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Abstract: Software systems have grown significantly and in complexity. As a
result of these qualities, preventing software faults is extremely difficult. Software
defect prediction (SDP) can assist developers in finding potential bugs and redu-
cing maintenance costs. When it comes to lowering software costs and assuring
software quality, SDP plays a critical role in software development. As a result,
automatically forecasting the number of errors in software modules is important,
and it may assist developers in allocating limited resources more efficiently. Sev-
eral methods for detecting and addressing such flaws at a low cost have been
offered. These approaches, on the other hand, need to be significantly improved
in terms of performance. Therefore in this paper, two deep learning (DL) models
Multilayer preceptor (MLP) and deep neural network (DNN) are proposed. The
proposed approaches combine the newly established Whale optimization algo-
rithm (WOA) with the complementary Firefly algorithm (FA) to establish the
emphasized metaheuristic search EMWS algorithm, which selects fewer but clo-
sely related representative features. To find the best-implemented classifier in
terms of prediction achievement measurement factor, classifiers were applied to
five PROMISE repository datasets. When compared to existing methods, the pro-
posed technique for SDP outperforms, with 0.91% for the IM1 dataset, 0.98%
accuracy for the KC2 dataset, 0.91% accuracy for the PC1 dataset, 0.93% accu-
racy for the MC2 dataset, and 0.92% accuracy for KC3.

Keywords: Prediction of a software defect; deep learning models; enhanced WOA;
firefly algorithm

1 Introduction

Software testing becomes more demanding as the number of software applications expands. Finding
potential defects among millions of code lines and thousands of documents is a difficult task for a
software tester [1]. However, finding as many errors as feasible is vital to improving software quality,
particularly in some critical scenarios where even a minor undiscovered software failure might have
devastating effects [2,3]. Software fault prediction which is entrenched in static code features and can
lead engineers to discover problem-prone modules earlier instead of random inspection in the sector has
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drawn increasing interest from researchers in recent years [4—6]. Modern software systems are huge and
complex, containing several interconnected components or modules. Additionally, in adapting to
variations in system needs or user expectations, these software applications are continuously upgraded
and expanded with new features or functionalities [7]. A range of software metrics (mechanisms) with
varied capacities can be used to assess the quality of these sophisticated software systems [8]. As an
outcome, the number of software features produced is frequently considerable, resulting in a high-
dimensionality issue [9]. The excessive dimensionality of software features, according to several previous
studies, is often the reason for SDP models’ poor predictive accuracy. The presence of unnecessary and
duplicated software measurements, in other words, has a negative impact on SDP model performance
[10-12].

Another issue is high dimensionality, which is brought on by software metrics. SDP models were
developed using a variety of software metrics (also known as features), including static code metrics,
process metrics, and so on [13]. Software measurements obtained from software entities are generally
redundant and correlative, which might have a negative impact on the model’s SDP effectiveness [14].
Feature selection and feature extraction strategies have been demonstrated to aid with this issue in earlier
SDP research. However, when contrasted to deep features collected by deep learning, practically all of
these measurements are classical metrics [15]. Although numerous classifiers have been employed for
defect prediction, they discovered that most defect prediction classifiers function similarly [16]. As a
result, additional characteristics like computing efficiency and simplicity should be considered when
selecting classifiers for defect prediction. Furthermore, in defect data, there is often a class imbalance,
with non-faulty modules outnumbering defective modules. As a result, most classifiers categorize
minority samples as majority samples. The train-set was created using a Double Transfer Boosting (DTB)
technique, which allowed for the building of an effective SDP model with fewer data using cross-
company data. Their approaches could potentially add new sample redundancy to the training data. It
employs a feature matching technique to boost Area Under Curve (AUC) accuracy by turning
heterogeneous features into paired features [17].

Machine learning (ML)-based algorithms, such as Random Forest (RF), Bayesian and Logistic
Regression (LR) are the most popular and fascinating in the recently published literature on SDP, and
these approaches have been demonstrated to be beneficial for detecting defect-prone modules [18].
Regrettably, there is still a serious issue to be resolved: In nature, software defect datasets have a class
imbalance, meaning that defective instances make up a tiny percentage of the data whereas the majority
of software modules are defect-free. Working with data that has an imbalanced class distribution presents
a significant barrier for most standard classification techniques [19].

Existing defect prediction approaches, on the other hand, did not adequately address this issue, resulting
in poor performance [20]. Even though these tactics are unique and well-thought-out, their inefficiency
makes meeting the software industry’s rising needs difficult.

