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Abstract: Recently, computer assisted diagnosis (CAD) model creation has
become more dependent on medical picture categorization. It is often used
to identify several conditions, including brain disorders, diabetic retinopathy,
and skin cancer. Most traditional CAD methods relied on textures, colours,
and forms. Because many models are issue-oriented, they need a more sub-
stantial capacity to generalize and cannot capture high-level problem domain
notions. Recent deep learning (DL) models have been published, providing
a practical way to develop models specifically for classifying input medical
pictures. This paper offers an intelligent beetle antenna search (IBAS-DTL)
method for classifying medical images facilitated by deep transfer learning.
The IBAS-DTL model aims to recognize and classify medical pictures into
various groups. In order to segment medical pictures, the current IBAS-
DTLM model first develops an entropy based weighting and first-order
cumulative moment (EWFCM) approach. Additionally, the DenseNet-121
technique was used as a module for extracting features. A BAS with an extreme
learning machine (ELM) model is used to classify the medical photos. A wide
variety of tests were carried out using a benchmark medical imaging dataset
to demonstrate the IBAS-DTL model’s noteworthy performance. The results
gained indicated the IBAS-DTL model’s superiority over its pre-existing
techniques.

Keywords: Medical image segmentation; image classification; decision
making; computer aided diagnosis; deep learning

1 Introduction

To help professionals in illness diagnosis or in-depth analysis, medical image classification, an
important challenge in image detection, divides medical pictures into discrete groups [1]. In general,
there are two processes to medical picture categorization. Effective feature extraction from the picture
is the first step. The next step involves using that feature to create a model that classifies the picture
collection [2]. In the past, physicians often used their specialist knowledge to extract characteristics
and classify the medical picture into several groups, which was typically a tedious, time-consuming
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procedure. This approach is vulnerable to unpredictable or unstable outcomes [3]. When the study is
considered, the application study for medical image classification has more advantages. Numerous
published papers in the area as a consequence of the researcher’s work. But as of right now, we cannot
complete this objective [4,5]. When we successfully completed the classifier task, the results let medical
professionals identify diseases via further study. Therefore, resolving this procedure effectively is of
utmost importance [6]. Accurate and quick annotation or categorization of medical pictures becomes
an essential technique in CAD systems to develop an intelligent Computer-Aided Diagnosis (CAD)
method in virtually all medical fields. In the US specifically, skin cancer is found in a number of people
each year [7]. Numerous lives are saved when it is identified early on. Multiple research papers have
been published in the area of medical image classifiers [8]. However, medical photographs obtained
from specific locations may differ regarding focusing regions, white balance, and contrast [9]. The
interior structure of a medical picture also contains various textures and pixel densities. It is difficult
to adequately characterize specific categories after it has used conventional characteristics to classify
medical images [10]. Deep learning has recently gained popularity in computer science and computer
applications. Numerous researchers have attempted to use the developing technology to handle non-
medical imagery as deep learning has advanced.

2 Related Works

The modular group attention block, recorded feature dependence from medical pictures from
2 separate dimensions, such as channel and space, is examined by Cheng et al. [11]. These group
attention blocks may be stacked ResNet-style to create a unique ResNet version known as ResGANet.
Singh et al. [12] presented a few-shot learning issue and proposed a “MetaMed” solution based on
meta-learning. Approaches regularise the process and improve the generalized ability in addition
to advanced augmenting. A 2-stage ensemble of Convolutional Neural Network (CNN) branches
using deep tree training, a unique learned technique, was reported by Yang et al. [13]. (DTT). In this
method, DTT was used to jointly train a series of networks built in the hidden layers of CNN using
a hierarchical approach. This technique can reduce the effects of vanishing gradient by enhancing
the gradient for CNN’s hidden layers and fundamentally achieving base classifications on middle-
level features with a low computational cost for an ensemble solution. TransMed for multi-modal
medicinal image categorization is presented by Dai et al. [14]. TransMed combines the advantages of
CNN and Transformer to extract low-level visual information and start long-range modal dependence
efficiently. Our technique may be used to estimate it using two datasets, including classifications for
knee injuries and parotid gland malignancies. In this work, an intelligent beetle antenna search (IBAS-
DTL) model for classifying medical images is developed. To segment medical pictures, the current
IBAS-DTLM model first generates an entropy based weighting and first-order cumulative moment
(EWFCM) approach.

