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Abstract: Wireless Sensor Networks (WSNs) gather data in physical environ-
ments, which is some type. These ubiquitous sensors face several challenges
responsible for corrupting them (mostly sensor failure and intrusions in
external agents). WSNs were disposed to error, and effectual fault detection
techniques are utilized for detecting faults from WSNs in a timely approach.
Machine learning (ML) was extremely utilized for detecting faults in WSNs.
Therefore, this study proposes a billiards optimization algorithm with modi-
fied deep learning for fault detection (BIOMDL-FD) in WSN. The BIOMDL-
FD technique mainly concentrates on identifying sensor faults to enhance
network efficiency. To do so, the presented BIOMDL-FD technique uses the
attention-based bidirectional long short-term memory (ABLSTM) method
for fault detection. In the ABLSTM model, the attention mechanism enables
us to learn the relationships between the inputs and modify the probability
to give more attention to essential features. At the same time, the BIO
algorithm is employed for optimal hyperparameter tuning of the ABLSTM
model, which is stimulated by billiard games, showing the novelty of the
work. Experimental analyses are made to affirm the enhanced fault detection
outcomes of the BIOMDL-FD technique. Detailed simulation results demon-
strate the improvement of the BIOMDL-FD technique over other models with
a maximum classification accuracy of 99.37%.

Keywords: Wireless sensor network; fault detection; reliability; deep learning;
metaheuristics

1 Introduction

The Internet of Things (IoT) is becoming a unique structure for network traffic formed individ-
ually by several small devices and elements [1]. Recently, IoT has grabbed substantial interest because
of its implications, including traffic management, smart healthcare, mobility, new technologies, and
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smart homes. IoT techniques can drastically improve intellectual services’ effectiveness, resilience, and
stability [2]. The main objective of IoT was to gather data, ensuring the presence of a very critical and
susceptible perceptual layer in the mechanism at all times. Thus, the perception layer will be the most
vulnerable and crucial, as many sources are required if the node energy is depleted [3].

Moreover, the consistency of the data accumulated through the perception layer will be helpful
in the IoT implementation and maturity. Wireless sensor networks (WSNs) were widely utilized in
IoT-related mechanisms for gaining the data required by smart environments. Commonly, WSNs
are made up of sensor nodes (SN) compiled with wireless communication tools. SNs were widely
distributed and self-contained [4]. The WSN structure usually has source SNs, cluster head (CH)
nodes, sink nodes, and manager nodes. Such SNs under operation could reach real-time observation of
the physical environments, offer comprehensive information for back-end services for the evaluation,
and formulate the intellectual structure of the sensing layer [5]. But the common features of such nodes
generally need more storage, computing capabilities, and energy.

Some reasons for faults in WSNs are calibration faults, data loss, and aggregation errors. Machine
learning (ML) can be broadly employed for fault detection in WSN [6]. Various faults exist that the
research community can encounter and are classified under the sensed data. Various classifier methods
also include numerous advantages; hence, deciding the optimal classifier for the fusion technique is
complex. Thus, the belief function-related decision fusion method will be utilized since it is compatible
with any classifier type [7]. ML techniques were commonly utilized for enhancing the fusion accuracy
of the belief function fusion method. This work mainly focused on using methods which would
minimize the difficulty of the energy consumption and combination operation of the SNs [8]. ML will
leverage a large volume of data for training a method and employs the model for prediction purposes.

There are many forms of ML techniques, and each has its features. The naive Bayes (NB)
technique could reach simple probability-related classification. Still, it could not be able to study
the communication among features and is inclined to low variance and high deviation [9]. Logistic
Regression (LR) is implemented efficiently in binary classifications that can be extensively utilized in
industry. But it can be disposed to under-fitting and usually contains less accuracy. A decision tree
(DT) will be considered a decision support tool that can be easily explained and understood but is
susceptible to overfitting. Since an effective technique in ML, artificial neural networks (ANN) will
realize artificial intelligence (AI) through the simulation of the neural network (NN) of the human
brain [10]. The objectives of WSN are summarized as 4 points: extending network lifespan, enhancing
data quality, enhancing network security, and shortening response time.

