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Abstract: The rapid growth of the Internet of Things (IoT) in the industrial
sector has given rise to a new term: the Industrial Internet of Things (IIoT).
The IIoT is a collection of devices, apps, and services that connect physi-
cal and virtual worlds to create smart, cost-effective, and scalable systems.
Although the IIoT has been implemented and incorporated into a wide range
of industrial control systems, maintaining its security and privacy remains
a significant concern. In the IIoT contexts, an intrusion detection system
(IDS) can be an effective security solution for ensuring data confidentiality,
integrity, and availability. In this paper, we propose an intelligent intrusion
detection technique that uses principal components analysis (PCA) as a
feature engineering method to choose the most significant features, minimize
data dimensionality, and enhance detection performance. In the classification
phase, we use clustering algorithms such as K-medoids and K-means to
determine whether a given flow of IIoT traffic is normal or attack for binary
classification and identify the group of cyberattacks according to its specific
type for multi-class classification. To validate the effectiveness and robustness
of our proposed model, we validate the detection method on a new driven
IIoT dataset called X-IIoTID. The performance results showed our proposed
detection model obtained a higher accuracy rate of 99.79% and reduced error
rate of 0.21% when compared to existing techniques.

Keywords: Anomaly detection; anomaly-based IDS; industrial internet of
things (IIoT); internet of things

1 Introduction

The Internet of Things (IoT) has revolutionized several critical domains such as transportation,
healthcare, energy, and agriculture, by providing smart, cost-effective solutions [1,2]. The IoT is
a promising technology that uses wireless communication technologies to connect various objects
to transmit and receive data without the need for human involvement. Traditional systems are
transformed into smart, cost-effective, and scalable systems as a result of the IoT paradigm. Con-
sequently, a new concept known as the Industrial Internet of Things (IIoT) has emerged in the
smart manufacturing and industrial fields [3–6]. For example, industrial control systems (ICSs),
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which integrate hardware and software to monitor and control the performance of systems and their
related components in industrial contexts, are extremely sensitive and essential IIoT applications
[7]. Additionally, supervisory control and data acquisition (SCADA) is another critical system that
collects, analyzes, and controls real-time industrial data [8].

Although that IIoT has increased operational efficiency, productivity, and cost optimization,
cybersecurity concerns continue to pose a substantial danger to essential smart systems in IIoT
environments [9–12]. A cyberattack on an IIoT critical infrastructure, such as ICS, is dangerous and
costly for consumers and service providers (see Fig. 1) [13]. Distributed denial of service (DDoS)
attacks, for example, render the service inaccessible to its intended users [14]. Another prominent
assault against remote access services is the dictionary attack, which uses a dictionary or word list
to guess a password, allowing attackers to take over the server remotely. Another type of cyberattack
is the man in the middle (MitM) attack, which aims to exploit communication between two endpoints
by intercepting and eavesdropping on legal nodes [15,16]. In the most recent attack against IIoT
applications, many power plants in Ukraine were reportedly infiltrated, resulting in a power outage
affecting around 225,000 clients [17]. An attacker was successful in gaining access to SCADA systems
and shutting down the power. Another incident occurred when the SFG virus infected many European
energy businesses [18].

Figure 1: A typical cyberattack scenario performed on Industrial Internet of Things environments

