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Abstract: In a cloud environment, consumers search for the best service provider
that accomplishes the required tasks based on a set of criteria such as completion
time and cost. On the other hand, Cloud Service Providers (CSPs) seek to max-
imize their profits by attracting and serving more consumers based on their
resource capabilities. The literature has discussed the problem by considering
either consumers’ needs or CSPs’ capabilities. A problem resides in the lack of
explicit models that combine preferences of consumers with the capabilities of
CSPs to provide a unified process for resource allocation and task scheduling
in a more efficient way. The paper proposes a model that adopts a Multi-Criteria
Decision Making (MCDM) method, called Analytic Hierarchy Process (AHP), to
acquire the information of consumers’ preferences and service providers’ capabil-
ities to prioritize both tasks and resources. The model also provides a matching
technique to assign each task to the best resource of a CSP while preserves the
fairness of scheduling more tasks for resources with higher capabilities. Our
experimental results prove the feasibility of the proposed model for prioritizing
hundreds of tasks/services and CSPs based on a defined set of criteria, and match-
ing each set of tasks/services to the best CSPS.

Keywords: Task scheduling; decision making; cloud service selection; matching
techniques

1 Introduction

Cloud computing is an information technology concept that meets the demands of users based on their
requests and requirements. It offers a variety of services as web services to registered users, which removes
the need for consumers to invest in computing infrastructure. Through the use of a network in an autonomous
self-serviced process, consumers are given completely prepared hardware and software in a cloud
environment [1]. The responsibility of handling the needed resources to satisfy consumers’ requests is
managed by Cloud Service Provider (CSP). Moreover, various scheduling algorithms are used by CSPs
to schedule user tasks and properly allocate their computing resources. CSPs are looking to increase their
profits and resource utilization to their maximum capacity by efficient task scheduling and resource
management. Task scheduling is about managing incoming tasks with respect to identified criteria to
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reach an effective resource utilization. Criteria such as task size, task load, task execution time task queue,
and the availability of the resources should be considered during the task scheduling process [2]. On the other
hand, the procedure of assigning available resources to cloud services via the Internet with taking into
consideration infrastructure availability, Service Level Agreements (SLA), price, and energy aspects is
known as resource allocation [3].

A resource management system capable of dynamically scheduling and assigning these resources is
essential to manage the resources efficiently [4]. Cloud consumers are seeking the most resources
possible for a certain task that will improve performance and must be completed on time. Similarly, the
resource allocator is responsible for addressing the issue of application starvation by appropriate resource
allocation, allowing CSPs to allocate resources for each particular component at a minimal cost. The
expanding popularity of cloud computing has resulted in increased benefits for both cloud consumers and
CSPs. The resource management process became more sophisticated as a result of this expansion, which
necessitates additional resource provisioning and scheduling. Because several cloud service vendors use a
pay-as-you-use model, consumers are looking for vendors who can provide high-quality services at a
reduced cost. The cost of the provided services is determined by a number of factors, including response
time, throughput, and resource cost [5]. This allows cloud consumers to search for the most suitable CSP
from various options. In addition, the remarkable innovation and rise in the use of cloud computing
necessitates efficient and precise cloud service selection techniques because the accurate selection of a
CSP is essential to improving the reliability level between vendors and consumers [6]. Furthermore, the
complexity of selecting the best CSP increases due to the similarity in the proposed services by various
service providers; therefore, cloud consumers need a selection framework that helps them in specifying
the most appropriate CSP.