This study proposes a billiards optimization algorithm with modified deep learning for fault
detection (BIOMDL-FD) in WSN. The presented BIOMDL-FD technique employs an attention-
based bidirectional long short-term memory (ABLSTM) model for fault detection. In the ABLSTM
model, the attention mechanism enables us to learn the relationships between the inputs and modify
the probability to give more attention to essential features. At the same time, the BIO algorithm is
employed for optimal hyperparameter tuning of the ABLSTM model, which is stimulated by billiard
games. Experimental analyses are made to affirm the enhanced fault detection outcomes of the
BIOMDL-FD technique.

2 Literature Review

Regin et al. [11] modelled the convex hull technique for computing some extreme points, including
the neighbouring nodes. The message’s period will remain limited since the SNs raise. Then, the
author devised a CNN and NB classifier to enhance the convergence performance and find the
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nodes’ faults. Next, the author examines CNN, convex hull, and NB techniques with the help of real-
time data for finding and organizing the faults. In [12], a supervised ML-related approach will be
considered for examining the SN’s performance by their data for diagnosing and detecting faults. To
promptly diagnose and promptly identify the faults, the author enforced an ensembled learning-related
lightweight method named Extra-Trees or Extremely Randomized Trees. This modelled Extra-Trees-
based detection technique is robust toward a strong reduction of bias, variance error, and signal noise.

Kalaiselvi et al. [13] devise the link failure detection and malicious nodes detection by malicious
nodes in the wireless body area network (WBAN) atmosphere. The malicious SN detection mechanism
was devised through the ML technique, and the link failure detection was devised with the help
of the DL technique. This presented co-active adaptive neuro-fuzzy inference mechanism classifier
related malicious node detection mechanism in WBAN. Jan et al. [14] present distributed sensor-
fault detection (FD). The diagnosis mechanism relies upon ML techniques in which the FD block
will be enforced in the SN to attain output instantly after data collection. This block has an AE for
transforming the input signal into low-dimensional feature vectors that can be presented to SVM for
classifying them as faulty or normal.

In [15], an energy-aware intellectual FD technique was modelled for IoT-based WSNs that
pointedly enhanced FD accurateness and minimized false alarm rates. A new 3-Tier hard FD system
was employed to detect hardware unit faults of the SNs. Additionally, an optimized DL system was
utilized for several soft FDs, which averts premature death of SNs. Gavel et al. [16] proposed a new
integration of data aggregation-related data fusion with active FD using the properties of KELM and
Grey Model (GM). In this study, GM was used as a data fusion technique that records one datum
pattern by rejecting redundant data get through various SNs. Trained KELM was used for effective
FD, preserving high network confidentiality.

In [17], a modelled multiobjective-deep reinforcement-learning (DRL)-a related technique for
fault tolerance in IoT-based WSN. The ultimate aim of this study was to identify the fault nodes
having minimal overhead and maximal accuracy. Additionally, this study concentrates on reliable data
communication after FD. At last, a mobile sink (MS) was leveraged for energy-efficient data collection
that suggestively enhances the network’s lifespan. In [18], a new Energy-Efficient Heterogeneous Fault
Management technique was devised for managing such heterogeneous errors in IWSN. Effectual
heterogeneous FD in this technique is attained through 3 new diagnosis approaches. The novel
Tuned SVM classifier eases classifying the heterogeneous faults in which the tuning parameters of
the modelled classifier are maximized by utilizing the Hierarchy related Grasshopper Optimization
technique.

3 The Proposed Model

In this article, we developed a new BIOMDL-FD technique for fault detection in WSN, thereby
extending the network efficiency. The presented BIOMDL-FD technique follows a two-stage process.
At first, the fault detection process takes place using the ABLSTM model. Next, the BIO algorithm
is applied for hyperparameter tuning in the latter stage. Fig. 1 represents the block diagram of the
BIOMDL-FD system.

3.1 Fault Detection Module
In this study, the BIOMDL-FD technique utilizes the ABLSTM model for fault detection in WSN.

The BLSTM is utilized to learn the time series feature from input sensor data (ISD). The traffic bytes
of all the data ISD were consecutively input as BLSTM that eventually attained an input sensor data
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vector (ISDV). The BLSTM is an improved type of LSTM [19]. The BLSTM technique was employed
for extracting coarse-grained features concerning forward and backwards LSTMs. LSTM was planned
by output gate 0, input gate i, and forget gate f to control overwritten data by relating the inner memory
cell C once novel data attains. If the data enters an LSTM network, it is judged whether it can be
valued based on significant rules. Only the data which meets techniques authentication remains, and
inconsistent data is gone by the forgetting gate. To provide an input order x = (x0, . . . , xt) at time t
and hidden layers (HLs) of the BLSTM layer, h = (h0, . . . , ht) is the resultant as follows.

