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Abstract: Human Suspicious Activity Recognition (HSAR) is a critical and
active research area in computer vision that relies on artificial intelligence
reasoning. Significant advances have been made in this field recently due
to important applications such as video surveillance. In video surveillance,
humans are monitored through video cameras when doing suspicious activ-
ities such as kidnapping, fighting, snatching, and a few more. Although
numerous techniques have been introduced in the literature for routine human
actions (HAR), very few studies are available for HSAR. This study pro-
poses a deep convolutional neural network (CNN) and optimal features-
based framework for HSAR in video frames. The framework consists of
various stages, including preprocessing video frames, fine-tuning deep models
(Darknet 19 and Nasnet mobile) using transfer learning, serial-based feature
fusion, feature selection via equilibrium feature optimizer, and neural network
classifiers for classification. Fine-tuning two models using some hit and trial
methods is the first challenge of this work that was later employed for feature
extraction. Next, features are fused in a serial approach, and then an improved
optimization method is proposed to select the best features. The proposed
technique was evaluated on two action datasets, Hybrid-KTH01 and Hybrid-
KTH02, and achieved an accuracy of 99.8% and 99.7%, respectively. The
proposed method exhibited higher precision compared to existing state-of-
the-art approaches.

Keywords: Suspicious activity; deep learning; weights; surveillance;
optimization

1 Introduction

Human suspicious activity recognition (HAR) is becoming popular in machine learning (ML)
and artificial intelligence (AI) [1,2]. Motivated by the vast range of applications, major advances in
learning and recognizing human actions by utilizing different techniques of computer vision (CV)
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[3,4]. HAR can be used in different medical and biometric domains such as public surveillance,
airports, shopping malls, home care for old and children, computer gaming, human-robot and human-
computer interaction (HBI/HCI), and video retrieval [5–7]. To design an intelligent human–computer
interaction, a system must perceive human motions and interpret their actions and intentions. HAR
uses range sensors, cameras, and other sensors to recognize and evaluate human activities or actions
in real time [8]. Thus, many tasks would be transformed if computer systems could automatically
understand daily human behavior. Depending on intricacy, human movements can be classified
as actions, gestures, or interactions [6,7]. Most available action recognition (AR) algorithms are
mostly based on RGB data. Nevertheless, HAR based on RGB data faces the following challenges:
(i) Complex backdrop, image shadows, occlusion, and varying light conditions, and size and scale
change will create significant recognition challenges, which is also true for RGB-based AR [9]. (ii)
The same event will yield distinct perceptions from various vantage points. (iii) Same action done
by multiple individuals will vary substantially, and two distinct types of actions may share many
similarities. These intrinsic flaws of RGB visual information will hinder HAR based on RGB data
[10].

Deep learning has recently demonstrated superior performance in ML and CV for various appli-
cations, including agricultural, medical, video surveillance, biometrics, detection, and classification of
different objects [11]. Even if features are retrieved automatically by deep learning, the accuracy of
action detection has risen compared to handcrafted action features. To increase the recognition rate
of HAR, CNN deep networks are utilized. There are two main steps of HAR techniques: extracting
deep features and then classifying the actions. For HAR, pretrained deep CNN networks such as
Resnet [12], Inceptionv3 [13], Alex net [14], Exception [15], VGG [16], Efficientnet [17], and other
deep networks are utilized with the concept of transfer learning (TL) [14]. Even if features are retrieved
automatically by deep learning, the accuracy of action detection has risen compared to handcrafted
action features [18]. Due to complex and large datasets, we sometimes used more than one CNN
model to increase the recognition accuracy with the fusion process because a single network is not
working well on these datasets. After the fusion process, many features are obtained that decrease the
accuracy and increase the computation time. So, this issue is resolved by different feature optimization
techniques such as ant colony, variance-based optimization, firefly optimizer, whale optimizer, tree-
based optimizer, and a few others [19]. The feature selection process involves identifying and selecting
a smaller set of important features or variables from a larger pool of options to enhance the accuracy
and efficiency of a machine learning model. The goal of this technique is to simplify the model and
remove irrelevant or redundant features that may cause overfitting and reduce overall performance.
Choosing the appropriate feature selection method relies on the particular dataset and problem at
hand, and a blend of various techniques might be utilized for optimal results. As a crucial phase of
the machine learning process, feature selection can produce models that are simpler and more easily
understood, while also demonstrating enhanced generalization and quicker training times. Optimal
feature vector is finally pass to the different ML and NN classifiers such as K-Nearest Neightbor
(KNN), Tree, support vector machine (SVM), Ada boost, linear discriminant analysis (LDA), and
Neural Network classifier for action classifications [20]. The major contributions of this work are as
follows:

– Two pre-trained deep neural networks are fine-tuned using a hit-and-trial method. In this, a
few layers from the middle was skipped and then added at the end.