We present a novel hybrid classification strategy that integrates a Deep Neural Network (DNN) with a
Multilayer Preceptor (MLP) model in this research. The ability to increase a prediction model’s performance
is mostly dependent on two major factors: feature representation and categorization. We intend to find an
effective classifier with improved performance for every software project, as well as a strong
distinguishing feature representation. The EMWS method is used to choose features, and the
classification is done using a hybrid technique.

The following are major contributions of this research work:

e Hybrid of Whale Optimization Algorithm (WOA) and Firefly Algorithm (FA) (EMWS) is an
upgraded metaheuristic feature selection algorithm based on the recently proposed WOA and
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another complementing FA algorithm. The strong global search WOA is used to improve the weak
exploration of the FA algorithm.

e To the best of our knowledge, feature selection in Software Defect Prediction (SDP) uses a hybrid
exploration-focused algorithm based on population and an exploitation-oriented approach based on
single-solution.

e We construct a hybrid approach DNN and MLP based classification scheme.

o EMWS algorithm for feature selection and hybrid approach for classification can achieve superior
prediction performance.

The remainder of this paper is organized as follows: Section 2 discusses the related work. Sections 3 and
4, go over the background and proposed method in depth. Threats to validity are discussed in Section 5. In
Section 6, we report the results of the performance verification experiments. The final section of the article
concludes the work and discusses future directions in Section 7.

2 Literature Review

Chen et al.[21] suggested the Collective Training mechanism for Defect Prediction (CTDP), which
divides into two parts adaptive weighting phase and the source data expansion phase. The Particle Swarm
Optimization (PSO) technique was used by CTDP to fully consider all of the source projects to predict
the target project. To begin, they employ a variety of normalization techniques to capture various aspects
of source projects. Second, use an adaptive weighting mechanism to fully incorporate the data into a
collective classifier for superior prediction outcomes. In the past, one-to-one Cross Project Defect
Prediction (CPDP) was always presented using transfer learning techniques.

Qiu et al. [22] introduced the Transfer Convolutional Neural network (TCNN) method first parses the
source file into integer vectors as the network inputs. The TCNN technique was then created by adding a
corresponding layer to the Convolutional Neural Network (CNN), which integrated the hidden
presentations of the source and target project-specific data into a reproducing kernel Hilbert space for
distribution matching. The developed TCNN should extract transferrable DL-generated features by
simultaneously decreasing classification error and distribution divergence among projects. It was
demonstrated that the TCNN method outperformed the benchmark models.

Qiao et al. [23] suggested the DL method in which the number of defects is predicted. A publicly
available dataset was pre-processed, including log transformation and data normalization. The data input
for the deep learning model was then prepared using data modeling. Then, to anticipate the number of
errors, feed the modeled data into a specifically developed DNN-based model. They test the proposed
method on two well-known datasets. The defined method lowered the mean square error by a significant
amount on average.

Tong et al. [24] presented stacked denoising autoencoder (SDAE) and two ensemble learning. To tackle
the class-imbalance problem, researchers first used SDAEs to extract the deep representations (DPs), and
then proposed TSE, a hybrid learning method. F-measure, AUC, and Matthews’ correlation coefficient
(MCC) were used to assess the performance. When compared to benchmark SDP models, classic
ensemble methods, and traditional metrics, DPs, d two-stage ensemble (TSE), and SDAEs TSE all lead to
much higher performance. For SDP, SDAE is a powerful tool.

Hybrid multi-objective cuckoo search under-sampled software defect prediction model based on SVM
(HMOCS-US-SVM) was introduced by Cai et al. [25]. To choose non-defective sampling and improve the
parameters of SVM, an ensemble multi-objective Cuckoo Search (CS) with HMOCS was used. Then, to pick
the non-defective modules, three under-sampled decision area range approaches were provided. The
performance of the provided algorithm was measured in the simulation using three indicators: G-mean,
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false positive rate (pf), and probability of detection (pd). The suggested SDP model greatly improved SDP
representation, according to the results of the experiments.

Zhu et al. [26]. employed kernel twin support vector machines (KTSVMs) to construct domain
adaptation (DA) to fit the distributions of training data. The CPDP method was formulated using the
KTSVM. The experimental results showed that in most circumstances, the suggested CPDP model
outperforms the benchmark CPDP model in terms of predictive accuracy.

Gated hierarchical long short-term memory networks (GH-LSTMs) was introduced by Wang et al. [27]
to predict the defects. The hierarchical LSTMs architecture allows GH-LSTMs to extract both semantic and
conventional characteristics at the same time. Under non-effort-aware cases, the findings suggest that the
suggested GH-LSTMs approach performs better approach in terms of F measure.