IDS can serve as an effective security solution for reducing many cyberattacks by ensuring the
confidentiality, integrity, and availability of data transferred in IIoT environments. Any fraudulent
or suspect conduct with the potential to disrupt IIoT networks may be monitored, detected, and
mitigated by the IDS. The IDS may be divided into two primary groups [19]: signature-based and
anomaly-based. An assault is detected by a signature-based IDS when it determines a specified attack
pattern (a signature), which is saved as a list of indicators of compromise (IoCs). When an attack
corresponds to a signature in the IoCs, it is classified as a threat, and appropriate action is taken
to prevent it. Signature-based techniques have various drawbacks, including the inability to identify
unknown assaults (zero attacks) [20]. Another drawback is that new attack patterns must be added to
the list, requiring human specialists to assess, design, and update signature rules each time new attack
signatures are added to the signature list. Anomaly-based IDS can solve various shortcomings in the
signature-based method. Because this system can identify known and unknown assaults, anomaly-
based IDS becomes a valuable security tool. A system like this learns from normal user activity to
create a typical user profile and then looks for anomalies when incoming traffic diverges from typical
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user patterns. The concept of anomaly detection has been applied in a variety of fields, including
manufacturing systems [21]. Although an anomaly-based IDS is a better option than a signature-based
IDS, it has a high rate of false positives [22].

Traditional IDS systems have been created and deployed using a variety of strategies; however,
several of these approaches have increased the false positive rate by misclassifying regular and
abnormal traffic [23]. Furthermore, using outdated datasets limits the detection of modern cyberattack
scenarios in the IIoT. Additionally, most of related works validate their approaches for binary class
classification; however, to mitigate such attacks, multi-class classification is required.

In this paper, we propose an anomaly-based IDS for IIoT environments that uses clustering
techniques. We employ the principal components analysis (PCA) as the feature engineering method
because such a feature selection technique plays an important role in reducing data dimension,
removing unnecessary features, and improving detection efficiency. In the classification phase, we
implemented clustering learning classifiers such as K-medoids and K-means to determine whether
a given flow of IIoT traffic is normal or an attack for binary classification and identify the group of
cyberattacks according to its specific type for multiclass classification (e.g., attack1, attack2, attack3,
attackn). The proposed model will be trained and tested by using the latest IIoT intrusion detection
dataset called X-IIoTID, which includes new IIoT protocols, various cyberattack scenarios, and
multiple attack protocols. The performance evaluation was carried out for binary and multi-class
classification. In addition, a comparison of the proposed method with existing studies was analyzed
and evaluated.

The remainder of this paper is organized as follows. In Section 2, we discuss the previous works
of this study. In Section 3, we discuss the methodology of the proposed IDS. In Section 4, we discuss
the performance analysis of the proposed detection method. In Section 5, we conclude the paper and
consider future research avenues.

2 Related Work

Several related works have been proposed for anomaly-based IDS in the IoT/IIoT networks. A
study by [24] proposed anomaly-based IDS to overcome cyberattacks in industrial IoT networks. To
improve the classifier techniques, the proposed method used two feature selection techniques called
minimum redundancy maximum relevance and neighborhood components analysis. The proposed
detection model employed different machine learning algorithms, including decision tree (DT),
support vector machine (SVM), K-nearest neighbor, and linear discriminant analysis. The perfor-
mance results showed that the DT classifier outperformed the other used classifiers with a 99.58%
accuracy rate.

Al-Hawawreh et al. [25] identified malicious traffic in IIoT using various machine learning
models such as DT, SVM, KNN, logistic regression, naïve bayes (NB), and deep neural network. The
performance results were evaluated and analyzed using X-IIoTID dataset. The DT model produced
the best performance results, with an accuracy rate of 99.54%.

Latif et al. [26] proposed a lightweight random neural network (RaNN) to combat different cyber-
attacks in industrial IoT networks. The proposed model was evaluated and analyzed using various
performance metrics to validate the effectiveness of the proposed model was evaluated and analyzed
using various performance metrics to validate the effectiveness of RaNN model in comparison to other
proposed techniques. The proposed method outperformed state-of-the-art models with an accuracy
rate of 99.20%.
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A study by [27] proposed an IDS for IIoT implemented for feature selection using a Genetic
Algorithm. Their model includes several classifiers such as Linear regression, Naïve Bayes, Decision
Tree, Extra-Trees, Extreme Gradient Boosting, and RF. The GA-RF generated 10 feature vectors for
the binary classification scheme and 7 feature vectors for the multiclass classification procedure. They
used UNSW-NB15 to evaluate the effectiveness and robustness of their model. However, they achieved
87.61% overall accuracy for the binary modeling process, with an AUC of 0.98, using a feature vector
that contained 16 features. they claimed that their results were superior compared to the existing IDS
models.