– Models are trained with static hyperparameters, and extracted features are fused in a serial-
based mathematical formulation instead of simple concatenation.

– Propose an improved feature selection technique called Equilibrium State Static Values.
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2 Related Work

Numerous techniques for recognizing activities have been suggested by researchers, utilizing both
handcrafted features and features generated through deep learning [21,22]. Jiang et al. [23] present
a HAR technique in which a fusion is performed on temporal and enhanced features (TEFE). The
temporal feature extraction technique is used to get the short- and long-term features. To reduce the
parameters in bilinear pooling. V1 and V2 datasets and jester datasets are used to evaluate the model.
Accuracy of 96.8% on the jester dataset and 88.7% on something V2 dataset is achieved. Yang et al. [24]
suggested the STA-TSN approach for AR. This technique is used on long videos and gets the best
features from time and space data. Four action datasets, such as thumos14, jhmdb, hmdb51, and
ucf101 are used to evaluate the proposed framework. Attained 78.4% accuracy on jhmdb, 67.9% on
hmbd51%, and 93.3% on the ucf101 dataset. Shi et al. [25] suggested a pose-based method for HAR.
In this work, a light weighted graph network is employed with dense intermediate supervision. Three
datasets such as NTU-RGBD, Penn action, sub-jhmdb are used to evaluate the suggested framework.
Attained the accuracy of 96.4%, 99%, and 89.3%, respectively.

Yang et al. [26] proposed a Hybrid Net model for AR, combining CNN and GCN networks to
explain the body joints well. The suggested work tested on three action datasets: Skeleton-Kinetics,
NTU-RGBD 120, and NTU-RGBD datasets, attained accuracies of 62.3%, 96.9%, and 89.0%,
respectively. Shen et al. [27] present a framework for HAR containing two modules. In the first module,
a complex network extracts the features. The extracted feature vector is fused with the LSTM to
recognize the second module’s actions efficiently. UTKinect-Action3D, NTU RGB + D60, and MSR
Action3D datasets are utilized to test the presented method. Achieved accuracies of 90.4%, 91.8%, and
90.5%, respectively. Liu et al. [28] presented a two-stream model based on spatial, temporal learning
interaction (STLIT) to recognize human activities. This work is based on two different streams:
temporal and spatial streams. An interactive connection is established between both streams by using
the proposed framework. They tested their work on three activity datasets such as kinetics, HMDB51,
and UCF101. They attained an accuracy of 72.4%, 72.1%, and 95.6%, respectively. Afza et al. [29]
proposed a technique combining selected and extracted features, utilizing M-SVM to identify actions.
The effectiveness of this approach was evaluated on multiple datasets, including Weizmann, UCF
YouTube, KTH, and UCF Sports, achieving high levels of accuracy ranging from 94.5% to 100%.
The authors [1] introduced an innovative framework for activity recognition that utilizes features
obtained from RGB-D information through a complex network. They utilized a meta-path concept
with this network to detect unusual actions. The effectiveness of this approach was assessed on two
datasets, MSR Activity-3D, and MSR-Action, achieving accuracies of 96% and 98%, respectively.
The authors [10] proposed a selective ensemble SVM approach for activity recognition, which fuses
multi-model features including (HJF), HOG, (DMM-LBP) features. Their method was evaluated on
the two datasets (CAD 60 and G3D), achieving 92.1% and 92% accuracy, respectively. Liu et al. [30]
suggested a (KA-AGTN) network for activity recognition. The proposed work tested on three datasets:
Kinetics-Skeleton 400, NTU-RGBD 120, and NTU-RGBD 60. They achieved accuracies of 61%,
88.0%, and 96.1%, respectively. Shehzad et al. [31] present two steam CNN for HAR. In this work,
two CNN models are used for deep features, and IWOA selection algorithm is utilized to extract
the best feature set. Four activity datasets, namely Hollywood, Ut-interaction, UCF Sports, and
IXMAS datasets, are used to evaluate the suggested method, achieving accuracies of 99.1%, 100%,
100%, and 99.9%, respectively. The authors [32] proposed a technique for activity recognition using
CNN and Bi-Longest shortest memory (BLSTM) network. They also suggested a swarm intelligence-
based algorithm for selecting the best hyperparameters for neural networks. The effectiveness of
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this approach was evaluated using UCF50, KTH, and UCF101 datasets, and resulted in improved
performance.