Balogun et al. [28] proposed the adaptive rank aggregation-based ensemble multi-filter feature selection
(AREMFFS) approach to deal with the problem of large dimensionality and filter rank selection in SDP. The
empirical outcome demonstrates the model’s efficiency over existing approaches.

An efficient binary variant of MFO (BMFO) was presented by Khurma et al. [29]. After a certain number
of iterations, a migration step is done to trade solutions between islands, increasing the algorithm’s diversity
power. The experiment findings suggest that FS enhances the categorization result.

CNNs were introduced by Nevendra et al. [30]. to detect faults in software modules. The CNN method is
then trained using the provided metrics, and once trained, it can predict the defective occurrences. The
suggested technique outperforms Li’s CNN and a typical Machine Learning model, according to
experimental findings.

3 Background

By building an effective prediction model, SDP seeks to identify probable problems in new software
modules in advance. However, the model’s performance is degraded by features that are both redundant
and unnecessary. Feature selection (FS) is a crucial phase for redundant features. The fundamental issue
of FS techniques is in determining the appropriate subset of features to reflect the original data properly.
However, FS is a search issue in which each point in the search area represents a subset of features. A
three-element binary array can be used to express a feature subset if a dataset has three features, such as
(A, B, C). If the value of an element is 1, that feature is included in the feature subset; if the value is 0,
that feature is not selected. As a result, (1, 1, 1) denotes that all three features have been chosen, whereas
(0, 1, 0) denotes that only the second feature has been chosen. Large problems are difficult to tackle with
an exact search strategy because FS is a nondeterministic polynomial time (NP)-hard issue. If the dataset
has n features, for example, 2" subsets will be constructed and evaluated. As a result, heuristic search
algorithms are frequently used as a substitute for reducing processing costs.

4 Methodology

In our proposed method it consists of three modules pre-processing, FS and defect prediction using an
ensemble classifier. In the first step, we pre-process the software module. The repeating entities can then be
eliminated, with the missing values being replaced. Normalization occurs after pre-processing.
Normalization of datasets is a crucial preprocessing step for achieving high accuracy and learning speed.
The WOA and the FA have been used to improve the EMWS algorithm for feature selection, which can
choose less but closely connected representative features. The selected characteristics are then categorized
using the proposed ensemble learning method. We begin by extracting the deep representation from the
casual software metric using a MLP. Furthermore, using an adaptive Auto Encoder (AE), the
categorization is done in a DNN. The performance of the classifier is improved by adding to this MLP.



CSSE, 2023, vol.45, no.3 2317

Fig. 1 depicts the overall framework of the proposed approach.
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Figure 1: Architecture diagram of the proposed approach

4.1 Preprocessing

4.1.1 Deletion of Duplicated Modules

Pre-processing is used to determine the total number of software defect number modules and to
eliminate similar modules from data sets. To be more exact, duplicate instances will generate overly
optimistic results if they are routinely separated into a subset of the test data; otherwise, they will produce
an unduly pessimistic outcome. Furthermore, they do not just slow down the training process, but they
have minimal impact on the model’s efficiency. As a result, any redundant modules should be eliminated.

4.1.2 Replacement of Missing Values

If an entity has one or more missing values, it will not be able to fully satisfy our method input
requirements. These missing values must be filled in. In this research, we substitute the mean of the
related statistic for missing values. This strategy is proposed, in which the average of the related metric
is utilized to replace a missing value. Assume that a metric mf and its observation

{mt\, mty, mts, ....., mtipo} suppose mtyy and mt oy are both missing. These two missing values are
filled in using
13
mtog = mtigg = — mt; 1
99 00 98; i (1)

4.1.3 Data Normalization

We normalize the experimental data for the convenience of testing and operation because most software
measures are in various orders of magnitude. For good accuracy and quick learning, the normalization
method is applied. On these measures, we do data normalization on values of varying magnitudes. In this
research, we use the most common minimal maximum normalization approach to normalize the data. The
minimum and maximum values of a measure x are represented by a min of (x) and a max of (x) respectively.

x; — min(x)
" max(x) — min(x)

@)
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4.2 Feature Selection

In this paper, we incorporate an updated metaheuristic FS optimization algorithm by combining the
powerful unique qualities of the WOA and FA. We use FF’s strong local exploration capability to
improve the WOA’s weak exploitation efficiency, and WOA’s strong global navigation capability to
improve Firefly’s weak exploration to a substantial measure synchronously, resulting in better search
efficiency than if they used each of them individually in the FS issue of fault prediction. We use the
WOA algorithm to discover the best global solution, then the FA to find the best solution based on the
best solution already obtained, and so on in an iterative cycle. This is because WOA’s solution would be
insufficient after a certain number of iterations, or the exploration would become imprisoned in the local
optimum, whereas FA on the other hand, accepts inferior methods with a certain degree of probability
and can escape the local optimum.