Abdel-Basset et al. [28] proposed an intrusion detection mechanism for IIoT environments called
Deep-IFS. The proposed method learned the local representation using a local gated recurrent unit.
The detection method utilized deep learning techniques such as RNN integrated with multi-head
attention. The evaluation results demonstrated that the effectiveness of the proposed method in
contract with other existing methods. A study by [29] suggested an anomaly detection model using
neural network ensemble techniques, including autoencoder, deep neural network, deep belief neural
network, and an extreme learning machine. The proposed method improved accuracy while increasing
false alarms.

Another study by [30] proposed a novel IDS using Tree-CNN hierarchical method associated
with soft-root-sign activation function. Their approach reduced the training time of the generated
model for detecting DDoS, Infiltration, Brute Force, and Web attacks. In addition, the model is
implemented in a medium-sized company, analyzing the level of complexity of the proposed solution
aimed at performance evaluation. The results of their model show that the developed hierarchical
model achieved a significant execution time reduction of around 36% and an overall accuracy of 0.98%.

Liu et al. [31] developed an intrusion detection system for IoT using particle swarm optimization
for feature selection and the support vector machine for classification. The proposed model used
the UNSW-NB15 dataset to evaluate the proposed method. The model achieved an accuracy rate
of 86.68% and a high false alarm of 10.62%.

Hanif et al. [32] proposed an intrusion detection approach for IoT networks that makes use of
artificial neural networks. The proposed model was designed to address the issue of security, which
is a key problem in IoT networks. The detection method was applied to the UNSW-NB15 dataset.
According to the experimental results, the artificial neural networks-IDS achieved a precision score of
84.00% for the binary classification process.

Zhou et al. [33] proposed a variational long short-term memory intrusion detection system for
Industrial Big Data systems. A variational reparameterization scheme is used in conjunction with an
encoder-decoder neural network to learn the low-dimensional data feature from high-dimensional raw
data. The proposed approach used the UNSW-NB15 dataset to test and validate the proposed method.
The proposed method obtained an accuracy rate of 0.895.

Several limitations have been observed in the previous studies. For instance, using outdated
datasets are limited to specific types of attacks and cannot detect modern cyberattack scenarios in
the IIoT. Additionally, many intrusion detection approaches do not use a suitable intrusion dataset
for IIoT, which reflects the nature of such an environment to design and develop an effective anomaly
detection approach. Furthermore, the majority of related works validate their approaches for binary
classification; however, multi-class classification is required to mitigate such attacks.
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3 Proposed Method

The proposed framework of cyberattack detection in the IIoT networks is depicted in Fig. 2.
Because the preprocessing phase is important in the training and validation of the proposed method,
data is cleaned and organized to be suitable for learning techniques. The proposed model employs
the PCA technique to reduce data dimensionality and improve detection model results. Following
the feature selection phase, the modeling phase receives the most important feature representations
chosen by the PCA method. Two clustering classifiers, K-medoids and K-means, are used to determine
whether a given flow of IIoT traffic is normal or malicious.

Figure 2: The architecture of proposed IDS-based clustering techniques for the Industrial Internet of
Things

3.1 Preprocessing Phase
Data cleaning, missing values compensation, and normalization are the most important aspects

in the preprocessing stage. The steps taken for this phase include replacing the missing data using the
mean value of that feature if the datatype was numeric. Otherwise, replace the missing value with the
mode value if the data is nominal. Encoding the categorical values into integer values. After cleaning
the dataset, a normalization step took place to convert numeric values into new integer values ranging
from 0 to 1. The normalization step is done using the Min-Max algorithm which can be defined as
follows [29]:

Xnorm = (p − q) max −x n (x − nmin) − min (xn) (xn) (1)

where x represents a given feature in the feature space.
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3.2 Feature Selection Phase: Principal Components Analysis
The feature selection stage plays a vital role in reducing data dimension, removing unnecessary

features, and improving detection efficiency. We utilize PCA as the feature selection method in our
proposed anomaly detection framework.