3 Proposed Methodology

Fig. 1 illustrates the proposed AR technique, which comprises several steps. These steps involve
initial preprocessing of video frames, fine-tuning a darknet 19 and Nasnet mobile deep model through
transfer learning, extracting features, fusing the feature vectors using a modified correlation serial-
based method, selecting features through equilibrium optimizer, and performing classification using
various neural network classifiers. Finally, the trained classifiers’ results are evaluated at the end of the
process. Each step is elaborated on detail in the subsequent sections.

Figure 1: Proposed method for action recognition (AR)

3.1 Frames Initial Preprocessing
Video frame preprocessing involves using various methods to modify, filter, or enhance video

frames before being analyzed or processed by a machine learning or computer vision algorithm.
This preparatory step can enhance the precision and efficiency of the analysis by decreasing noise,
eliminating extraneous data, and highlighting relevant features. The preprocessing phase in this study
aims to convert action video sequences into individual frames. Initially, the dimensions of each video
frame were 512 × 512 × k, where k equals 3. However, the frames are subsequently transformed by
scaling them down to 256 × 256 × 3 pixels.

To enhance the image quality, a sub-image dualistic histogram equalization (SDHE) technique is
performed [33]. SDHE has a major advantage over traditional histogram equalization as it produces
superior results for images containing both dark and bright regions. This is achieved by applying
histogram equalization to each sub-image separately, which enhances the contrast in dark and bright
regions without causing over-brightening or over-darkening. As a result, SDHE can significantly
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improve the overall contrast and quality of such images while preserving their original characteristics.
SDHE is a technique specifically designed to improve the contrast of images that contain dark and
bright regions. It is a variation of histogram equalization, where the image is divided into smaller sub-
images, and each sub-image is subjected to histogram equalization individually. After the sub-images
are processed, they are recombined to generate the final image with improved contrast.

Let y is an image, and the gray level of that image is y = yf. Sub-images are denoted by ym and yn.
Center pixel index is denoted by f.

y = ym ∪ yn (1)

ym = {
y (i.j) |y (i.j) < yf , ∀y (i.j) ∈ y

}
(2)

yn = {
y (i.j) |y (i.j) ≥ yf , ∀y (i.j) ∈ y

}
(3)

Upper transformation uses for less bright images.

ym = {
y0, y1, . . . . . . . . . . . . yf −1

}
(4)

yn = {
yf , yf +1, . . . . . . . . . . . . ym−1

}
(5)

Aggregation of grey level original image as follows{
Q0, Q1 , . . . . . . . . . . . . Qf −1

}
(6){

Qf , Qf +1, . . . . . . . . . . . . Qm−1

}
(7)

Suppose

p =
∑f −1

i=0
Qi (8)

p =
∑m−1

i=f
Qi (9)

Q (ym) = pi

Qm

, i = 0, 1, 2, . . . . . . . . . . , f − 1 (10)

Q (yn) = pi

Qn

, i = f, f + 1, f + 2, . . . . . . . . . . , m − 1 (11)

Now for commulative distribution function (CDF) is formulated as follows:

Dm (yk) = 1
Q

∑f −1

i=0
Qi (12)

Dn (yk) = 1
Q

∑m−1

i=f
Qi (13)

Transformation function

fm (y) = y0 + (
yf −1 − y0

) × Dm (yk) (14)

fn (y) = Yf + (
ym−1 − yf

) × Dn (yk) (15)
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Output image

X = fm (y) ∪ fn (y) (16)

3.2 Deep CNN Model
CNN, or Convolutional Neural Network, is a type of neural network architecture commonly

employed in computer vision and image recognition tasks. The network is constructed using various
layers, each with a specific function, to extract meaningful features from the input data. CNN has
at least one convolutional layer in its layers. There are three basic layers in the CNN network. The
convolutional layer performs feature extraction by applying filters or kernels to the input image.
Each filter is convolved across the entire input image, computing element-wise multiplication and
summing up the results to generate a single output. The output of this layer is a collection of feature
maps that capture distinct features of the input image. The convolutional operation can be expressed
mathematically as follows:

A [i × j] = (m ∗ n) [i × j] =
∑

l

∑
k

n [l, k] m [i − l, j − k] (17)

where the input image is ‘m’ and kernel is ‘n’. i × j are the number of rows and columns, and ‘A’ is
output image.