Cloud consumers should evaluate criteria such as performance, reliability, and other management and
technical Quality-of-Service (QoS) factors to determine the best CSP. In addition, choosing the best CSP
is based on matching the needs of consumers with the cloud services characteristics offered by various
CSPs. Also, trade-offs among selecting criteria should be considered (e.g., performance and cost).
Therefore, to choose the most suitable CSP that precisely meets consumers’ demands, a multitude of
different assessment factors that characterize numerous cloud services provided by several CSPs should
be tackled. As a result, determining the appropriate CSP is a Multi-Criteria Decision Making (MCDM)
problem where various related factors need to be evaluated to select the suitable one. Adopting MCDM
approaches based on pre-defined criteria can lead to optimal decisions on selecting or prioritizing various
alternatives or CSPs. Different investigations have indeed been published in the literature that address the
efficacy of MCDM techniques to tackle the task scheduling and resource allocation problems with
considering various related criteria. For example, the Best Worst Method (BWM) is adopted by Youssef
[7] and the Analytical Hierarchy Process (AHP) by Kumar et al. [8] to select the best service providers.

The paper is organized as follows: Section 2 presents related work of task scheduling algorithms. Section
3 presents the proposed framework to select the best service provider for cloud tasks. In Section 4, the
matching process within the framework is presented and explained. Section 5 illustrate an example to
motivate utilizing the proposed framework with the domain of cloud tasks prioritization and provisioning.
Section 6 presents the details of the experiments, while Section 7 presents the results and findings.
Finally, the conclusion and future enhancements to the proposed model is presented in Section 8.

2 Related Work

Cloud computing is defined as the delivery of services and resources to consumers via the internet.
Consumers can also buy and use services and resources virtually through the service. Software as a
Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS) are the three basic
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service-based models for the cloud, according to the National Institute of Standards and Technology (NIST)
[9]. These cloud models necessitate an efficient task scheduling and resource allocation mechanism.
Consumers and providers are significant players in cloud computing models. Moreover, pay-per-use is the
most common method of delivering cloud services and resources, with the goal of maximizing resource
use and profit for the provider while lowering costs for the consumer [10]. To avoid over-provisioning
expenditures, cloud computing encourages the offer of powerfully shared resources that are stored on a
single or multiple physical machines, which is referred to as a data center [11]. The wide concept of
resource management encompasses both resource provisioning and resource scheduling. Consumer
requests represent the primary Quality of Service (QoS) requirements for both provisioning and
scheduling procedures, which are completed using various algorithms and strategies. A broker, in general,
allocates an appropriate resource depending on these requirements, and then sends a request for
scheduling [12].

Multiple distinct techniques and models have been presented for task scheduling and resource
allocation. The benefits of applying various optimization approaches to the resource allocation problem in
cloud computing have been highlighted by Shyam and Chandrakar [13]. Ant Colony Optimization
Algorithms (ACO) [14], game theory [15], Particle Swarm Optimization (PSO) [16], and Genetic
Algorithms (GA) [17] are some of the approaches that are investigated by various researchers. However,
tools and research to determine the impact of these approaches on consumer workload and computing
resources are still lacking [13]. Each technique’s adoption is guided by the aim of achieving a specific
goal in the cloud computing environment. An-Ping and Chun-Xiang, for example, proposed PSO for
effective energy utilization in multi-resource allocation [18], while Devarasetty and Reddy suggested GA
to accomplish QoS with respect to consumer requirements within a specified cost [19].

Wang et al. [20] introduced two models to overcome the Virtual Machine (VM) allocation problem. The
first model is designed to minimize load unfairness, while the second is designed to optimize resource usage
and limit energy consumption. In addition, for effective VM placement, Re-sampled Binary Particle Swarm
Optimization (RBPSO) was introduced with the aim of preserving diversity of the population, decreasing
duplicate calculations, and hence enhancing the algorithm’s ability and efficiency. GA based on VM
placement for task allocation problem was introduced by Akintoye and Bagula [21]. The cost criteria was
used as QoS features, and the findings exhibited improving the service quality in the cloud environment.

Halabi et al. [22] presented a broker-based model for resource allocation problem with respect to service
security satisfaction. The resource allocation problem was designed as an optimization problem and heuristic
solution was introduced to enhance security. The GA showed a satisfactory approximation of the optimum
solution and is computationally effective, which makes it appropriate for use in online mode and dealing with
the the cloud environment scalability.