Additionally, the DenseNet-121 technique was run as a module for extracting features. A BAS
with an extreme learning machine (ELM) model is used to classify the medical photos. A wide variety
of tests were carried out using a benchmark medical imaging dataset to demonstrate the IBAS-DTL
technique’s noteworthy performance. Tong et al. [15] presented an extended version of U-Net to the
skin lesions segment utilizing the triple attention process model. It can be the primary chosen region
using the attention coefficient calculated by the attention gate and contextual data. Secondary, a dual
attention decoder element containing channel and spatial attention is utilized to capture the spatial
correlation amongst features and enhance segmentation performance. In [16], the primary contour of
AC without edge ‘Chan-Vese’ technique was optimized utilizing the GA to determine the optimum
direct circular region percentage of skin lesion images in the entire image region.
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Kadry et al. [17] applied a CNN-based technique to support the automated SM analysis. This work
utilized the VGG-SegNet method for extracting the SM section in the Digital-Dermoscopy-Image
(DDI). Afterward the extracting, a comparative assessment amongst the segmented SM and Ground
Truth (GT) has been implemented and the vital performance indices are calculated. Hasan et al. [18]
present an automated dermoscopic SLC structure called Dermoscopic Expert (DermoExpert). It
integrates the pre-processed and hybrid CNN. The presented hybrid-CNN contains 3 feature extractor
components fused to achieve an optimum-depth feature map of lesions. Individuals’ single and fused
feature map is classified utilizing distinct FC layers, and next ensembled for predicting a lesion class.

YacinSikkandar et al. [19] examine a novel segmentation-based classifier method for skin lesion
analysis by integrating GrabCut and Adaptive Neuro-Fuzzy classifier (ANFC) techniques. Primar-
ily, the pre-processing step was implemented utilizing a Top hat filter and in-painting approach.
Afterward, the Grabcut technique was employed for segmenting the pre-processed image. Then, the
feature-extracting procedure occurs by using DL based Inception method. Lastly, an ANFC model is
implemented for classifying the dermoscopic image into distinct classes.

Khan et al. [20] presented a fully automated multi-class skin lesion segment and classification
technique by utilizing the most discriminant in-depth feature. The primary input images were improved
using local color-controlled histogram intensity value (LCcHIV). Afterward, the segmentation color
lesion image is utilized to feature extracting by deep pre-trained CNN technique. To avoid the curse of
dimensionality, an improved moth flame optimization (IMFO) technique can be executed for selecting
the most discriminant feature. The outcome feature is fused using a multiset maximum correlation
analysis (MMCA) and KELM classification.

3 Design of IBAS-DTL Model

This study introduces a new IBAS-DTL model to identify and categorize medical images into
distinct classes. The presented IBAS-DTLM model primarily designed a new EWFCM model to
segment medical images. Besides, the DenseNet-121 model is applied as a feature extractor module.
Moreover, BAS, with the ELM model, categorizes medical images. Fig. 1 illustrates the overall process
of the IBAS-DTL technique. The presented intelligent beetle antenna search (IBAS-DTL) method for
classifying medical images that are facilitated by deep transfer learning. The IBAS-DTL model aims to
recognize and classify medical pictures into various groups. To segment medical pictures, the current
IBAS-DTLM model first develops an entropy based weighting and first-order cumulative moment
(EWFCM) approach. Additionally, the DenseNet-121 technique was used as a module for extracting
features. A BAS with an extreme learning machine (ELM) model is used to classify the medical photos.

3.1 Process Involved in EWFCM Based Segmentation
The medical images are segmented at the primary level using the EWFCM model [21]. Initially,

a brief analysis of the Otsu approach is presented. Next, histogram accumulation and EW moment
are defined with the use of Fuzzy C-Means (FCM). At last, the novel image threshold method for
segmenting images is introduced. Otsu is a widely referred thresholding method. Consider I = g(x, y)

represents an image using the gray value belonging to the range [0, 1, . . . , L − 1]. Allocate ni as pixel
number with the gray matter i and the overall pixel information in g(x, y) as N. The possibility of the
gray level i is shown below

Pi = ni

N
. (1)
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Figure 1: Overall process of IBAS-DTL technique

Let the threshold th(0 ≤ th ≤ L − 1) splits g(x, y) into two groups: object CB = {(x, y)|th + 1 ≤
g(x, y) ≤ L − 1} and background CO = {(x, y)|0 ≤ g(x, y) ≤ th}.

