r2; e indicates the constant with minimal value, and fi indicates the fitness value of the
corresponding rooster i: The formula that employs the hen updating position is shown below in Eq. (12).

X tþ1
i;j ¼ X t

i;j þ S1randn X t
r1;j � X t

i;j

� �
þ S2randn X t

r2;j � X t
i;j

� �
(12)

In which, Eq. (13) calculates the S1

S1 ¼ exp
fi � fr1
fij j þ e

� �
(13)

Then replace the S1 calculation in Eq. (14).

S1 ¼ exp fr2 � fið Þ (14)

whereas r1; r 2 1; . . . ;N½ �; r1 6¼ rr denotes the index of the rooster, but r2 indicates the chicken in the
swarm hen or rooster, and a uniformly distributed arbitrary value is produced using randn. At last, the
formula that applies the chick updating position is given as follows in Eq. (15):

X tþ1
i;j ¼ X t

i;j þ FL X t
m;j � X t

i;j

� �
; FL 2 0; 2½ � (15)

Now X t
m;j shows the place of i‐th chick mother.

Fig. 2 depicts the flowchart of the CSO technique.
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4 Results and Discussion

This section investigates the wind speed prediction outcomes of the IWSP-CSODL model under three
distinct scenarios. This proposed work measured the wind speed data of a wind farm, starting from February
1, 2022, to July 30, 2022, with an interval of 3 h, each containing 100 data points in the Kotdwara location.
Fig. 3 demonstrates the actual vs. predicted wind speed of the IWSP-CSODL model under scenario 1.

Figure 2: Flowchart of CSO technique

Figure 3: Actual vs. predicted analysis of IWSP-CSODL method under scenario 1
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The major hardware requirements are a cloud-based supercomputer, server, virtual machine (VM),
several sensors, and meet towers for wind speed prediction. The various sensors are wind speed and
direction sensors, humidity sensors, radiation sensors, precipitation sensors, modems, and data loggers. It
implied that the IWSP-CSODL model has accurately forecasted the wind speed under all data points. The
current work uses climate data information that has been downloaded from the website of https://www.
indianclimate.com/show-data.php, and the geographical locations of Kotdwara (a City on Uttarakhand
state, India country) have been tabulated in this website.

Fig. 4 illustrates the actual vs. predicted wind speed of the IWSP-CSODL method under scenario 2. It is
implicit that the IWSP-CSODL algorithm has precisely forecasted the wind speed under all data points.

Fig. 5 signifies the actual vs. predicted wind speed of the IWSP-CSODL approach under scenario 3. It
represented the IWSP-CSODL technique has accurately forecasted the wind speed under all data points.

Table 1 provides an overall wind speed prediction outcome of the IWSP-CSODL model using scenario
1 [42]. Fig. 6 represents a comparison study of the IWSP-CSODL model with other models under scenario 1.
The experimental values ensured the effectual predictive outcomes of the IWSP-CSODL model with
minimal values of MSE, Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE)
[43–46]. Concerning MSE, the IWSP-CSODL model has offered a lower MSE of 0.5318. In contrast, the
Jaya algorithm based-support vector machines (SVM), absolute shrinkage and selection operator
(LASSO), Extreme Gradient Boosting (XGBoost) algorithm, Machine learning and pattern recognition
(MLPR), deep belief network (DBN), Gaussian processing regression (GPR), Stacked Sparse Auto-
Encoder (SSAE), and governance, risk, and compliance (GrC) models have accomplished increased MSE
of 0.6492, 0.6508, 0.6699, 0.6769, 0.7032, 0.7094, 0.7159, and 0.8310 respectively. Moreover
Concerning, MAE, the IWSP-CSODL algorithm has presented a lower MAE of 0.4967. In contrast, the
Jaya-SVM, LASSO, XGBoost, MLPR, DBN, GPR, SSAE, and GrC algorithms have accomplished
increased MSE of 0.5899, 0.6089, 0.6203, 0.6215, 0.6236, 0.6385, 0.6505, and 0.6938 correspondingly.
At the same time, Concerning MAPE, the IWSP-CSODL technique has offered lower MAPE of
10.1240%, the Jaya-SVM, LASSO, XGBoost, MLPR, DBN, GPR, SSAE, and GrC techniques have

Figure 4: Actual vs. predicted analysis of the IWSP-CSODL method under scenario 2
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accomplished increased MSE of 11.6891%, 12.3410%, 12.7580%, 12.8411%, 12.8487%, 13.0254%,
13.5843%, and 14.3853% correspondingly.