A hierarchical multi-agent optimization (HMAO) algorithm for cloud computing that increases resource
utilization while lowering bandwidth costs is proposed by Gao et al. [23]. The proposed HMAO method
integrates two algorithms: The genetic algorithm (GA) and the multi-agent optimization (MAO). The
results show that the HMAO algorithm is more effective than available options at solving the resource
allocation problem when a high number of tasks are required. Tseng et al. [24] propose GA for estimating
resource use in a data center, and based on the prior data, the GA estimates the resource requirements.
Simulation results are used to demonstrate the strategy’s validity and applicability. The findings indicate
that GA outperforms other methods in terms of accuracy. It also optimizes CPU and memory utilization
as well as energy consumption.

Several issues regarding provisioning resources and scheduling tasks in the cloud computing domain
have been identified. Consumers and CSPs have various needs, which necessitates the use of the best
technique to ensure superior efficiency. Singh and Chana [25] explored the issue and its ramifications for
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providers and consumer profits, including both sides’ unwillingness to disclose information, unpredictability,
uncertainty, and resource heterogeneity. Moreover, maximizing resource utilization effectiveness by
determining the most suitable resources to guarantee the services quality and the lowest completion time
for a workload is the primary aim of resource scheduling. Furthermore, modern computing characteristics
such as optimum task scheduling, resource allocation, and enhanced security are becoming more essential
as computing systems’ capabilities and speed increase [26] and [27]. Conflict of interest among cloud
service stakeholders (i.e., consumer, vendor, and operator) is a key concern, according to Liu et al. [28],
because each participant has their interests and preferences.

Selecting the best vendor, which has an impact on the organization’s growth and efficacy, is one of the
major objectives for enhancing the companies’ effectiveness. Several researches have been conducted to
study this issue and offer potential solutions. One or more of the MCDM approaches have been used in a
variety of suggested algorithms. In addition, these algorithms examined the use of the MCDM to
prioritize resources based on their QoS, as well as the viability of prioritizing tasks based on various
factors [29,30] and [31]. Krishankumar et al. [32] address that the most commonly used MCDMs for
CSPs selection are AHP, Preferences Ranking Organization Method for Enrichment Evaluation
(PROMETHEE), and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS).
Youssef [7], for example, integrated the BWM with TOPSIS in terms of determining the best CSP. Many
CSPs have been compared by the author based on criteria like cost, sustainability, response time,
usability, and security.

Kumar et al. [8] proposed a hybrid of the AHP and TOPSIS frameworks for selecting the most suited
cloud service. The AHP important scale was used to indicate the significance of each cloud service over the
other based on a variety of factors including reliability, stability, auditability, accuracy, and data privacy. The
overall prioritization of cloud services was then determined using the TOPSIS approach.

A model for selecting the best CSP based on the Analytic Network Process (ANP) was presented by
Chung and Seo [33]. Different criteria and sub-criteria have been identified such as provider point of
view, service point of view, support point of view, service availability and performance, service
scalability and security, and service level agreement. The ANP pairwise comparisons were made based on
the judgments of 7 domain experts to obtain the weight for each criterion. Jatoth et al. [34] looked at a
hybrid multi-criteria decision-making methodology that involved ranking cloud services among the
available options. The proposed methodology uses a novel extended Grey TOPSIS method integrated
with the AHP to assign various priorities to cloud services based on quantified quality-of-service metrics.
Alashaikh and Alanazi [35] presented a methodology for determining the best service based on the
application of Conditional Preference Networks (CP-nets) regarding a collection of criteria with complex
interdependencies.

To consider the internal process of resource allocation, different criteria have been identified to evaluate
service providers. Costa et al. [36] have combined these criteria into seven categories and identified all
criteria that belong to each category based on the literature. The identified categories are Accountability,
Assurance, Agility, Performance, Security and Privacy, Financial, and Usability. These criteria play a
major role in maximizing providers’ profit and increasing consumers’ satisfaction.