4.2.1 Whale Optimization Algorithm (WOA)

The WOA method is a metaheuristic algorithm based on stochastic populations that mimics humpback
whales’ intelligent foraging behavior when using bubble-net feeding. That moves toward a pray spot that
produces the best location like a group of whales. Because WOA is a population-based algorithm, the
starting population must be generated initially.

The WOA consists of two-stage, that is
1. Exploitation stage
2. Exploration stage

Humpback whales apply the method of their location in reaction to the location of the prey during this
phase of the hunt. The current best candidate solution, according to the WOA, is the target prey’s position or
the position closest to it. The movements of whales to their prey are equivalent to the operation of estimating
fitness value to locate the best feature subset in the context of SDP.

The following are the mathematical equations for this process:

D =|V.Y%(c)— Y () 3)
Y(c+1)=TY«(c)—B.C ()

. . . . . . ey . g . .
While current iteration is indicated as t, X* represents the current solution, Y (s + 1) and indicates the
target coordinate vector after the next iteration.

B and @ are coefficient vector
B=2it1 -7 (5)
— -
V =2t (6)

where the variable 7 starts at 2 and decreases linearly to 0 over several rounds, and a variable 7 is a random
number among 0 and 1, created by a uniform distribution function. When exploring in n-dimensional space,
Egs. (3) and (4) Allow the WOA to outperform the competition.

Y(c+1)= G . cos(2nl) + ¥+ (r) (7)
G =[Y<() =Y () (8)

While F; representing the distance between the humpback whale’s present position and the current
ideal individual. Constant is denoted by I, and I is a random value in between [1,1].
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They estimated a 50% likelihood of selecting one of them to upgrade the position of whales throughout
the process to replicate both the diminishing encircling method as stated in Eq. (10):

— —_— — —
{Y(r—l—l):Y*(r)—B.Cl when m < 0.5 (10)

Y(r+1)= G .e".cos(2nl) + Y (r)  whenm > 0.5

The exploration for prey (exploration phase) can involve the whales conducting a worldwide search for a
randomly selected agent. When the random value is more than 1 or less than 1, this technique is employed.
Equations that can be used to represent the hunt for prey include:

— — — —

C=|D.Y rana— Y| (11)
-

Y

— — —
(r+1)=7Y,qa— B.C (12)

The fitness evaluation values for the solution are given as binary numbers. The fitness function
employed is often suited to the classification representation and the number of attributes chosen. That is
demonstrated using the following calculation (10):
Zi 0i

F

fo=oH+ (1 —0) (13)

4.2.2 Firefly Algorithm (FA)

FA is an up-to-date search and optimization tool. Its origins can be traced back to the flashing activity of
fireflies. When differentiated from normal distributed arbitrary searches, Fireflies interact with one another
through bioluminescent shining, which allows them to explore the cost-function space significantly more
effectively. The light of the fireflies attracts them to others. The protocol’s fundamental rules are as follows:

e The gender of each Fireflies should be similar.

e [f there are one or many fireflies, the Fireflies with the lesser light is drawn to the Fireflies with the
brighter light.

e When there are no brighter fireflies, they will fly wherever they want.

Light Intensity as Well as Attractiveness

The attractiveness of this Fireflies will be determined by two factors: a change in the intensity of light
and the attractiveness formulation. The brightness of this Fireflies will be analyzed in terms of the objective
function that must be optimized, and its brightness will determine the attractiveness among the fireflies that
correspond to this.

As a result, light intensity K(t) differs according to the inverse square law in its most simple form.
K
K=" (14)

The intensity of the light K differs with the space t, which has an absorption coefficient, as indicated
scientifically in the formula:
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[=1le™ (15)

For ignoring singularity at t = 0 in the equation Ks/t2, the collate effect of the inverse square law and
absorption can be represented as the Gaussian type illustrated in Eq. (16)

I=1Ipe " (16)
The attractiveness B of a FA is related to the brightness noticed by nearby fireflies, as shown in Eq. (17):

B = ﬂoe_wz a7

At r=0, fo denotes the attraction. Because computing (1 + r2) is faster than computing an exponential
function, the function can be estimated as indicated in Eq. (18):

Bo

ﬁ:(lﬂrz)