A detailed MAPE inspection of the IWSP-CSODL model with recent models for scenario 1 is given in
Fig. 7. Here, R2 is the coefficient of determination of the MAPE, scaled between 0 and 1. The IWSP-CSODL
model has gained effectual outcomes with a higher R2 value of 0.9687. At the same time, the Jaya-SVM,
LASSO, XGBoost, MLPR, DBN, GPR, SSAE, and GrC models have reached reduced R2 values of
0.9468, 0.9428, 0.9413, 0.9204, 0.9116, 0.9064, 0.8927, and 0.8863 respectively.

Figure 5: Actual vs. predicted analysis of IWSP-CSODL method under scenario 3

Table 1: Comparative analysis of IWSP-CSODL approach with existing approaches under scenario 1

Scenario-1

Methods MSE MAE MAPE (%) R2

IWSP-CSODL 0.5318 0.4967 10.1240 0.9687

Jaya-SVM 0.6492 0.5899 11.6891 0.9468

LASSO 0.6508 0.6089 12.3410 0.9428

XGBoost 0.6699 0.6203 12.7580 0.9413

MLPR 0.6769 0.6215 12.8411 0.9204

DBN 0.7032 0.6236 12.8487 0.9116

GPR 0.7094 0.6385 13.0254 0.9064

SSAE 0.7159 0.6505 13.5843 0.8927

GrC 0.8310 0.6938 14.3853 0.8863
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Table 2 provides an overall wind speed prediction outcome of the IWSP-CSODL model in scenario 2.
Fig. 8 denotes a comparative study of the IWSP-CSODL model with other models under scenario 2. The
experimental values ensured the effectual predictive outcomes of the IWSP-CSODL approach with
minimal values of MSE, MAE, and MAPE. Concerning MSE, the IWSP-CSODL algorithm has offered a
lower MSE of 1.0114, whereas the Jaya-SVM, LASSO, XGBoost, MLPR, DBN, GPR, SSAE, and GrC
approaches have accomplished increased MSE of 1.1309, 1.1523, 1.1550, 1.1704, 1.1784, 1.2027,
1.2036, and 1.4720 correspondingly. In addition, concerning MAE, the IWSP-CSODL model has offered
a lower MAE of 0.6834, whereas the Jaya-SVM, LASSO, XGBoost, MLPR, DBN, GPR, SSAE, and
GrC models have accomplished increased MSE of 0.7961, 0.8125, 0.8412, 0.8756, 0.8562, 0.8209,
0.8618, and 0.9527 correspondingly. In the meantime, with respect to MAPE, the IWSP-CSODL model
has provided lower MAPE of 12.5490, whereas the Jaya-SVM, LASSO, XGBoost, MLPR, DBN, GPR,
SSAE, and GrC algorithms have accomplished increased MSE of 15.1714%, 16.2675%, 17.3406%,
15.8917%, 16.3558%, 15.3223%, 15.7527%, and 19.1790% correspondingly.

Figure 6: Comparative analysis of IWSP-CSODL approach under scenario 1

Figure 7: MAPE analysis of IWSP-CSODL approach under scenario 1
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A brief MAPE inspection of the IWSP-CSODL approach with current methods on scenario 2 is given in
Fig. 9. It demonstrated that the IWSP-CSODLmodel had obtained effectual outcomes with a higher R2 value
of 0.9312 in the MAPE. Meanwhile, the Jaya-SVM, LASSO, XGBoost, MLPR, DBN, GPR, SSAE, and GrC
models have reached reduced R2 values of 0.8955, 0.8904, 0.8791, 0.8708, 0.8646, 0.8511, 0.8486, and
0.8246 correspondingly.