In a CNN, the activation layer is responsible for applying a non-linear activation function to
the output feature maps of the previous convolutional layer. Common activation functions include
Rectified Linear Units (ReLU) and others. The purpose of this layer is to introduce non-linearity in
the network, allowing it to capture more complex features from the input data. It can be expressed
mathematically as follows:

ReLu Function = Max (0, y) , y ∈ J (18)

The (Max/Avg) pooling layer reduces the spatial dimensionality of the feature maps generated by
the preceding convolutional layer by performing a pooling operation on each feature map, like average
pooling or max pooling. This down-sampling helps make the network more efficient by reducing the
parameters and computations required for processing the feature maps.

The FC layer establishes connections between all neurons in the preceding layer to every neuron in
the next layer. This layer is typically used in the final stages of the network to perform the classification.
Mathematically as follows:

W out
0 = J [m × n] (19)

W in
l = W out

l−1 ∗ Jl + nl (20)

W out
l = �l

(
W in

l

)
(21)

In this Equation, the final fully connected (FC) layer is denoted as Wout
l . The symbol � represents

the activation function, and l refers to the number of layers in question. Finally, the SoftMax layer is
used for classification.

SoftMax
(
W out

l

) = exp(W out
l )∑

i W out
i

(22)
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3.3 Deep Feature Extraction
For feature extraction, two pre-trained models (Darknet-19 and Nasnet-Mobile) were utilized.

Darknet-19 is an architecture for deep CNN intended for computer vision tasks such as object detec-
tion and classification. It is a more compact variant of the Darknet architecture developed by Joseph
Redmon, with a total of 19 layers, and is consequently called Darknet-19. The Darknet-19 structure
consists of 19 layers, comprising 18 convolutional layers and one fully connected layer. It employs the
same fundamental building blocks as the bigger Darknet-53 architecture but has fewer layers, making
it more efficient computationally and faster to train. In 2018, Google researchers introduced Nasnet
Mobile, a type of CNN architecture created specifically for deployment on mobile devices. Nasnet
Mobile is a convolutional neural network architecture that is specifically designed for mobile devices,
with the advantage of having a relatively small number of parameters compared to other advanced
CNN architectures. This feature makes it suitable for deployment on mobile devices with limited
computational resources. The architecture is composed of multiple blocks of convolutional layers
and pooling layers, followed by fully connected layers for classification. Additionally, it implements
several optimization techniques, such as batch normalization, dropout, and learning rate scheduling
to enhance the network’s generalization performance.

These models were originally trained on the ImageNet dataset, which consists of 1000 distinct
classes. The final fully connected layer was eliminated and replaced with new dense layers to make
these models suitable for use with the Hybrid-KTH datasets. The modified models were then fine-
tuned using transfer learning techniques on these datasets. A ratio of 70:30 was used for training and
testing the dataset, respectively. The hyperparameters were configured with a mini-batch size of 16, an
initial learning rate of 0.01, 200 epochs, and a dropout of 0.3. Finally, the new deep model fine-tuned
with transfer learning was trained. Fig. 2 shows the TL process for AR.

Figure 2: Knowledge-based transfer learning process for AR

2-D Global Average Pooling (2gap) is used to extract the features from the Darknet-19 model.
The extracted feature vector is (N × 1024) and represented with V1. For Nasnet-Mobile, the “Global
Average Pooling 2d layer” (gap2) is used to extract the features. The extracted feature vector is
(N × 1056) and represented with V2.
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3.4 Feature Fusion
Feature fusion is a technique that involves merging feature maps or representations derived from

multiple sources or modalities, aiming to enhance a model’s performance. In this method, we utilized
a modified correlation extended serial approach to combine the feature vectors Vec1 and Vec2. Let us
assume that V1 belongs to Xa and V2 belongs to Yb. The following formula determines the correlation
between a and b:

Corelation =
∑ (

Xa − X
) (

Yb − Y
)√∑ (

Xa − X
)2 (

Yb − Y
)2

(23)

After applying the formula, features with positive correlation are stored in a new vector called V3,
while those with zero or negative correlation are stored in V4. The mean value of V4 is then computed
and each feature is compared to this value using the following approach:

CT =
{

Ṽ4 for V4 ≥ μ

ignore, otherwise
(24)

Finally, V5 is obtained after fusion is performed on V4 and V3 by the following formula:

V5 (k) =
(

V3 (k)u×v

Ṽ4 (k)u×v

)
(25)

The final vector V5 having (N × 2080) dimension.