PCA is a dimensionality-reduction approach for reducing the dimensionality of big data sets by
converting a large collection of variables into a smaller set that nevertheless includes the majority of
the information in the large set [30]. Accuracy declines when a data set’s variables are reduced, but the
solution to dimensionality reduction is to give up some accuracy in favor of simplicity. Because smaller
data sets are easier to examine and visualize, and because machine learning algorithms can evaluate
data more quickly and readily without having to deal with unnecessary elements, smaller data sets are
also easier to research. The PCA aims to keep as much information as possible while reducing the
number of variables in a data collection. The PCA method can be illustrated in the following steps.

Step 1: standardization: In order for each continuous beginning variable to contribute equally to
the analysis, this phase standardizes the range of the variables. Standardization is crucial to complete
before PCA, notably because the latter is quite sensitive to the variances of the starting variables. That
is, if there are significant disparities in the initial variable ranges, the variables with a larger range
will take precedence over those with a smaller range. For instance, a variable with a range of 0 to
100 will predominate over a variable with a range of 0 to 1, resulting in biased findings. Therefore,
converting the data to equivalent scales can solve this issue. For each value of each variable, this can
be accomplished mathematically by dividing by the standard deviation and removing the mean. All
the variables will be scaled to the same value once standardization is complete.

Step 2: calculation of a covariance matrix: The goal of this step is to understand how the variables
in the input data set differ from the mean in relation to one another. Because variables can occasionally
be highly connected to the point where they include redundant data. We compute the covariance matrix
to find these associations.

The covariance matrix, which includes entries for all possible pairings of the starting variables, is
a p x p symmetric matrix (where p is the number of dimensions). The covariance matrix, for instance,
is a 33 matrix of type from:

Cov (x, x) Cov (x, y) Cov (x, z)

Cov (y, x) Cov (y, y) Cov (y, z) (2)

Cov (z, x) Cov (z, y) Cov (z, z)

Since a variable’s variance is equal to its covariance with itself (Cov(a, a) = Var(a)), we have the
variances of each starting variable along the major diagonal (top left to bottom right). Additionally,
because the covariance is commutative (Cov(a, b) = Cov(b, a)), the covariance matrix elements are
symmetric with respect to the main diagonal, ensuring equality between the upper and lower triangular
parts. What do the covariances that make up the matrix’s entries tell us about the relationships between
the variables? The significance of the covariance lies in its sign:

If the outcome is good, both variables will either rise or decrease (correlated). If the result is
negative, one rises while the other falls (Inversely correlated).

Let’s go to the next stage now that we are aware that the covariance matrix is nothing more than
a table that lists the correlations between all potential pairings of variables.
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Step 3: The covariance matrix’s eigenvectors and eigenvalues: To identify the primary components
of the data, we must compute the linear algebra concepts of eigenvectors and eigenvalues from the
covariance matrix. Let’s first define major components before moving on to the discussion of these
notions. The additional variables created as a result of the basic variables’ linear combinations or
mixes are known as principal components. These combinations are made in a way that most of the
information included in the original variables is condensed or squeezed into the first components,
which are the new variables (i.e., principal components), which are uncorrelated.

Step 4: Indicator vector of feature: As we saw in the previous phase, finding the major components
in order of importance requires computing the eigenvectors and sorting them by their eigenvalues in
decreasing order. In this stage, we decide whether to keep all of these components or toss out those
that have low eigenvalues and create a matrix of vectors that we refer to as the feature vectors using
the ones that are left.

3.3 Classification Phase
The modeling phase gets the most essential feature representations determined by the NCA

technique after the feature selection step. To assess if a particular data flow is normal or an attack,
several clustering classifiers are used, such as Centroid-based Clustering, Density-based Clustering,
and Distribution-based Clustering. Each ensemble classifier model is described in depth in the
subsections that follow.