Figure 1: Block diagram of BIOMDL-FD system

The forget gate carries the outcome of HL ht−1 at the preceding moment and input xt at the present
moment as input for choosing to forget from the cell state Ct that is represented as [19]:

ft = sigmoid(Wxf xt + Whf ht−1 + bf ), (1)

An input gate co-operates with the tanh function composed for controlling the addition of novel
data. tanh creates a novel candidate vector. An input gate makes a value to all the items in C̃t From
zero to one for controlling that several novel data are added that are written as follows [19]:

Ct = sigmoid(ft · Ct−1 + it · C̃t), (2)

it = sigmoid(Wxixt + Whiht−1 + bt), (3)

C̃t = tan(Wcxt + Wcht−1 + bc), (4)

The resultant gate employed for controlling that several of the present unit states are filtered out
that is demonstrated as:

ot = sigmoid(Wxoxt + Whoht−1 + bo), (5)

To the BLSTM technique at time t, the HLs of ht that is an ISDV created in all the ISD is
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In which x denotes the input of heterogeneous time series data. ‘.

‘

stands for the pointwise product.
→
H and ← ht indicates the HLs of forward and backward LSTM layers at time t. Each matrix W is the
linked weight betwixt 2 units, and b demonstrates the bias vectors. BLSTM creates an ISDV for all
the ISDs. These ISDVs were set in the sequences of connection betwixt the 2 parties from the network
stream for developing an order of ISDVs. The attention layer learns the connections in ISDVs. An
attention system was utilized for adjusting the probability of ISDVs, so our technique pays further
attention to significant features. Primarily, the ISDVs ht extracting with the BLSTM technique was
employed for obtaining their implicit representation ut with a non-linear transformation that is defined
as:

ut = tanb(Wwht + bw), (9)

It depends upon the similarity representation ut with context vector uw and achieves the nor-
malization significance weighted co-efficient αt. uw represents the arbitrary initialized matrix which
concentrates on important data on ut. The weighted coefficient to the above coarse-grained feature is
represented as [19]:

αt = exp
(
uT

t uw

)
∑

exp
(
uT

t uw

) , (10)

Lastly, the fine-grained feature s is estimated utilizing the weighted sum of ht dependent upon αt.
s is demonstrated as:

s =
∑

αtht, (11)

The fine-grained feature vector s created in the attention method were utilized for malicious traffic
detection with softmax classification that is written as:

y = softmax(Whs + bh), (12)

Whereas Wh defines the weighted classification matrix that is map s to a novel vector with length
h. h stands for class labels. Fig. 2 demonstrates the infrastructure of the BLSTM technique.

3.2 Hyperparameter Tuning Module
The BIO algorithm is employed for optimal hyperparameter tuning of the ABLSTM model.

An important inspiration of BOA is the billiard game and embedding natural physical law from the
collision betwixt balls [20]. As a common class of games, billiards are used by a long stick as a cue
for striking billiards balls and invoking them for moving from one place to another. A cloth-covered
billiards table surrounded by elastic cushions involved confining rails. The billiard sports were so
susceptible to natural physical laws. The physics following them mostly contains collisions betwixt
balls. The collision betwixt 2 billiard balls was almost elastic. In entirely elastic collisions, the kinetic
drives of balls were conserved before and after collisions, also the sum of both moments. If two balls
were with the other, the forces betwixt balls in the collision were directed beside an imaginary line
which links its centre, simply put, impact line. It is to be noted that the impact velocities decompose
into 2 elements, parallel and perpendicular elements. A primary one was parallel to the impact line of
balls, and the second element was perpendicular to it. The last ball velocity after collision from the
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perpendicular and parallel ways with the influence line of balls was defined as [20]:

v
→′ →
1 = v

′
1.‖

→
e‖ + →

v1.⊥, (13)

v
→′ →
2 = v2.‖

→
e‖ + →

v2.⊥, (14)

v
′
1.‖ = m1 − m2

m1 + m2

v1.‖ + 2m2

m1 + m2

v2.‖, (15)

v;
2.‖ = 2m1

m1 + m2

v1.‖ + m2 − m1

m1 + m2

v2.‖, (16)