Now the V5 pass to the feature selecting algorithm (Equilibrium Optimizer) to select the best
features.

3.5 Feature Optimization
Feature optimization refers to pinpointing and picking out the most significant features or

variables in a dataset that are relevant to the problem being addressed. The objective of feature selection
is to decrease the dataset’s dimensionality by eliminating insignificant, duplicated, or noisy features
while preserving those most informative and capable of making accurate predictions.

In our feature selection approach, we employed the equilibrium optimization (EO) algorithm [34].
The decision to use the EO algorithm was based on its ability to bypass local minima. Furthermore,
this algorithm is known to perform exploratory searches during the initial iterations and exploitative
searches during the final iterations. Nevertheless, improving its exploratory and exploitative capabili-
ties can enhance the EO algorithm’s convergence towards global optima. This optimizer is applied to a
fused vector V5, and after the optimization process, we obtain optimal vector V6. Below is an outline
of the optimization process.

3.6 Equilibrium Optimizer
The underlying principle behind the EO algorithm is based on the dynamic mass balance concept

applied to a control volume. As shown in Eq. (26), the generalized mass balance equation serves as a
foundation for the EO algorithm.

Dv

dn
dt

= Smeq − Sm + ng (26)
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In Eq. (26), Dv denotes the control volume with a mass of m. The expression
dn
dt

represents the

variation of concentration over time within the control volume Dv. The volumetric flow rate for Dv

is represented by S. The equilibrium mass of meq and the mass generated inside the control volume,
ng, are also included in the Equation. According to Eq. (26), the rate of change in mass over time
within the control volume is equal to the concentration produced inside the volume minus the mass
that has flowed out of it. When the system reaches a state of equilibrium, the left-hand side of Eq. (26),
which represents changes in mass within the control volume, becomes zero. In essence, Eq. (26) clearly
represents how mass is balanced within the control volume under dynamic conditions. Eq. (1) can be
transformed into Eq. (27) by rearranging and integrating it over time in order to calculate the mass
present within the control volume.

n = neq

(
no − neq

)
F + R

γ Dv

(1 − F) (27)

F is calculated by following equation.

F = d1sign (rand − 0.5) [e−γ t − 1] (28)

In this context, the constant d1 is introduced to enhance the exploration competence of the EO
algorithm. The term “sign(rand-0.5)” plays a role in determining the direction of exploration and
exploitation. The turnover rate γ is utilized to determine the variation in mass, with lower values of γ

resulting in higher variations and vice versa. Additionally, the variable t represents time, expressed as
a function of the iteration count, denoted as “itr” and specified by Eq. (29).

t =
(

1 − itr
max − itr

)(d2 itr
max−itr)

(29)

The current iteration is represented by ‘itr’, while ‘max-itr’ indicates the maximum number of
iterations permitted. ‘d2’ is a constant used to manage EO’s exploitation capabilities. To improve
the exploitation phase of EO, the ‘Rg’ (generation rate) defined in Eq. (27) is utilized as described
in Eq. (30).

Rg = Rg0F (30)

Rg0 is calculated by following equation:

Rg0 = DQ
(
neq − γ n

)
(31)

In this context, the control parameter DQ is utilized to update a certain parameter, Up, by using
its associated probability. The value of DQ can be obtained through Eq. (32).

DQ =
{{

0.5rand
0

∣∣∣∣rand ≥ Up

else

∣∣∣∣}}
(32)

The core of the EO utilizes Eq. (27) to update the mass of each particle in every iteration. The EO
begins by generating an initial population randomly, which consists of a random number of particles
with their corresponding masses assigned randomly according to Eq. (33).

nintial
i = nmin + rand × (nmax − nmin) (33)

In this context, the variables nmin and nmax represent the minimum and maximum allowable masses,
respectively. The function Rand generates a random number within the range of 0 to 1. The top four
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particles, as well as their average, are chosen to form an equilibrium pool using Eq. (34).

neq−pool = {
neq1, neq2, neq3, neq4, neq1(ave)

}
(34)

To update the mass of particles in each iteration, Eq. (27) is utilized based on a randomly chosen
value from the equilibrium pool obtained. The selection of each particle in the pool is done with equal
probability. The utilization of a pool instead of a single best particle increases the exploration of the
solution space by the algorithm. The average value in the pool also enhances the exploitation of the
search space. This procedure is repeated for a maximum number of iterations, max-itr, to achieve an
optimized solution.

As the last step, the optimized vector V6 is passed to five distinct neural network classifiers to
perform the task of classification.