3.3.1 Anomaly Detection-Based k-Medoids Clustering

The K-medoids is an unsupervised clustering technique, which indicates that each item is assigned
to one of a group of clusters. Data items in the same cluster are equivalent to one another. The
similarity of two data items is determined by the distance between them. A clustering technique of
this type is used to extract information from an unlabeled dataset and assign each data point to one of
k clusters, with each cluster depicted by its centroid. The partitioning process is then used to reduce the
total amount of dissimilarities between each item and its corresponding reference point. The objective
function then is expressed as [34]:

ArgMin
C

∑k

j=1

∑
p∈Cj

|p − oj| (3)

where p is an item in a cluster Cj; and oj is the representative object of Cj. The algorithm runs until
each representative item is the cluster’s medoid. This is the foundation of the k-medoids technique,
which divides n objects into k clusters. Algorithm 1 illustrates the k-medoids method.

3.3.2 Anomaly Detection-Based K-Means Clustering

The k-means clustering technique is an unsupervised clustering technique that takes k as an input
parameter and divides a group of n items into clusters, where each data point belongs to one cluster.
Cluster similarity is measured regarding the mean value of the objects in a cluster, which can be viewed
as the cluster’s centroid. The k-means algorithm proceeds as follows.

� First, randomly choose k of the items, that indicate a cluster mean.
� Assign each remaining object to the cluster that is most similar to it, based on the distance

between the object and the cluster mean.
� Compute the new mean for each cluster.
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� Iterate until the convergence criteria are met.

E =
∑k

i=1

∑
p ∈Ci

|p − mi|2 (4)

Algorithm 1: The K-medoid Algorithm
Input: fx normalized {f1

norm, f2
norm, f3

norm, . . . fi
norm}

K: Number of clusters
Output: Set of K clusters
1: Select K data items from dataset F randomly
2: Repeat,
3: for each data items in f do
4: assign each f1 object to the cluster C
5: determine a non-medoid data item
6: calculate the total cost of replacing the old medoid data item
7: with the currently selected non-medoid data item
8: if total cost < zero
9: perform swapping to generate a new set of k-medoids
10: end if
11: end for
12: Until the convergence criteria are met

Algorithm 2: The K-mean Algorithm
Input: fx normalized {f1

norm, f2
norm, f3

norm, . . . fi
norm}

K: Number of clusters
Output: Set of K clusters
1: Randomly choose K data objects from F as initial centroids
2: Repeat,
3: for each centroid do
4: assign each f1 object to the cluster with the closest centroid
5: determine the new mean for each cluster
6: end for
7: Until the convergence criteria are met

4 Experimental Simulation

The performance results were obtained by implementing the model in Matlab R2020b software
and using machine learning functions to assist the model in classifying the data and obtaining results.
The evaluation was carried out on an Intel core i5 processor with 16 GB of RAM and the Microsoft
Windows 10 OS. In this section, we present the results of our proposed intrusion detection model. This
section also goes over the dataset that was used to validate the proposed method. The simulation results
were evaluated, analyzed, and validated using common performance metrics. In particular, accuracy
rate, error rate, and execution time were used to quantitatively validate the effectiveness of clustering
models with the PCA technique as the feature selection method. Additionally, a comparative study is
carried out to demonstrate the effectiveness of the proposed clustering techniques in comparison to
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existing state-of-the-art methods.

Accuracy = True Positive + True Negative
True Positive + True Negative + False Positive + False Negative

(5)

Error Rate = False Positive + False Negative
True Positive + True Negative + False Positive + False Negative

(6)

4.1 Dataset
The proposed anomaly-based IDS model is trained and validated on the X-IIoTID dataset, which

is a real-time IIoT dataset [25]. The X-IIoTID dataset is designed to accommodate the diversity
and interoperability of industrial IoT networks. The dataset contains various IIoT protocols, such
as machine-to-machine and machine-to-human connectivity protocols, as well as different types of
cyberattack techniques. The X-IIoTID dataset has been divided into three levels as shown in Table 1.