The medium gray level of class and the possibility of class existence, correspondingly, are estimated
below:

μ0 (th) =
th∑

i=0

iPi

ωO (th)
, μB (th) =

L−1∑
i=ih+1

iPi

ωB (th)
, (2)

where

ωO (th) =
ih∑

i=0

Pi, ωB (th) =
L−1∑

i=th+1

Pi. (3)

In the Otsu method, the resultant threshold presentation can be estimated by examining the
variance between the foreground and background. The optimum threshold th∗ once employing this
condition need to exploit among-class variance:

th∗ = argmaχ{ωO(th)μ2
0(th) + ωB(th)μ2

B(th), 0 ≤ th ≤ L − 1 (4)

The fundamental concept Otsu method is the calculation of a weight W to the objective function
as follows

th∗ = argmaχ{W(ωO (th) μ2
0 (th) + ωB (th) μ2

B (th) , 0 ≤ th ≤ L− (5)

Image entropy defines the property of an image, an arithmetic measure of arbitrariness. Image
with lower entropy values has slight data and multiple pixels with similar intensity values. An image
with zero entropy implies that each pixel holds a similar gray value. It recommended an EW system
by replacing weight W with the entropy objective function ψ(th)

th∗ = argmaχ{ψ (th)
(
ωO (th) μ2

0 (th) + ωB (th) μ2
B (th)

}
.0 ≤ th ≤ L − 1 (6)

The objective entropy function is determined by:

ψ (th) = ln (ωO (th) ωB (th)) + Hth

ωO (th)
+ Hn

ωB (th)
, (7)
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whereas

Hth = −
th∑

i=0

Pj ln (Pi) , Hn = −
L−1∑
i=0

Pi ln (Pi) . (8)

Then, we discussed the initial order of the increasing moment. Let MO(th) signifies the FCM of
the gray histogram, i.e., the mean gray value from 0 to th as follows

MO(th) =
ih∑

i=0

iPi. (9)

The mean gray of the entire image is MT , determined as follows

MT =
L−1∑
i=0

iPi. (10)

The FCM MT assist the optimum threshold in evading dropping into the local optimal. Then,
integrate the EW ψ(th) and FCM to attain the optimum threshold and objective function for image
segmentation:

th∗ = argmaχ {ψ (th) (MT)} .0 ≤ th ≤ L − 1 (11)

3.2 DenseNet-121 Based Feature Extraction
Once the input medical images are segmented, the diseased portions are effectively identified.

Then, the DenseNet-121 model is employed to generate feature vectors [22]. The DenseNet-121 model
has been developed to resolve the problems involved in the CNN models. It is due to reducing the
flow of data from input to output layers. It will simplify the connectivity patterns that exist among the
layers. In this work, the DenseNet-121 model produces a collection of feature vectors which are then
fed into the ELM model for the classification process. Fig. 2 showcases the layered in DenseNet.

Figure 2: Layered in DenseNet
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3.3 Optimal ELM Based Classification
The ELM model is used to appropriately identify the medical photos in the end. Because of their

quick and effective learning speeds, suitable generalised abilities, quick convergence rates, and ease of
execution, ELM is one of the most widely used SLNN learning techniques [23]. Their variations are
also frequently used from batch learning, incremental learning, and sequential learning. A primary
goal of the ELM, in contrast to classical learning approaches, is to achieve generalised efficiency by
achieving both the resulting weight minimal norm and little trained error. An ELM primary computes
the output state weighted using these arbitrary values after arbitrarily setting the weight and bias of
the input state.

In comparison to standard NN approaches, this method has a quicker learning rate and maximum
efficiency. The number n speaks for the number of input-state neurons, the number L stands for the
number of hidden-state neurons, and the number m stands for the number of output-state neurons in
the typical SLNN.The activation function is demonstrated in Eq. (12).