4 Results

This section presents a comprehensive description of the results and their analysis. The proposed
technique was evaluated on two distinct: Hybrid KTH01, and Hybrid KTH02 datasets. Several
hyperparameters were used to train the neural networks, including a minibatch size of 16, a learning
rate of 0.001, 200 epochs, 10-fold cross-validation, and for learning rate optimization the Adam
optimizer. The dataset was split into a training set and a testing set in a 70:30 ratio. Five classifiers
were used to classify the actions, including Wide Neural Network (WNN), Narrow Neural Network
(NNN), Medium Neural Network (MNN), Tri-layered Neural Network (TLNN), and Bi-layered
Neural Network (BLNN). The proposed technique was implemented in MATLAB 2022 on a system
with a Core-i7 processor, 8 GB RAM, and a 2 GB graphics card.

4.1 Datasets Detail
Hybrid-KTH 01 Dataset: This dataset consist of 12 different action classes namely: Abuse (261

images), Arrest (500 images), Arson (250 images), Boxing (3016 images), Clapping (3700 images),
Jogging (4386 images), Running (3124 images), Shoplifting (220 images), Stealing (180 images),
Vandalism (180 images), Walking (3306 images), and Waving (3201 images). These classes contain
total number of 22,324 images. A few sample images are shown in Fig. 3.

Figure 3: Sample images of Hybrid-KTH01 dataset
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Hybrid-KTH 02 Dataset: This dataset consist of 13 different action classes namely: Assault (190
images), Boxing (3016 images), Burglary (190 images), Clapping (3700 images), Explosion (90 images),
Fighting (150 images), Jogging (4386 images), Road Accidents (160 images), Robbery (170 images),
Running (3124 images), Shooting (240 images), Walking (3306 images), and Waving (3201 images).
These classes contain total number of 21,923 images. A few sample images are shown in Fig. 4.

Figure 4: Sample images of Hybrid-KTH02 dataset

4.2 Numerical Results
The table and confusion matrices display the results of the proposed technique. Each dataset is

evaluated separately, and its outcomes are presented. Hybrid-KTH01 Dataset Results: In Table 1, the
outcomes of the Hybrid-KTH01 dataset are presented. By analyzing Nasnet-Mobile deep features, the
Wide Neural Network (WNN) classifier obtained the highest accuracy of 98.6%. The other classifiers
also demonstrated high accuracy (>98%) along with Precision, F1 score, and Recall values shown in
Table 1. The confusion matrix of the WNN classifier can be used to validate the model’s performance.
Fig. 5 shows the class-based confusion metric. Table 1 also provides the computation time for each
classifier.

In Table 2, the outcomes of the Hybrid-KTH01 dataset are presented. By analyzing Darknet-19
deep features, the Wide Neural Network (WNN) classifier obtained the highest accuracy of 99.7%.
The other classifiers also demonstrated high accuracy (>98%) along with Precision, F1 score, and
Recall values shown in Table 2. The confusion matrix of the WNN classifier can be used to validate
the model’s performance. Fig. 6 shows the class-based confusion metric. Table 2 also provides the
computation time for each classifier.
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Table 1: Classification results on Hybrid-KTH01 dataset using Nasnet Mobile deep features

Classifier Parameters

Recall Precision F1 score Accuracy (%) Time (sec)

NNN 0.9837 0.9712 0.9775 98.2 244
MNN 0.9816 0.98 0.9816 98.4 261
WNN 0.9883 0.9866 0.9866 98.6 349
BLNN 0.9837 0.9712 0.9775 98.2 354
TLNN 0.9825 0.9808 0.98 98.3 363

Figure 5: Class based confusion matrix of WNN classifier
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Table 2: Classification results on Hybrid-KTH01 dataset using DarkNet19 deep features

Classifier Parameters

Recall Precision F1 score Accuracy (%) Time (sec)

NNN 0.9983 0.9983 0.9966 99.7 48
MNN 0.9983 0.9983 0.9966 99.7 34
WNN 0.9983 0.9983 0.9966 99.7 46
BLNN 0.9883 0.9866 0.9866 98.9 75
TLNN 0.9862 0.9775 0.9825 98.5 293

Figure 6: Class based confusion matrix of WNN classifier

In Table 3, the outcomes of the Hybrid-KTH01 dataset are presented. By analyzing fused features,
the Medium Neural Network (MNN) classifier obtained the highest accuracy of 99.8%. The other
classifiers also demonstrated high accuracy (>99%) along with Precision, F1 score, and Recall values
shown in Table 3. The confusion matrix of the MNN classifier can be used to validate the model’s
performance. Fig. 7 shows the class-based confusion metric. Table 3 also provides the computation
time for each classifier.
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Table 3: Classification results on Hybrid-KTH01 dataset using fused features