Whereas vl
1 and vl

2 stand for their velocities after the collision, v1 and v2 define the velocities of the 1st

and 2nd balls before the collision. Besides, the symbols ‖ and ⊥ defines the parallel and perpendicular
elements correspondingly. The parameters m1 and m2 indicate the masses of balls. In addition, the
unit vector of the linking vector was represented as

→
e‖. It can be notable that perpendicular elements

of velocities remain unmodified as force is only executed beside the influence line that causes the
perpendicular elements of momenta that are preserved to balls. A detailed analysis of the above
formulas exposes that once the balls contain equivalent masses, they switch only parallel velocity
elements.

Figure 2: Architecture of BLSTM

vl
1.‖ = v2.‖ and v;

2.‖ = v1.‖, (17)

During this technique, the last places of bodies were identified dependent upon kinematics
formulas under this case of constant accelerations as:

x (t) = x0 + v0t + 1
2

at2, (18)

|v|2 = |v0|2 + 2 |a| |x − x0| , (19)
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Algorithm 1: Pseudocode of BIO Algorithm
set N = No. of balls;
M = No. of variables;
K = No. of pockets;
ET = escape threshold
itern = 0
Initialization of 2N balls and K pockets;
while (itern < itern_limit)

Asses the location of balls and pockets based on objective function;
Upgrade population and pocket memory;
Generate normal as well as cue ball groups;
for every pair of ball

Elect a target pocket using a roulette-wheel selection scheme;
end
Upgrade the location of the present normal ball;
Determine the velocity of normal ball afterwards collisions;
Determine the velocity of the cue ball afterwards collisions;
Upgrade the location of the present cue ball

if (rand < ET)

Recreate arbitrary ball dimensions;
end

Verify the boundary conditions and adjust the balls
iter = iter + 1;

end while
Report optimal pocket as end solution.

4 Results and Discussion

The fault detection performance of the BIOMDL-FD model is inspected under four various types
of faults, namely offset fault (OF), gain fault (GF), stuck-at fault (SAF), and out-of-bounds fault
(OOBF). The proposed model has experimented on PC i5-8600k, GeForce 1050Ti 4 GB, 16 GB RAM,
250 GB SSD, and 1TB HDD. The parameter settings are learning rate: 0.01, dropout: 0.5, batch size:
5, epoch count: 50, and activation: ReLU.

Table 1 reports the results offered by the BIOMDL-FD model under four fault types. The
experimental values indicated that the BIOMDL-FD model had reached enhanced performance under
all faults. In addition, it is noted that the BIOMDL-FD model has reached an average DA of 98.60%,
99.33%, 98.43%, 97.82%, and 98.36% under all IFs of 10% to 50%, respectively.

Table 2 and Fig. 3 report a detailed DA examination of the BIOMDL-FD model with other
fault detection models with an IF of 10%. The results showed that the BIOMDL-FD model gained
maximum fault detection results under all faults. For instance, the BIOMDL-FD model has pro-
vided an increased DA of 98.91%, whereas the ERELM, ESVM, EELM, and EKNN models have
shown decreased DA of 97.74%, 93.24%, 92.46%, and 92.19% respectively. Moreover, on OOBF, the
BIOMDL-FD model has accomplished a higher DA of 99.88%, whereas the ERELM, ESVM, EELM,
and EKNN models have demonstrated lower DA of 98.63%, 98.03%, 91.66%, and 90.63% respectively.
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Table 1: Detection accuracy analysis of BIOMDL-FD system under distinct faults

Detection accuracy (%)

Fault types Induced
fault = 10 (%)

Induced
fault = 20 (%)

Induced
fault = 30 (%)

Induced
fault = 40 (%)

Induced
fault = 50 (%)

Offset fault 98.91 99.33 98.55 98.31 98.73
Gain fault 97.67 99.25 96.27 98.29 97.98
Stuck-at fault 97.94 99.47 99.68 96.63 98.73
Out of bounds 99.88 99.28 99.22 98.05 98.01
Average 98.60 99.33 98.43 97.82 98.36

Table 2: DA analysis of BIOMDL-FD system with other algorithms under IF of 10%

Detection accuracy (induced faults = 10%)