Zj =
L∑

i=1

Qif
(
wi, bj, xj

)
(12)

whereas wi denotes the input weighted, bi signifies the ith hidden neuron bias, xj indicates the input,
and Zj represents the outcome of SLNN. Signifying the matrix of Eq. (12) is represented in Eq. (13).

ZT = HQ (13)

Q = [Q1, Q2, . . . , QL]T , ZT refers to the transpose of matrix Z, and H denotes hidden-state
resultant matrix computed in Eq. (14).

H =
⎡
⎢⎣

f (wl, bl, xl) f (w2, b2, xl) · · · f (wL, bL, xl)
... · · · · · · ...
f

(
wl, bl, xβ

)
f
(
w2, b2, xβ

) · · · f
(
wL, bL, xβ

)

⎤
⎥⎦

β×L

(14)

The initial purpose of training is to minimize ELM error or variance. The input bias and weight
are stochastically selective. The activation function is that extremely differentiable in the convention
ELM; however, the ELM training drives for obtaining the resultant weight (Q) using optimize the
least-square process referred to in Eq. (15). The equivalent resulting weight is analytically calculated
by utilizing the Moore-Penrose generalized in verse as complete in ELM (Eq. (16)) rather than some
iterative tuning.

min
Q

‖HQ − ZT‖ (15)

Q̂ = H+ZT (16)

During this formula, H+ denotes the generalization Moore-Penrose inverse of the H matrix.

For tuning the ELM parameters, the BAS algorithm is utilized. The long-horned beetle takes two
too-long antennae combined with the scent of prey to expand the recognition range and perform a
protective alarm process [24–29]. The beetle explores neighboring regions by swinging its antennae
on one side of its body to accept the smell. The beetle has moved nearby the side, indicating a higher
odor concentration. The BAS was aimed based on this property of beetle. The search way of beetles
is demonstrated by Eq. (17).

�b = rnd(k, 1)

‖rnd(k, 1)‖ (17)
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whereas �b refers to the direction vector of beetles, rnd signifies the arbitrary function, and k denotes
the dimensional of place. Afterward, Eq. (18) correspondingly present the search performances on the
left as well as right sides for simulating the action tracking of beetles.

xl = xt + dt�b
xr = xt − dt�b (18)

In which xl and xr correspondingly signify the places in the left and right searching regions, xt

denotes the beetle place at tth time instant, and dt stands for the perceived length of antenna slowly
reduced over time. The place upgrade of beetles is demonstrated by Eq. (19).

xt = xt−1 + δt�bsign (f (xr) − f (X)) (19)

whereas δ refers the step size of searches that primary scope can be equivalent to search region, and
sign defines the sign function. The odor concentration at x is written as f (x) also known as FF.

The BAS approach develops a FF for achieving enhanced classifier performance. It defines a
positive integer for representing the optimum performance of candidate solutions. During this case,
the minimized classifier error rate is assumed as FF is offered in Eq. (20). A better outcome is a lower
error rate, and a poor solution gains an enhanced error rate.

fitness (xi) = ClassifierErrorRate (xi) = number of misclassified samples
Total number of samples

∗ 100 (20)

4 Performance Evaluation

In this section, the performance validation of the IBAS-DTL method takes place utilizing 2
benchmark datasets, namely HIS2828 and ISIC2017. The first HIS2828 dataset includes 1026 samples
under nervous tissue (NT), 484 under connective tissue (CT), 804 under epithelial tissue (ET), and 514
under muscular tissue (MT). The second ISIC2017 dataset includes 374 samples under the melanoma
class and 1626 samples under NS Keratosis (NSK) class. Fig. 3 defines some sample images.

Fig. 4 demonstrates the confusion matrices offered by the IBAS-DTL system on the HIS2828
dataset. On the entire dataset, the IBAS-DTL model has identified 984 samples under NT, 452 samples
under CT, 788 samples under ET, and 479 samples under MT classes. Meanwhile, on 70% of the
training dataset, the IBAS-DTL algorithm has identified 677 samples under NT, 324 samples under
CT, 552 samples under ET, and 330 samples under MT classes. Eventually, on the 30% testing dataset,
the IBAS-DTL methodology identified 307 instances under NT, 128 samples under CT, 236 samples
under ET, and 149 samples under MT classes.