Classifier Parameters

Recall Precision F1 score Accuracy (%) Time (sec)

NNN 0.9983 0.9983 0.9966 99.7 74
MNN 1.0 1.0 1.0 99.8 77
WNN 1.0 1.0 1.0 99.8 108
BLNN 1.0 1.0 1.0 99.8 146
TLNN 0.9937 0.99 0.9937 99.4 1149

Figure 7: Class based confusion matrix of MNN classifier

Hybrid-KTH01 Dataset Results: In Table 4, the outcomes of the Hybrid-KTH01 dataset are
presented. By analyzing optimized features, the Medium Neural Network (MNN) classifier obtained
the highest accuracy of 99.8%. The other classifiers also demonstrated high accuracy (>99%) along
with Precision, F1 score, and Recall values shown in Table 4. The confusion matrix of the MNN
classifier can be used to validate the model’s performance. Fig. 8 shows the class-based confusion
metric. Fig. 9 shows the comparison of time of all NN classifiers. Table 4 also provides the computation
time for each classifier.
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Table 4: Classification results on Hybrid-KTH01 dataset using optimized features

Classifier Parameters

Recall Precision F1 score Accuracy (%) Time (sec)

NNN 1.0 1.0 1.0 99.8 13
MNN 1.0 1.0 1.0 99.8 11
WNN 1.0 1.0 1.0 99.8 15
BLNN 0.9966 0.9958 0.9966 99.5 48
TLNN 0.9883 0.9866 0.9866 99.0 65

Figure 8: Class based confusion matrix of MNN classifier

Hybrid-KTH02 Dataset Results: In Table 5, the outcomes of the Hybrid-KTH02 dataset are
presented. By analyzing Nasnet-Mobile deep features, the Wide Neural Network (WNN) classifier
obtained the highest accuracy of 98.6%. The other classifiers also demonstrated high accuracy (>98%)
along with Precision, F1 score, and Recall values shown in Table 5. The confusion matrix of the WNN
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classifier can be used to validate the model’s performance. Fig. 10 shows the class-based confusion
metric. Table 5 also provides the computation time for each classifier.

Figure 9: Time comparison of all neural classifiers on different features

Table 5: Classification results on Hybrid-KTH02 dataset using Nasnet Mobile deep features

Classifier Parameters

Recall Precision F1 score Accuracy (%) Time (sec)

NNN 0.9825 0.9808 0.98 98.3 211
MNN 0.9816 0.98 0.9816 98.4 192
WNN 0.9862 0.9775 0.9825 98.6 302
BLNN 0.9837 0.9712 0.9775 98.2 400
TLNN 0.98 0.9783 0.9783 98 582

Hybrid-KTH02 Dataset Results: In Table 6, the outcomes of the Hybrid-KTH02 dataset are
presented. By analyzing Darknet-19 deep features, the Wide Neural Network (WNN) classifier
obtained the highest accuracy of 99.7%. The other classifiers also demonstrated high accuracy (>98%)
along with Precision, F1 score, and Recall values shown in Table 6. The confusion matrix of the WNN
classifier can be used to validate the model’s performance. Fig. 11 shows the class-based confusion
metric. Table 6 also provides the computation time for each classifier.
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Figure 10: Class based confusion matrix of WNN classifier

Table 6: Classification results on Hybrid-KTH02 dataset using DarkNet19 deep features

Classifier Parameters

Recall Precision F1 score Accuracy (%) Time (sec)

NNN 0.995 0.9966 0.995 99.6 38
MNN 0.9983 0.9983 0.9966 99.7 35
WNN 0.9983 0.9983 0.9966 99.7 50
BLNN 0.98 0.9783 0.9783 98.1 219
TLNN 0.984 0.9727 0.98 98.4 514

Hybrid-KTH02 Dataset Results: In Table 7, the outcomes of the Hybrid-KTH02 dataset are
presented. By analyzing fused features, the Wide Neural Network (WNN) classifier obtained the
highest accuracy of 99.7%. The other classifiers also demonstrated high accuracy (>99%) along with
Precision, F1 score, and Recall values shown in Table 7. The confusion matrix of the WNN classifier
can be used to validate the model’s performance. Fig. 12 shows the class-based confusion metric.
Table 7 also provides the computation time for each classifier.
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Figure 11: Class based confusion matrix of WNN classifier