Fault types ERELM ESVM EELM EKNN BIOMDL-FD

Offset fault 97.74 93.24 92.46 92.19 98.91
Gain fault 96.85 90.13 91.66 79.63 97.67
Stuck-at fault 97.11 91.60 95.45 90.75 97.94
Out of bounds 98.63 98.03 91.66 90.63 99.88
Average 97.58 93.25 92.81 88.30 98.60

Figure 3: DA analysis of BIOMDL-FD system under IF of 10%



CSSE, 2023, vol.47, no.2 1659

Table 3 and Fig. 4 report a detailed DA inspection of the BIOMDL-FD technique with other
fault detection models with an IF of 20%. The results revealed that the BIOMDL-FD approach
attained maximum fault detection under all faults. For example, on OF, the BIOMDL-FD technique
has offered a high DA of 99.33%, whereas the ERELM, ESVM, EELM, and EKNN approaches
have exhibited decreased DA of 99.04%, 93.93%, 81.60%, and 81.78% correspondingly. Furthermore,
on OOBF, the BIOMDL-FD method has established a higher DA of 99.28%, whereas the ERELM,
ESVM, EELM, and EKNN approaches have established lower DA of 98.20%, 92.93%, 83.32%, and
81.69% correspondingly.

Table 3: DA analysis of BIOMDL-FD system with other algorithms under IF of 20%

Detection accuracy (induced faults = 20%)

Fault types ERELM ESVM EELM EKNN BIOMDL-FD

Offset fault 99.04 93.93 81.60 81.78 99.33
Gain fault 98.15 93.21 84.41 80.99 99.25
Stuck-at fault 98.45 93.37 83.46 80.78 99.47
Out of bounds 98.20 92.93 83.32 81.69 99.28
Average 98.46 93.36 83.20 81.31 99.33

Figure 4: DA analysis of BIOMDL-FD system under IF of 20%

Table 4 and Fig. 5 report a comprehensive DA investigation of the BIOMDL-FD method with
other fault detection models with an IF of 30%. The outcomes exhibited the BIOMDL-FD approach
attained maximal fault detection results under all faults. For example, on OF, the BIOMDL-FD
method has offered a high DA of 98.55%, whereas the ERELM, ESVM, EELM, and EKNN
approaches have shown decreased DA of 97.45%, 97.52%, 82.72%, and 80.07% correspondingly.
Moreover, on OOBF, the BIOMDL-FD technique has accomplished a higher DA of 99.22%, whereas
the ERELM, ESVM, EELM, and EKNN models have illustrated lower DA of 97.31%, 98.24%,
82.94%, and 80.32% correspondingly.
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Table 4: DA analysis of BIOMDL-FD system with other algorithms under IF of 30%

Detection accuracy (induced faults = 30%)

Fault types ERELM ESVM EELM EKNN BIOMDL-FD

Offset fault 97.45 97.52 82.72 80.07 98.55
Gain fault 95.10 94.96 83.14 73.17 96.27
Stuck-at fault 97.21 98.82 83.00 80.13 99.68
Out of bounds 97.31 98.24 82.94 80.32 99.22
Average 96.77 97.39 82.95 78.42 98.43

Figure 5: DA analysis of BIOMDL-FD system under IF of 30%

Table 5 and Fig. 6 report a thorough DA analysis of the BIOMDL-FD method with other fault
detection models with an IF of 40%. The results exemplified that the BIOMDL-FD algorithm achieved
maximum fault detection results under all faults. For example, on OF, the BIOMDL-FD method has
offered an increased DA of 98.31%, whereas the ERELM, ESVM, EELM, and EKNN methods have
revealed decreased DA of 97.10%, 92.82%, 81.34%, and 62.60% correspondingly. Furthermore, on
OOBF, the BIOMDL-FD method has accomplished a higher DA of 98.05%, whereas the ERELM,
ESVM, EELM, and EKNN approaches have demonstrated lower DA of 97.25%, 95.11%, 69.67%,
and 63.30% correspondingly.