Table 3 presents the overall wind speed prediction outcomes of the IWSP-CSODL approach on scenario
3. Fig. 10 denotes a comparative study of the IWSP-CSODL approach with other models under scenario 3.
The experimental values ensured the effectual predictive outcomes of the IWSP-CSODL model with
minimal values of MSE, MAE, and MAPE. With respect to MSE, the IWSP-CSODL model has offered
lower MSE of 1.2654, whereas the Jaya-SVM, LASSO, XGBoost, MLPR, DBN, GPR, SSAE, and GrC
algorithms have accomplished increased MSE of 1.6437, 1.7420, 1.7547, 1.7670, 1.8035, 1.8051, 1.8115,
and 2.4062 correspondingly. Furthermore, concerning MAE, the IWSP-CSODL model has offered a
lower MAE of 0.9185, whereas the Jaya-SVM, LASSO, XGBoost, MLPR, DBN, GPR, SSAE, and GrC
models have accomplished increased MSE of 1.0179, 1.0124, 1.0714, 1.0584, 1.0431, 1.0214, 1.0667,

Table 2: Comparative analysis of IWSP-CSODL approach with existing approaches under scenario 2

Scenario-2

Methods MSE MAE MAPE (%) R2

IWSP-CSODL 1.0114 0.6834 12.5490 0.9312

Jaya-SVM 1.1309 0.7961 15.1714 0.8955

LASSO 1.1523 0.8125 16.2675 0.8904

XGBoost 1.1550 0.8412 17.3406 0.8791

MLPR 1.1704 0.8756 15.8917 0.8708

DBN 1.1784 0.8562 16.3558 0.8646

GPR 1.2027 0.8209 15.3223 0.8511

SSAE 1.2036 0.8618 15.7527 0.8486

GrC 1.4720 0.9527 19.1790 0.8246

Figure 8: Comparative analysis of IWSP-CSODL approach under scenario 2
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and 1.2386 respectively. Meanwhile, concerning MAPE, the IWSP-CSODL model has provided a lower
MAPE of 16.3842%, whereas the Jaya-SVM, LASSO, XGBoost, MLPR, DBN, GPR, SSAE, and GrC
models have accomplished increased MSE of 19.2791%, 18.7221%, 20.2979%, 18.9103%, 18.7322%,
19.9954%, 20.3918%, and 23.5756% correspondingly.

A detailed MAPE review of the IWSP-CSODL technique with recent models on scenario 3 is given in
Fig. 11. It establishes that the IWSP-CSODL approach has achieved effectual outcomes with a higher
R2 value of 0.8432. Meanwhile, the Jaya-SVM, LASSO, XGBoost, MLPR, DBN, GPR, SSAE, and GrC
models have reached reduced R2 values of 0.8086, 0.7837, 0.8120, 0.7760, 0.8686, 0.7813, 0.8166, and
0.7025 correspondingly.

Figure 9: MAPE analysis of IWSP-CSODL approach under scenario 2

Table 3: Comparative analysis of IWSP-CSODL approach with existing approaches under scenario 3

Scenario-3

Methods MSE MAE MAPE (%) R2

IWSP-CSODL 1.2654 0.9185 16.3842 0.8432

Jaya-SVM 1.6437 1.0179 19.2791 0.8086

LASSO 1.7420 1.0124 18.7221 0.7837

XGBoost 1.7547 1.0714 20.2979 0.8120

MLPR 1.7670 1.0584 18.9103 0.7760

DBN 1.8035 1.0431 18.7332 0.8086

GPR 1.8051 1.0214 19.9954 0.7813

SSAE 1.8115 1.0667 20.3918 0.8166

GrC 2.4062 1.2386 23.5756 0.7025
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5 Conclusion

In this study, a new IWSP-CSODL model has been developed for effectual and precise wind speed
forecasting. The presented IWSP-CSODL model estimates the wind speed using a hybrid deep learning
and hyperparameter optimizer. In the presented IWSP-CSODL model, the CBLSTMAE model performs
the prediction process. The CSO algorithm is utilized to optimize the hyperparameters related to the
CBLSTMAE model, and thereby reducing MSE. The experimental validation of the IWSP-CSODL
model is tested using wind series data under three distinct scenarios. The comparative study pointed out
the better outcomes of the IWSP-CSODL model over other recent wind speed prediction models. In the
future, the predictive performance of the IWSP-CSODL method could be boosted by the use of hybrid
metaheuristic algorithms. The IWSP-CSODL method will be applied for atmospheric pressure prediction.
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