Table 1 provides detailed classification results of the IBAS-DTL model on the HIS2828 dataset.
The experimental outcomes pointed out that the IBAS-DTL model has resulted in maximum clas-
sification results under all datasets and class labels. For instance, with the entire dataset, the IBAS-
DTL model has accomplished maximum average accuy, precn, recal, specy, and Fscore of 97.79%, 95.64%,
95.12%, 98.47%, and 95.36% respectively. Moreover, with 70% of the training dataset, the IBAS-DTL
approach has accomplished higher average accuy, precn, recal, specy, and Fscore of 97.57%, 95.21%,
94.62%, 98.33%, and 94.88%, correspondingly. Furthermore, with 30% of the testing dataset, the
IBAS-DTL technique has accomplished maximum average accuy, precn, recal, specy, and Fscore of
98.29%, 96.67%, 96.38%, 98.8%, and 96.51%, correspondingly.
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Figure 3: Sample images

Figure 4: (Continued)



CSSE, 2023, vol.46, no.3 3167

Figure 4: Confusion matrix of IBAS-DTL technique on HIS2828 dataset

Table 1: Result analysis of IBAS-DTL method with distinct measures on HIS2828 dataset

Class labels Accuracy Precision Recall Specificity F-score

Entire dataset
Nervous tissue 97.42 96.95 95.91 98.28 96.42
Connective tissue 98.27 96.38 93.39 99.27 94.86
Epithelial tissue 97.42 93.25 98.01 97.18 95.57
Muscular tissue 98.06 95.99 93.19 99.14 94.57
Average 97.79 95.64 95.12 98.47 95.36

Training (70%)
Nervous tissue 97.37 96.85 95.76 98.27 96.3
Connective tissue 97.98 96.14 92.31 99.2 94.19
Epithelial tissue 97.07 92.46 97.7 96.82 95.01
Muscular tissue 97.88 95.38 92.7 99.01 94.02
Average 97.57 95.21 94.62 98.33 94.88
Testing (30%)
Nervous tissue 97.53 97.15 96.24 98.3 96.69
Connective tissue 98.94 96.97 96.24 99.44 96.6

(Continued)
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Table 1: Continued
Class labels Accuracy Precision Recall Specificity F-score

Epithelial tissue 98.23 95.16 98.74 98.03 96.92
Muscular tissue 98.47 97.39 94.3 99.42 95.82
Average 98.29 96.67 96.38 98.8 96.51

Fig. 5 validates the accuracy assessment of the IBAS-DTL system on the HIS2828 dataset. The
outcomes described that the IBAS-DTL method has the aptitude to gain improved training and
validation accuracy values. The validation accuracy values are somewhat superior to training accuracy.
A brief training and validation loss offered by the IBAS-DTL technique are reported in Fig. 6 on the
HIS2828 dataset. The outcomes revealed that the IBAS-DTL methodology had been able minimum
values of training and validation losses on the HIS2828 dataset.

Figure 5: Accuracy analysis of IBAS-DTL technique on HIS2828 dataset

Fig. 7 illustrates the confusion matrices offered by the IBAS-DTL model on the ISIC2017 dataset.
On the entire dataset, the IBAS-DTL model has identified 369 samples under melanoma and 1607
samples under NSK classes. In the meantime, on 70% of the training dataset, the IBAS-DTL model
has identified 263 samples under melanoma and 1121 samples under NSK classes. Finally, on the 30%
of the testing dataset, the IBAS-DTL model has placed 106 samples under melanoma and 486 samples
under NSK classes.

Table 2 provides detailed classification results of the IBAS-DTL technique on the ISIC2017
dataset. The experimental outcomes indicated that the IBAS-DTL approach has resulted in maximum
classification results under all datasets and class labels. For instance, with the entire dataset, the IBAS-
DTL system has accomplished maximum average accuy, precn, recal, specy, and Fscore of 98.8%, 97.4%,
98.75%, 98.75%, and 98.05%, correspondingly. Likewise, with 70% of the training dataset, the IBAS-
DTL algorithm has accomplished enhanced average accuy, precn, recal, specy, and Fscore of 98.86%,
97.51%, 98.86%, 98.86%, and 98.17% correspondingly. Additionally, with 30% of the testing dataset,
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the IBAS-DTL methodology has accomplished maximal average accuy, precn, recal, specy, and F−score

of 98.67%, 97.12%, 98.46%, 98.46%, and 97.77%, correspondingly

Figure 6: Loss analysis of IBAS-DTL technique on HIS2828 dataset

Figure 7: (Continued)
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Figure 7: Confusion matrix of IBAS-DTL technique on ISIC2017 dataset