(18)

Characteristic distance is defined in (16) and (17) that is 1/y over which the attractiveness is changing
considerably from Po to Boe—1 for (16) or Bo/2 for (17). In real-time execution, B(r) consists of the
attractiveness function that may be any monotonically minimizing function as in Eq. (19):

B(r) =B (m=1) (19)
The typical length of a fixed is defined by I' = y_xl- — 1, x—

Conversely, y may be utilized as the generic initial value for a particular length scale I" in an optimization

problem, i.e., y =+

The Cartesian distance model is used to determine the distance between any two fireflies.

t = b=l = /S0 Goak — x0)? (20)

This FA fitness function improves efficiency in a testing set of training data while preserving the
sufficient sample number chosen, as in Eq. (21).

J’e):w*E—i—(l—w)% 21)

In which fy signifies the fitness function that is applied to an N-dimensional vector. The amount of
characteristics in a data set is N, the categorization rate of inaccuracy is E, and the performance of the
classifier is constantly controlled by the features picked. o = o0

In which 6 is the absolute rate of expansion in the case of the randomization factor, and t is the
randomization factor at iteration t.

The EMWS technique considers two optimization objectives when it comes to feature selection in the
SDP. Decreasing the number of selected characteristics is one optimization aim while lowering classification
error is another. The fewer features are chosen and the lesser the classification error, the greater the response.

We use the below function to examine the solution in the EMWS method in this paper:

fitness = . (LR) + w% (22)
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where /D] (KJ) indicated the classification error. To achieve greater performance than employing each one
independently, the distinctive qualities of SA and WOA can be combined into an ensemble metaheuristic
algorithm.

4.3 Multilayer Preceptor (MLP) for Performing Defect Prediction

Forward neural networks (FNNs) are fed multilayer perceptron neural networks that have been trained
using the usual Back propagation (BP) algorithm. MLPs are frequently utilized for modeling prediction
problems because they can be taught to learn how to transform incoming data into a desirable response.
The MLP is a supervised learning artificial neural network that has been used to solve a variety of issues,
involving pattern recognition, identification, classification, control systems, vision, and speech. MLP is
mostly utilized in seismic activity prediction for information processing and pattern identification.

The characteristics are the network’s inputs, which are weighted and sent to the first hidden layer at the
same time.

n
Zfinj = Voj + ZX,’V;‘,‘ (23)
i=1

The weighted outcome of the last hidden layer, which is sent into the final layer, is used to reveal the
network’s prediction for specific tuples.

V—ink = Woi + ZiWik (24)

P
=1

Every output unit adds up its weighted input signal, which is represented as

Yo =f (-im)’ (25)
Every output unit (xm, m =1, ...... , n) getting a target pattern corresponding to an input pattern
error information term is evaluated as
o = (rk — zi)f (z—ink) (26)
Every hidden unit (z;, j =1, ...., p) sums its delta inputs from units in the layer above
O—pmk = Z 0iWik (27)
m=1

The term for information of error is computed as follows:
5j = 5—injf(z—inj) (28)
The weights are adjusted using back-propagation from the output layer to the first hidden layer to
minimize the mean error among the actual and predicted values.

Every output unit upgrades its bias and weight j = (0... h) thus it is represented as
J(r+ 1) = [ (2) + adiki + plfiv(r) — wi(r — 1)] (29)

where o are learning rate and 1 is momentum factor updates its bias and weight i = (0... m)

This accepts the weighted inputs and transmits data from the previously hidden layer to the next. For
each buried layer, various activation functions are differentiated. Sigmoid has been employed as the
output layer. It has been discovered that MLP with a single hidden layer performs better.
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4.4 Deep Neural Network (DNN)

The DNN approach is used for software defect classification and prediction. This method is beneficial
for identifying traits that are both effective and discriminative. For immense quantities of unlabelled data,
DNN can be used. Because our research focuses on SDP, which is a challenging task, pattern learning
becomes more complicated. To address this problem, we describe an enhanced DNN based on sparse
autoencoders (SAE). Adaptive AE is combined with a de-noising approach in the proposed method to
learn the characteristics. These learned properties are also put into a neural network classifier. The
following subsections detail the entire procedure of the proposed approach.