Table 1: Three levels of attack

Attack class1 Attack class2 Attack class3 Number of
instances

Total number of
instances

Reconnaissance Generic scan 50277 127590

Scan vulnerability 52852
Discovering resources 23148
Fuzzing 1313

Weaponization Brute force 47241 67260

Dictionary 2572
Insider malicious 17447

Exploitation Reverse shell 1016 1133

MitM 117
Lateral movement Modbus-register-reading 5953 31596

MQTT-cloud broker
subscription

23524

TCP relay 2119
Command &
control

Command & control 2863 2863

Exfiltration Exfiltration 22134 22134
Tampering False data injection 5094 5122

Fake notification 28
Crypto
Ransomware

Crypto ransomware 458 458

RDoS RDoS 141261 141261
Normal Normal 4211417 4211417
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4.2 Simulation Results
The evaluation results are conducted on two clustering algorithms, K-Means and K-Medoids.

The performance analysis is divided into three classification levels. The first level includes binary
classification (normal or attack). The second level performs multi-class classification (normal, 9
attacks). The third level performs multi-class classification with additional attack types (normal, 18
attacks).

Fig. 3 depicts the principal component variances and the percentage of total variance (PTA). It
has been classified into 6 divisions and each has 10 variances as shown from (a) to (f). The PCA ranges
from 90367037518729.9 to 1.40502619306984E−19, while PTA ranges from 99.47613263 to 1.55E−31
as per the result.

(f)(c)

(e)(b)

(d)(a)

Figure 3: The principal component variances and percentage of total variance
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Table 2 presents the simulation results of clustering learning techniques with PCA as a feature
selection method for binary class classification (normal or attack). As Table 2 shows, the k-medoids
achieved an accuracy rate of 99.58% for the attack class and 100% for the normal class. The overall
accuracy and error rate of K-medoids is 99.79% and 0.21%, respectively. While K-means obtained a
similar accuracy rate of 99.54% for the attack class and 100% for the normal class. The overall accuracy
and error rate of K-means is 99.76% and 0.24%, respectively. The detection time for K-medoids in
binary classification was 3.26 s, while K-means took 10.21 s.

Table 2: Performance results of binary-class classification (normal, attack)

Method First level of the dataset

Class
name

Number
of test
sample

Number
of correct
sample

Accuracy Error
rate

Accuracy Error rate Execution
time

K-Medoids Attack 30459 30333 99.58 0.42 99.79 0.21 3.26

Normal 30000 30000 100 0
K-Means Attack 30459 30319 99.54 0.46 99.76 0.24 10.21

Normal 30000 30000 100 0

Table 3 presents the simulation results of the proposed anomaly detection model for multi-class
classification (normal, 9 attacks). As shown in Table 3, the k-medoids achieved a 100.00% accuracy
rate for multi-class classification (normal and 9 attacks) with a zero error rate. The overall execution
time of the K-medoids model in classifying multi-class classification (normal, 9 attacks) is 31.761 s. On
the other hand, the K-means model obtained an accuracy rate of 97.06% for normal and 9 attacks with
an error rate of 2.93% and 100% for normal class. The K-means model achieved better accuracy results
in all classes except the lateral _movement attack class, which achieved a lower accuracy rate of 67.31%
with an error rate of 32.69%. The K-means may improve the detection accuracy of lateral_movement
attack class when there are enough data samples of such an attack. The overall execution time of K-
means is 37.216 s. Overall, the k-medoids model outperforms k-means in terms of accuracy, error rate,
and execution time for the second level of classification (normal, 9 attacks).