Table 6 and Fig. 7 report a detailed DA inspection of the BIOMDL-FD method with other
fault detection models with an IF of 50%. The results exhibited that the BIOMDL-FD approach
attained maximum fault detection under all faults. For example, on OF, the BIOMDL-FD method has
presented a high DA of 98.73%, whereas the ERELM, ESVM, EELM, and EKNN approaches have
exhibited decreased DA of 97.65%, 84.64%, 48.53%, and 59.17% correspondingly. Besides, on OOBF,
the BIOMDL-FD method has established a higher DA of 98.01%, whereas the ERELM, ESVM,
EELM, and EKNN methods have demonstrated lower DA of 97.12%, 84.03%, 48.57%, and 59.08%
correspondingly.
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Table 5: DA analysis of BIOMDL-FD system with other algorithms under IF of 40%

Detection accuracy (induced faults = 40%)

Fault types ERELM ESVM EELM EKNN BIOMDL-FD

Offset fault 97.10 92.82 81.34 62.60 98.31
Gain fault 97.26 93.34 80.64 62.18 98.29
Stuck-at fault 95.70 90.58 80.56 60.98 96.63
Out of bounds 97.25 95.11 69.67 63.30 98.05
Average 96.83 92.96 78.05 62.27 97.82

Figure 6: DA analysis of BIOMDL-FD system under IF of 40%

Table 6: DA analysis of BIOMDL-FD system with other algorithms under IF of 50%

Detection accuracy (induced faults = 50%)

Fault types ERELM ESVM EELM EKNN BIOMDL-FD

Offset fault 97.65 84.64 48.53 59.17 98.73
Gain fault 97.17 85.01 69.90 58.46 97.98
Stuck-at fault 97.44 84.43 48.00 58.53 98.73
Out of bounds 97.12 84.03 48.57 59.08 98.01
Average 97.35 84.53 53.75 58.81 98.36



1662 CSSE, 2023, vol.47, no.2

Figure 7: DA analysis of BIOMDL-FD system under IF of 50%

Finally, a detailed classification accuracy (CA) inspection of the BIOMDL-FD model with
compared methods take place in Table 7 [14,21]. The experimental values indicated that the BIOMDL-
FD model had reached increased CA values under all sensor numbers. For instance, on sensor 2, the
BIOMDL-FD model has reached a higher CA of 84.09%, whereas the SS, WMV, NB, and BF models
have attained lower CA of 77.91%, 80.49%, 79.99%, and 83.40%, respectively. In addition, on sensor
4, the BIOMDL-FD approach has attained a higher CA of 92.24%, whereas the SS, WMV, NB, and
BF methods have reached lower CA of 77.40%, 88.83%, 88.13%, and 89.71% correspondingly.

Table 7: CA analysis of BIOMDL-FD system with existing methodologies

Classification accuracy

Sensor number Single sensor
(Avg.)

Weighted
majority vote

Naïve Bayes Belief
function

BIOMDL-FD

1 78.98 79.29 79.04 79.42 79.23
2 77.91 80.49 79.99 83.40 84.09
3 77.21 87.50 86.05 87.06 88.57
4 77.40 88.83 88.13 89.71 92.24
5 77.46 92.55 91.73 92.93 94.76
6 77.40 94.07 92.99 94.44 97.41
7 77.72 95.58 94.89 95.77 98.48
8 77.59 96.09 96.02 97.29 98.80
9 77.34 96.59 97.35 98.17 98.93
10 77.21 97.03 98.04 98.61 99.18
11 77.21 97.73 98.04 98.67 99.37
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Besides, on sensor 11, the BIOMDL-FD model has attained a higher CA of 99.37%, whereas
the SS, WMV, NB, and BF models have achieved a lower CA of 72.1%, respectively 97.73%, 98.04%,
and 98.67%, correspondingly. Thus, the presented BIOMDL-FD model can be employed for fault
detection in the WSN.

5 Conclusion

In this article, we developed a new BIOMDL-FD technique for fault detection in WSN, thereby
extending the network efficiency. The presented BIOMDL-FD technique follows a two-stage process:
fault detection using the ABLSTM model and hyperparameter tuning. In the ABLSTM model,
the attention mechanism enables us to learn the relationships between the inputs and modify the
probability to give more attention to essential features. At the same time, the BIO algorithm is
employed for optimal hyperparameter tuning of the ABLSTM model, which is stimulated by billiard
games. A series of experimental analyses are made to affirm the enhanced fault detection outcomes
of the BIOMDL-FD technique. Detailed simulation outcomes demonstrate the improvement of the
BIOMDL-FD approach over other models with a maximum classification accuracy of 99.37%. In
future, the presented BIOMDL-FD technique can be realized in a large-scale real-time environment.
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