4.4.1 Adaptive Auto Encoder (AE)

A technology known as an AE is an asymmetrical type of neural network. For feature learning on large
datasets, AE are employed. By lowering training error and minimizing the loss function, AE give a
tremendous performance. The primary goal of an AE is to recreate input data perfectly at the output layer.
Traditional encoders are fault in that they replicate the input layer to a hidden layer, which distorts critical
input data information. We describe an enhancement to the classic AE that improves the system’s
performance in this study.

let us consider that input dataset I include M x N dimension which is estimated as X = {y(1), y(2),
......... y(),......y(S)} € EN. The length of the dataset is M, and the amount of samples evaluated is N.
The selection of the activation function is a major step in this technique that affects the outcome. We
chose the sigmoid activation function for our research because of its importance in improving performance.

The next stage in this method is to implement feature learning and comprehend the expression of
features on input data, which is referred to as un-labeled data in this case. This phrase is represented as
follows:

ky(), S, a) =a(Sy() +a),j=1,.., M) (30)
The output layer function is represented as
output_layer = a(S"g(y(j), S, a) +v) (31)

We also employ an objective function, which reduces the recurrence of input features. This phrase is
used on the hidden layer to control the active neurons at the time of the iteration. Consider the activation
function of the jth hidden layer, which is a j (x).

This approach is used on the feature input set X, with the hidden layer expressed as Eq. (31).
a = sigmoid(SY + a) (32)

The average activation function is thought to be near 0 because the neurons are dormant at the start of
DNN training. If the average activation function varied from its significant value, we penalized it. The
following is a summary of the situation:

52
Ppenalzjy = KL(pHp]) (33)
j=1

KL () is the Kullback—Leibler divergence, and s2 is the overall amount of neurons available in the
buried layer. This difference can be represented in the following way:
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p 1—p
NM(pllp;) = plog—+ (1 — p) log (34)
P L—p

If p; = p then KL(p||p;) = 0 otherwise, it maintains an increment that produces divergence, which is
referred to as the adaptive constant. This can be calculated using the following cost function:

52

Cadapn’ve(W’ b) = E(W? b) + ﬁZKL(p“p/) (35)
j=1

The process of identifying significant parameters b and W is critical since the cost function and these two
parameters are directly related to every another, affecting system performance. As a result, we propose an
optimization problem to tackle this, intending to decrease the adaptive cost (b, W). This optimization
issue can be tackled utilizing a BP strategy, which involves iteratively updating W and b. It is expressed as:

Sun(k) = Su(k) — ¢ S, a) (36)

0
—Xa aptive
DS, () 4" (
And

o B
a](k) - ak(K) - SmXadaptive(S, Cl)

¢- indicates the learning rate of the DNN method.

4.4.2 Denoising for Adaptive Auto Encoder (AE)

The adaptive AE denoising approach is discussed with the use of de-noise coding, this technique can
produce a better representation of a feature. The adaptive AE method to de-noising is described. This
method offers a partially broken input pattern to the input data pattern to initialize the deep structures.
This approach can generate a better representation of a feature by using de-noise coding.

¢"(Y, Y, f) = 4" (V)qC(Y|X)y, (x) (37)
I (x) s set to 0 if fo(x) # y.4°(X) (38)

This symbol represents the likelihood function of the input training dataset. The objective function is to
recreate the input corrupted pattern, which may be expressed as follows:

arggné} q°(x,x) [L (x? x/)] (3 9)

L(Y, Y)) represents the reconstruction error. If a short dataset is used for evaluation during the data
training process called “overfitting” error occurs, degrading the training representation and outcomes in
reduced classification accuracy. To solve the problem, we use an Eq. (39) and set the output of neurons to
zero, indicating that they will not participate in the propagation stage. This approach aids in the reduction
of feature extraction or selection errors, as well as the improvement of classification accuracy.
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Algorithm Flow

Step 1: software data is considered as input

Step 2: In faulty software data, a preprocessing phase is used to remove redundant modules and replace
missing values.

Step 3: The normalization is used to the carry prediction model during preprocessing. Normalization is used
to achieve great accuracy and speed in learning.

Step 4: The retrieved characteristics are then selected using features selection.

Step S5: Hybrid techniques are used to seclect features. The whale optimization method and the FF
optimization algorithm are two different types of optimization algorithms.

Step 6: For each software project, create a population using a one-dimensional binary vector based on WOA.
Step 7: determine the EMWS algorithm’s fitness function value

Step 8: Compare the old and new fitness values. If the new fitness value is the best, then it should be updated,
and the current best feature should be obtained.

Step 9: The WOA output is then applied to the FF algorithm input.

Step 10: The features are chosen depending on FF.

Step 11: in the feature selection subset, determine the classification error rate
Step 12: DNN and MLP are used in a hybrid approach to categorization.

Step 13: Software quality is increased overall, and categorization error is reduced, lowering software costs.