Table 3: Performance results of multi-class classification (normal, 9 attacks)

Method Second level of the dataset

Class name Number
of test
sample

Number
of correct
sample

Accuracy
of each
class

Error rate
of each
class

Accuracy Error
rate

Execution
time

K-Medoids Reconnaissance 9394 9394 100 0 100 0 31.761
Weaponization 6771 6771 100 0
Exploitation 339 339 100 0

(Continued)
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Table 3: Continued
Method Second level of the dataset

Class name Number
of test
sample

Number
of correct
sample

Accuracy
of each
class

Error rate
of each
class

Accuracy Error
rate

Execution
time

Lateral
_movement

5421 5421 100 0

C&C 859 859 100 0
Exfiltration 3001 3001 100 0
Tampering 1537 1537 100 0
RDOS 3000 3000 100 0
Crypto
Ransomware

137 137 100 0

Normal 30000 30000 100 0
K-Means Reconnaissance 9394 9394 100 0

Weaponization 6771 6771 100 0
Exploitation 340 340 100 0
Lateral
_movement

5422 3650 67.31 32.69

C&C 858 858 100 0
Exfiltration 3000 3000 100 0 97.069 2.931 37.216
Tampering 1536 1536 100 0
RDOS 3000 3000 100 0
Crypto
Ransomware

138 138 100 0

Normal 30000 30000 100 0

Table 4 displays the simulation results of the proposed anomaly detection model for multi-class
classification with additional types of attacks (normal, 18 attacks). As shown in Table 4, the k-medoids
performed well in detecting most types of attacks, with the exception of MitM, crypto ransomware,
and fake notification attacks, which had few data samples. Almost all types of attacks have a zero error
rate, except for attacks with a low accuracy rate (MitM, crypto ransomware, and fake notification
attacks). The K-medoids clustering model achieved an overall accuracy rate of 99.85% for multi-class
classification (normal, 18 attacks) with a reduced overall error rate of 0.15%. The overall execution
time of the K-medoids model in classifying multi-class classification (normal, 18 attacks) is 57.34 s.
The K-means model, on the other hand, obtained a higher accuracy rate for all types of attacks except
exfiltration and fake identification attacks. Furthermore, the K-mean model achieved a very low error
rate in all types of attacks except those with a low accuracy rate (exfiltration and fake notification
attacks). The K-means model achieved an overall accuracy rate of 96.38% for multi-class classification
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(normal, 18 attacks) with a reduced overall error rate of 3.6%. The overall execution time of the K-
means model in classifying multi-class classification (normal, 18 attacks) is 62.51

Table 4: Performance results of multi-class classification (normal, 18 attacks)
Third level of the dataset

Class name Number of
test sample

Number of
correct
sample

Accuracy of
each class

Error rate of
each class

Accuracy Error rate Execution time

K-Medoids Generic scanning 3001 3001 100 0 99.85 0.15 57.34
Scanning vulnerability 3001 3001 100 0
Discovering resources 3001 3001 100 0
Fuzzing 393 393 100 0
Brute force 3000 3000 100 0
Dictionary 771 771 100 0
Insider_Melecious 3000 3000 100 0
Reverse shell 304 304 100 0
MitM 35 0 0 100
Modbus_register
_reading

1785 1785 100 0

MQTT_cloud_
broker_subscription

3000 3000 100 0

TCP Relay 635 635 100 0
C&C 859 859 100 0
Exfiltration 3000 3000 100 0
False_data_injection 1529 1529 100 0
Fake notification 8 0 0 100
RDOS 3000 3000 100 0
Crypto ransomware 137 91 66.42 33.58
Normal 30000 30000 100 0

K-Means Generic scanning 3001 3001 100 0 96.38 3.62 62.587
Scanning vulnerability 3000 3000 100 0
Discovering resources 3000 3000 100 0
Fuzzing 394 394 100 0
Brute force 3001 3001 100 0
Dictionary 771 771 100 0
insider_malcious 3000 3000 100 0
Reverse shell 304 304 100 0
MitM 35 35 100 0
Modbus_register
_reading