3 Framework

The proposed framework incorporates prioritizing tasks and resources with a matching process to ensure
a balanced task scheduling among available resources with respect to their capabilities. The main
components of the framework are depicted in Fig. 1.
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The first part of the proposed framework takes a number of inputs to enable prioritizing process. These
inputs are 1) List of available tasks, 2) List of available resources, 3) criteria for evaluation, and 4)
preferences of both consumers and CSPs.

We enable acquiring preferences of both CSPs and consumers to service their preferences of a CSP will
differ than others based on their goal such as building reputation, maximizing net profit, or minimizing
resource wastage. Further, CSPs differ in their capabilities such as resources availability, performance,
cost, and agility. Similarly, a consumer differs than others based on targeted goal such as minimized
ongoing cost, increased agility, or minimized completion time of tasks.

To enable achieving targets of both parties, we cover a wide spread of criteria in cloud which are adopted
from the literature and can be found in [36]. The main categories of these criteria are accountability, security
and privacy, agility, performance, usability, management.

The ability to represent the tasks allocation problem by prioritizing tasks and resources into a
hierarchical and mathematical problem to consider different preferences of decision-makers, i.e.,

Figure 1: Framework for prioritizing and matching tasks and resources
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consumers and CSPs, has enabled the successful adoption of different MCDM methods. Our proposed
framework takes all criteria and produces the criteria weights based on all provided preferences for both
tasks and resources. To do that, the framework adopts the AHP as the most common MCDM method,
which was proposed by Saaty [37], as depicted in Fig. 2.

The AHP is executed on the evaluations of consumers’ preferences to yield prioritized tasks and on the
evaluations of providers’ preferences to yield prioritized resources. The AHP interprets complicated decision
problems with numerous competing factors into a hierarchical decision structure. The hierarchical structure
comprises an objective for decision making, the primary criteria and sub-criteria, and the rundown of
alternatives accessible to assess the result of the objective.

In the AHP, all the problem’s components are orchestrated in a hierarchic structure of several
prioritization sub-problems and afterward, after all sub-problems are unraveled, the amassed ranking of
the decision-alternatives is made. The consequences of prioritization sub-problems are consistently
expressed in the form of ranking vectors that comprise the appraisals of ranking weights; for example,

Figure 2: The proposed AHP model for prioritizing tasks and resources
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numbers that advise to what degree a given option fulfills considered measure. The prioritization methods
that are utilized inside the AHP system depend on the pairwise comparison matrix. The pairwise
comparison matrix contains decision-makers’ assessments of the ranking weights. These assessments are
regularly called decision maker’s judgments and are normally based on a predefined scale that was
introduced by Saaty in [37]. In this scale, the decision-maker gives a number (between 1 to 9) among two
criteria or alternatives which represents the level of importance of a criterion or alternative over the other;
where 1 denotes equal importance while 9 denotes extreme importance of the first criterion or alternative
over the other. Within the proposed framework, adopting the AHP requires conducting the following steps:

1. Breaking down the problem into a hierarchical structure.

2. Identifying the related criteria and structuring criteria pairwise comparisons. In this step, the weight
for every criterion will be determined.

3. Structuring alternatives pairwise comparisons as for the control criterion in every matrix.

4. Calculating the consistency ratio.

5. Selecting the most noteworthy weighted rating after finding the weight for every alternative.

The last part of the framework is the matching process. We propose a matching technique that enables an
efficient process of tasks scheduling among the available resources. The matching process takes the
prioritized tasks and divides them among the available resources based on their capabilities as explained
in the following section.

4 Matching Process Among Tasks and Resources

The outputs of the prioritization process (prioritized resources and prioritized tasks) are processed by the
proposed algorithm 1 to assign each set of tasks to the best match resource in a way that effectively
maximizes the benefits for both CSPs and consumers.