5 Threats Validity

Massive investigative learning has been controlled in this research, and several possible risks to validity
should be obtained. In our outcome, the prediction model poses a significant threat.

This entails deciding on performance requirements for calculating defect model prediction. We handle
these metrics since they were often utilized in previous research.

5.1 Internal Validity

The internal validity of this learning necessitates the duplication of the computing technique as well as
the parameters of the fault prediction models. Internal validity threats are most often related to dissatisfaction
and selection bias, which point to the experiments’ possible shortcomings. It is concerned with several
unregulated internal elements that may have an impact on the outcomes. Apart from that, we have
double-checked all of our research, but there are some inaccuracies.

5.2 External Validity

External validity is a ratio that determines how to examine outcomes that will be applied to the subject
under study and another investigation. On five publicly available datasets, we test the proposed method. As a
result, the recommended strategy provides the best solution.

5.3 Construct Validity

The term “construct validity” refers to the accuracy with which assessment indicators are projected.
Threats to concept validity may interact with the data quality of datasets utilized in investigative studies.
Probability of detection, positive rate, and G-mean to class imbalance defect dataset and balance, which
may be employed repeatedly in SDP, are three popular measures that can be carefully selected. To reduce
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the threads, AUC was used to measure the projection model’s success. In today’s SDP, the representation
metric is commonly utilized. Massive investigative learning has been controlled in this research, and
several possible risks to validity should be obtained. In our outcome, the prediction model poses a
significant threat. This entails deciding on performance requirements for calculating defect model
prediction. We handle these metrics since they were often utilized in previous research.

6 Experimental Simulation

Experimental learning may be described in the proposed learning hybrid approach, and fault software
prediction can be transferred. For software fault classification and prediction, a hybrid approach
employing DNN and MLP is used with the MATLAB tool. We look for software defects in the data set
repository as PROMISE.

6.1 Dataset

Throughout this study, we will utilize five SDP datasets: JM1, MC2, PC1, KC2, and KC3. These
datasets will be used to apply prediction in Software fault models and will be used to confirm the
Prediction of Software fault models. The public PROMISE repository datasets, which are commonly
utilized in empirical research of Software fault Prediction, are now available. The database is generally
used to test datasets and anticipate defects, and it has a variety of class imbalance ratios. To give a
comparative review to emphasize the importance of the proposed ensemble method. In the software
dataset, several general attributes are represented. Tab. 1 displays the dataset’s information and
characteristics names.

Table 1: Sample dataset

Dataset name  Attributes Records

M1 38 145
MC2 40 125
PC1 38 705
KC2 22 522
KC3 40 194

6.2 Performance Indicator

The performance of a binary classifier prediction method is approximated using a confusion matrix,
which is significant and noteworthy for efficiency evaluation. As a result, we may compute the following
performance metrics:

True positive (TP): represents the amount of defect-prone modules appropriately anticipated as such.
True negative (TN): The amount of defect-free modules correctly anticipated as defect-free.
False-negative (FN): The number of modules that are defect-prone but are wrongly forecasted as defect-free.
False-positive (FP): The amount of defect-free modules wrongly categorized as defect-prone.

Accuracy: It’s a statistic for modules that have been appropriately categorized. In terms of the total
number of modules in a software project, there is a clear separation between defect-prone and defect-free
modules. It’s explained in Eq. (40)
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(TP + TN)

A —
U= (TP £ TN + FP + FN)

(40)

Precision: It’s estimated by multiplying the amount of successfully categorized defect modules by the
proportion of false-positive and true-positive defect modules. This is demonstrated in Eq. (41)
TP
Precision = ——— 41)
(FP+TP)
Sensitivity: It’s evaluated by dividing the total amount of defect modules in the dataset by the amount of
potentially categorized defect modules. It’s calculated in Eq. (42)

P

Sensitivily = m

42)

False-positive rate (FPR): It’s calculated by dividing the total amount of non-defective modules by the
number of incorrect positive predictions in the dataset. This is demonstrated in Eq. (43)

FP
FPR= —— (43)
(TN + FP)

True-negative rate: Specificity is another term for it. The accurate classification rate is defined as the
percentage of rightly categorized negative predictions out of the overall amount of negative predictions. It’s
shown in Eq. (44).

N

F-Measure: It’s the average of precision and sensitivity, as shown in Eq. (45)

) precision X sensitivity
X

F — Measure = (45)

precision + sensitivity

The comparison of the suggested approach to the proposed model is depicted in the following Tab. 2.