1786 1786 100 0

MQTT_cloud_broker
_subscription

3000 3000 100 0

TCP relay 636 636 100 0
C&C 858 858 100 0
Exfiltration 3000 820 27.33 72.67
False_data_injection 1528 1528 100 0
Fake notification 8 0 0 100

RDOS 3000 3000 100 0
Crypto ransomware 137 137 100 0
Normal 30000 30000 100 0

Overall, the K-medoids model outperformed the K-means model across all classification levels.
In the binary class classification, the K-medoids achieved an overall accuracy rate of 99.79% and an
error rate of 0.21%. While the K-means algorithm obtained an overall accuracy rate of 99.76% and an
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error rate of 0.24%, In the second level of classification, the K-medoids model achieved 100% accuracy
and zero error rate, while the K-means model achieved 97.069% overall accuracy and 2.39% error rate.
In the third level of classification, the K-medoids model outperformed the K-means model in terms of
accuracy and error rate with 99.85%, respectively. Whereas the K-means achieved an overall accuracy
rate of 96.38% and an error rate of 3.62%.

4.3 Comparative Analysis
In comparison to recent existing methods, this paper presents a clustering approach for detecting

anomalous traffic in order to develop predictable IDS-based clustering techniques for various network
threats. We compared the outcomes of our proposed method to those of recently developed detection
techniques (see Table 5). Compared with Al-Hawawreh et al. [25], the proposed model improved the
accuracy rate by 0.25%. Our proposed clustering model also outperformed a recently proposed method
by Alanazi et al. [24], who used the minimum redundancy maximum relevance (MRMR) method with
the decision tree algorithm, the proposed method enhanced the accuracy rate by 0.21%. In addition,
the proposed model improved accuracy by 7.4% when compared to Ludwig [29], who used the neural
network ensemble method. The proposed clustering model also significantly improved accuracy by
12.18% when compared to Kasongo [27]. Compared to Mendonca et al. [30], who used the Tree-
CNN method, our proposed method increased accuracy by 1.79%. Compared to Liu et al. [31] and
Hanif et al. [32], the proposed work improved accuracy by 13.11% and 15.79%, respectively. Also, the
proposed model improved accuracy by 10.29% when compared to Zhou et al. [33]. Fig. 4 compares
the proposed model to the most cutting-edge approaches.

Table 5: Comparison of the proposed model with the cutting-edge mechanisms

Ref Detection method Accuracy

Al-Hawawreh et al. [25] Decision tree 99.54%
Alanazi et al. [24] Minimum redundancy maximum

relevance with decision tree
99.58%

Ludwig [29] Neural network ensemble method 92.49%
Latif et al. [26] Random neural network 99.20%
Kasongo [27] Genetic algorithm with extra tree 87.61%
Mendonca et al. [30] Tree-CNN 98.00%
Liu et al. [31] PSO-SVM 86.68%
Hanif et al. [32] ANN 84.00%
Zhou et al. [33] Variational long short-term memory 89.5%
Proposed method Principle component analysis with

k-medoids clustering model
99.79%
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Figure 4: Comparison of the proposed model with the cutting-edge mechanisms

5 Conclusion

In this paper, we proposed an intelligent IDS model for industrial IoT networks using clustering
techniques to overcome modern cyberattacks in IIoT environments. The proposed work employed
the PCA as the feature engineering method because a feature selection technique plays an important
role in reducing data dimension, removing unnecessary features, and improving detection efficiency.
In the classification stage, we used clustering algorithms such as k-medoids and K-means models
to determine whether a given flow of traffic is normal or malicious for binary classification and
identify the group of cyberattacks according to its specific type for multi-class classification. The
performance results demonstrated the proposed clustering techniques achieved were more successful
than the cutting-edge approaches. In the future, we will improve the detection performance for multi-
class classification because some attacks achieved lower performance results. In addition, we will
expand our methodology to include more clustering techniques with additional IIoT datasets.
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