Table 2: Result analysis of IBAS-DTL method with different measures on ISIC2017 dataset

Class labels Accuracy Precision Recall Specificity F-score

Entire dataset

Melanoma 98.8 95.1 98.66 98.83 96.85
NS keratosis 98.8 99.69 98.83 98.66 99.26

Average 98.8 97.4 98.75 98.75 98.05

Training (70%)

Melanoma 98.86 95.29 98.87 98.85 97.05
NS keratosis 98.86 99.73 98.85 98.87 99.29

Average 98.86 97.51 98.86 98.86 98.17

Testing (30%)

Melanoma 98.67 94.64 98.15 98.78 96.36
NS keratosis 98.67 99.59 98.78 98.15 99.18

Average 98.67 97.12 98.46 98.46 97.77

Fig. 8 validates the accuracy assessment of the IBAS-DTL system on the ISIC2017 dataset. The
outcomes described that the IBAS-DTL method has the aptitude to gain improved training and vali-
dation accuracy values. It could be visible that the validation accuracy values are somewhat superior
to training accuracy. A brief training and validation loss offered by the IBAS-DTL technique are



CSSE, 2023, vol.46, no.3 3171

reported in Fig. 9 on the ISIC2017 dataset. The outcomes revealed that the IBAS-DTL methodology
had been able minimum values of training and validation losses on the ISIC2017 dataset.

Figure 8: Accuracy analysis of IBAS-DTL technique on ISIC2017 dataset

Figure 9: Loss analysis of IBAS-DTL technique on ISIC2017 dataset

To ensure the IBAS-DTL model’s enhanced performance on the HIS2828 dataset, a comparative
analysis is made in Fig. 10 [19]. The figure highlighted that the SVM-TF and coding network
approaches had reached lower accuracy of 74.74% and 81.34%, respectively. Then, the R-FF, SVM-
TDF, and KPCA-FF models obtained slightly enhanced accuracy of 85.90%, 82.10%, and 85.55%,
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respectively. Next, the CNMP model has resulted in reasonable accuracy of 91.30%. However, the
IBAS-DTL model has accomplished maximum accuracy of 98.29%.

Figure 10: Comparative analysis of IBAS-DTL method on HIS2828 dataset

For providing the enhanced performance of the IBAS-DTL method on the ISIC2017 dataset,
a comparative analysis is made in Fig. 11. The figure exposed that the SVM-TF and coding network
approaches have reached lower accuracy of 68.16% and 74.79% correspondingly. Afterward, the R-FF,
SVM-TDF, and KPCA-FF models obtained somewhat enhanced accuracy of 89.98%, 79.88%, and
89.78%, correspondingly. In addition, the CNMP methodology has resulted in reasonable accuracy of
90.86%. But, the IBAS-DTL model has accomplished maximal accuracy of 98.67%.

Figure 11: Comparative analysis of IBAS-DTL method on ISIC2017 dataset

By observing the above results and discussion, it can be concluded that the IBAS-DTL model can
attain effective medical image classification performance.

5 Conclusion

In this work, a novel IBAS-DTL method was used to distinguish between the various types of
medical photographs and to identify them. The novel EWFCM model for medical image segmentation
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was primarily created by the IBAS-DTLM model that was presented. Additionally, the DenseNet-121
technique was used as a module for extracting features. Additionally, the classification of the medical
pictures uses the BAS with the ELM model. The best tuning of the ELM parameters is made possible
by the use of BAS. The benchmark medical imaging dataset was used in various tests to demonstrate
the IBAS-DTL technique’s noteworthy performance. The suggested system has a 98.67% accuracy
rate. The results gained indicated the IBAS-DTL model’s superiority over its pre-existing techniques.
Deep instance segmentation models may enhance the IBAS-DTLM model’s classification results.
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