4.1 The Proposed Algorithm for Matching Process Among Tasks and Resources

The proposed algorithm is described in steps as shown in Algorithm 1 which uses an auxiliary procedure
for distribution of the tasks among resources in each category which is described in steps and depicted in
procedure 1.

Algorithm 1: Balanced Allocation of Tasks in Three Categories

Input: Prioritized Resources Array, Rs_Arr[NR][2]

Prioritized Tasks Array, Ts_Arr[NT][2]

Output: Assigned Tasks for Each Resource, HR_Arr[], MR_Arr[], LR_Arr[]

1: HR ← 0, MR ← 0, LR ← 0

2: for each R in Rs_Arr[r][1] (R = 1 : NR)

3: if (Rs_Arr[r][1] > = 0.5)

4: HR + +

5: elseif (Rs_Arr[r][1] > = 0.3)

6: MR + +

7: else

8: LR + +

(Continued)
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9: end for

10: for each R in Rs_Arr (R = 1 : NR)

11: if (Rs_Arr[r][1] > = 0.5)

12: HR_values ← HR_values + Rs_Arr[r][1]

13: else if (Rs_Arr[r][1] > = 0.3)

14: MR_values ← MR_values + Rs_Arr[r][1]

15: else

16: LR_values ← LR_values + Rs_Arr[r][1]

17: end for

18: Total_Weight = HR_values + MR_values + LR_values

19: Ts_Per_Rs_Weight = NT/Total_Weight

20: LR_Total_Ts ← LR_values * Ts_Per_Rs_Weight

21: MR_Total_Ts ← MR_values * Ts_Per_Rs_Weight

22: HR_Total_Ts ← Ts-(MR_Total_Ts + HR_Total_Ts)

23: HR_Arr ← R_Share(HR_Total_Ts, HR)

24: MR_Arr ← R_Share(MR_Total_Ts, MR)

25: LR_Arr ← R_Share(LR_Total_Ts, LR)

Procedure 1: Distribution of Tasks Among Resources in Each Category

Input: Number of Categorized Resources and Number of Tasks for Each Category

[R_Share(Total_Ts, Total_Rs)]

Output: Array with Number of Tasks for Each Resource [Share_Arr[]]

1: if (Total_Ts < Total_Rs)

2: return Share_Arr

3: else if (Total_Ts % Total_Rs = 0)

4: for i ← 0 : i < Total_Rs

5: Share_Arr[i] ← (Total_Ts/Total_Rs)

6: else

7: for i ← 0 to i < Total_Rs

8: If (i > Total_Rs − (Total_Ts % Total_Rs))

9: Share_Arr[i] ← (Total_Ts/Total_Rs) + 1

10: else

11: Share_Arr[i] ← (Total_Ts/Total_Rs)

12: sort (Share_Arr)

13: return Share_Arr

Algorithm 1 (continued)
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First, the algorithm defines two two-dimensional arrays (Rs_Arr [NR][2] and Ts_Arr [NT][2]) which
contain the prioritized resources and prioritized tasks respectively. The algorithm produces the final
assignment of tasks by assigning each set of tasks to each resource based on its belonging to one of three
ranks (Low, Medium, and High); thus, three arrays are produced (HR_Arr [], MR_Arr [], and LR_Arr []).
The test condition in for loop of line 2 is evaluated n times as true for its successful iteration. The
execution falls under one of three cases where the weight of R is: 1) > = 0.5, 2) < 0.5 & > = 0.3, or 3) <
0.3. We proposed these thresholds based on Saaty’s scale where an evaluation of value 5 between any
two alternatives is considered “high importance”, value 3 is considered “medium importance”, and
values < 3 are considered either “slight” or “equal importance” between the two alternatives. The goal of
proposing the thresholds and traversing all resources is to compute their importance level. Therefore, the
total number of High rank resources with Weight > = 0.5 is calculated and stored in HR (line 4).
Similarly, the number of Medium and Low rank resources are calculated and stored in MR (line 6) and
LR (line 8) respectively.