Table 7: Classification results on Hybrid-KTH02 dataset using fused features

Classifier Parameters

Recall Precision F1 score Accuracy (%) Time (sec)

NNN 0.9983 0.9983 0.9966 99.7 55
MNN 0.9983 0.9983 0.9966 99.7 27
WNN 0.9983 0.9983 0.9966 99.7 34
BLNN 0.9916 0.9961 0.9916 99.2 102
TLNN 0.9966 0.9958 0.9966 99.6 132

Hybrid-KTH02 Dataset Results: In Table 8, the outcomes of the Hybrid-KTH02 dataset are
presented. By analyzing optimized features, the Wide Neural Network (WNN) classifier obtained the
highest accuracy of 99.7%. The other classifiers also demonstrated high accuracy (>99%) along with
Precision, F1 score, and Recall values shown in Table 8. The confusion matrix of the WNN classifier
can be used to validate the model’s performance. Fig. 13 shows the class-based confusion metric.
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Fig. 13 shows the comparison of time of all NN classifiers. Fig. 14 provides the computation time
for each classifier that shows the significance of feature optimization step.

Figure 12: Class based confusion matrix of WNN classifier

Table 8: Classification results on Hybrid-KTH02 dataset using optimized features

Classifier Parameters

Recall Precision F1 score Accuracy (%) Time (sec)

NNN 0.995 0.9966 0.995 99.6 14
MNN 0.9983 0.9983 0.9966 99.7 12
WNN 0.9983 0.9983 0.9966 99.7 15
BLNN 0.9883 0.9866 0.9866 98.8 45
TLNN 0.9887 0.9812 0.9837 98.7 89
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Figure 13: Class based confusion matrix of WNN classifier

Figure 14: Time comparison of all neural classifiers on different features
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4.3 Comparison
The results of comparing the accuracy of the proposed methodology with state-of-the-art (SOTA)

methodologies using different datasets are shown in Table 9. The suggested framework achieved a
higher accuracy of 99.8% and 99.7% on both action datasets compared to the current techniques.
These numbers indicate that our AR framework outperforms SOTA approaches in terms of accuracy.
In Table 10, we added a comparison among several neural nets such as VGG16, VGG19, ResNet50,
GoogleNet, InceptinV3, DarkNet19, NasNet Mobile, and proposed framework. The each model is
trained on the both selected datasets of this work and obtained the accuracy values for the comparison,
as given below.

Table 9: Accuracy comparison of proposed method with different existing techniques

Reference Year Dataset Accuracy (%)

[35] 2021 Public dataset 95.28
[36] 2020 CAVIAR dataset 87.15
[37] 2022 DCSASS dataset 98.38
Proposed - Hybrid-KTH01 dataset,

Hybrid-KTH02 dataset
99.8, 99.7

Table 10: Comparison of selected deep models for the classification

Hybrid KTH01 Hybrid KTH02

Model Accuracy (%) Model Accuracy (%)

NasNet Mobile 98.6 NasNet Mobile 98.6
DarkNet-19 99.7 DarkNet-19 99.7
VGG16 98.4 VGG16 97.5
VGG19 97.6 VGG19 97.9
ResNet-50 98.4 ResNet-50 98.1
GoogleNet 95.2 GoogleNet 95.7
Inception-V3 96.9 Inception-V3 95.9

5 Conclusion

The applications of human action recognition (HAR) applications are gaining popularity in
pattern recognition, computer vision, and machine learning, particularly for video surveillance
purposes. A novel framework that employs deep learning and optimization algorithm is introduced
in this article as a means of improving human action recognition. The study was carried out using
an experimental process on two action datasets, namely Hbrid-KTH01 and Hybrid-KTH02. The
proposed framework achieved recognition accuracy of 99.8% and 99.7% for each dataset. Comparison
with state-of-the-art (SOTA) techniques revealed that the proposed framework outperformed recent
techniques in terms of recognition accuracy. Furthermore, the fusion-based approach yielded better
accuracy than individual deep learning features. The optimization algorithm played a significant role in
reducing the execution time during the testing phase, and the optimization algorithm is used to reduce
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computational time without sacrificing classification accuracy. However, a few limitations are also
noted in this work, such as reducing features using the proposed EO-based optimization dropped some
important features that can mislead the visualization process. In the future, a more comprehensive
deep model will be introduced using an efficient search-based optimization algorithm. In addition,
large datasets like Muhavi, HMDB51, and UCF101 will be utilized for evaluation purposes.
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