Table 2: JM1 dataset

Approaches Sensitivity Precision Accuracy GM Specificity F-measure

LR 0.54 1.0 0.86 0.73 1.0 0.70
KNN 0.57 0.92 0.87 0.74 0.98 0.70
SVM 0.56 1.0 0.87 0.75 1.0 0.72
Proposed  0.65 1.0 0.91 0.80 1.0 0.78

Tab. 2, shows the representation of the JM1 dataset’s various performances compared with the existing
approaches. The proposed approach value is indicated in black fonts. The evaluation of the proposed method
is shown in Fig. 2, achieves a greater result in that dataset. When compared with other techniques our
proposed approach gains a higher solution.

Tab. 3 compares the performance of the KC2 dataset to that of the existing method. The proposed
approach value is highlighted.
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Figure 2: Comparison of JM1 dataset performance with the existing approach

Table 3: KC2 dataset

Approaches Sensitivity Precision Accuracy GM Specificity F- measure

LR 0.93 0.98 0.93 0.92 0.92 0.95
KNN 0.92 0.98 0.94 0.93 0.92 0.96
SVM 0.96 0.99 0.96 0.96 0.96 0.98
Proposed 1.0 1.0 0.98 0.99 1.0 0.99

Fig. 3 shows that the evaluation of the hybrid approach achieves a higher result. The findings indicate
that the recommended strategy produces promising results.

KC2 Dataset
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Figure 3: Comparison of KC2 dataset performance with the existing approach
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Tab. 4 and Fig. 4 show the comparison of PC1 dataset performance with the existing approach. Where
our proposed approach yields a better result compared with the existing approach.

Table 4: PC1 Dataset

Approaches Sensitivity Precision Accuracy GM

Specificity F-measure

LR 0.33 1.0 0.83 0.57 1.0 0.5
KNN 0.32 0.93 0.82 0.56 0.99 0.47
SVM 0.38 1.0 0.86 0.62 1.0 0.55
Proposed 0.5 1.0 0.91 0.70 1.0 0.66
PC1 Dataset
1.2 r ; ;
. R
KNN
oL | -
B Proposed

0.8

0.6

045

0.2

GM Sensitivity Specificity Precision Fmeasure Accuracy

Figure 4: Comparison of PC1 dataset performance with the existing approach

Tab. 5 shows the overall performance comparison of existing approaches. The evaluation result is shown
in Fig. 5 for the MC2 dataset, our proposed approach gains the best solution.

Table 5: MC2 Dataset

Approaches Sensitivity Precision Accuracy GM

Specificity F-measure

LR 0.90
KNN 0.76
SVM 0.75

Proposed 0.84

0.90
0.90
0.81
1.0

0.93
0.87
0.84
0.93

0.93
0.85
0.82
0.91

0.95 0.90
0.94 0.83
0.9 0.78
1.0 0.91

Tab. 6 represents that the proposed approach gains greater than the existing approach. The overall
classification performance is improved in the existing approach. The evaluation performance result is

shown in Fig. 6.
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Figure 5: Comparison of MC2 dataset performance with the existing approach

Table 6: KC3

Approaches GM Sensitivity Specificity Precision F-measure Accuracy

LR 0.66 0.45 0.97 0.83 0.58 0.85
KNN 0.73 0.54 1.0 1.0 0.70 0.89
SVM 0.70 0.5 1.0 1.0 0.66 0.87
Proposed 0.76 0.58 1.0 1.0 0.73 0.92
KC3 Dataset
1.2 T T T
. R
KNN
1k B svm
I Proposed
0.8
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04r
0.2F
0 GM Sensitivity Specificity Precision Fmeasure Accuracy

Figure 6: Comparison of KC3 dataset performance with the existing approach
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7 Conclusion

We propose EMWS, an improved metaheuristic feature selection algorithm that selects fewer but closely
related representative features for every software project, leveraging SA’s strong local exploration ability to
improve WOA’s weak exploitation efficiency while also leveraging WOA’s strong global search capability to
improve FA’s weak exploration. For SDP, we use a hybrid DNN with MLP-based categorization. The
proposed approach has the potential to lower software costs while also improving software quality.
According to the outcomes, the proposed method improves software quality, reduces categorization error,
and lowers software costs. The proposed hybrid approach’s performance is compared to that of existing
categorization schemes. The proposed method is tested on the PROMISE repository dataset. The research
in this paper can be expanded in the following directions: the empirical study can be duplicated with
other defect datasets of various sizes, and the new results compared to the results provided in this paper.
In furthermore, we intend to expand our methods to include multi-source defect prediction cross projects
or versions, as well as effort-aware defect prediction.
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