Lines 9–15 calculate the cumulative weight of all resources belonging to each rank. Thus, the cumulative
weight is calculated and stored in HR_values, MR_values, and LR_values for High, Medium, and Low ranks
respectively. Therefore, the test condition in for loop of line 9 is evaluated n times as true for its successful
iteration.

The algorithm sums the total weights and calculates the rate of tasks for resources. Then, the total tasks
for each of the Low, Medium, and High ranks are calculated in lines 19, 20, and 21 respectively. As a final
step, the procedure 1 is called to wisely assign a suitable number of Ts without exceeding the total number of
tasks allocated for each rank. Interestingly, the algorithm is assured that the important tasks will be assigned
to the best resources because all tasks and resources were prioritized (from the most important to the least
important) and processed by the algorithm. Thus, it is significant and efficient to call R_Share to assign
the tasks for High rank, Medium rank, and Low rank respectively. Generally, the worst-case time
complexity of the proposed algorithm 1 and the associated procedure 1 is O(m + n2). In Section 7.4, we
will run different sets of inputs and measure the time required to assign each set of tasks to the best
available resources.

4.2 Analysis of the Proposed Algorithm

The proposed algorithm is described in steps as shown in Algorithm 1 which uses an auxiliary procedure
as a procedure for distribution of the tasks among resources in each category which is described in steps and
depicted in Procedure 1. The analysis of the Algorithm 1 cannot be completed without knowing the
complexity of Procedure 1 which is described in Tab. 1.

Table 1: Procedure for analysis of distribution of tasks among resources in each category

Share_Arr[] R_Share(Total_Ts, Total_Rs) Cost Best case Average case Worst case

if (Total_Ts < Total_Rs) C1 1 1 1

return Share_Arr C2 1 0 0

else if (Total_Ts % Total_Rs = 0) C3 0 1 1

for i ← 0 to i < Total_Rs C4 0 m + 1 0

Share_Arr[i] ← (Total_Ts/Total_Rs) C5 0 m 0

else for i ← 0 to i < Total_Rs C6 0 m + 1 m + 1

if (i > Total_Rs − (Total_Ts % Total_Rs)) C7 0 m m
(Continued)
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4.2.1 Best Case Analysis of Procedure 1

T nð Þ ¼ C1 þ C2 þ C11 þ C10n

¼ C10nþ ðC1 þ C2 þ C11Þ
T nð Þ ¼ Anþ B (1)

where, A ¼ C10, B ¼ C1 þ C2 þ C11

Since Eq. (1) is a linear equation, therefore, the coefficient of the highest order term and the constant
term are neglected to get the asymptotic notation of the algorithm, which is Ω(n). Therefore, the time
complexity of Procedure 1 in the best-case is Ω(n).

4.2.2 Average Case Analysis of Procedure 1

T nð Þ ¼ C1 þ C3 þ C4 mþ 1ð Þ þ C5mþ C6 mþ 1ð Þ þ C7mþ C8
m

2
þ C9

m

2
þ C10nlognþ C11

¼ C4 þ C5 þ C6 þ C7 þ C8

2
þ C9

2

� �
mþ C10nlognþ ðC1 þ C3 þ C4 þ C6 þ C11Þ

T nð Þ ¼ Amþ Bnlognþ C (2)

where, A ¼ C4 þ C5 þ C6 þ C7 þ C8

2
þ C9

2
, B ¼ C10; C ¼ C1 þ C3 þ C4 þ C6 þ C11

Eq. (2) is a sub-linear equation. The coefficients of the highest order terms and the constant term are
neglected to get the asymptotic notation of the algorithm, which is ϴ(m + nlogn). Therefore, the time
complexity of Procedure 1 in the average-case is ϴ(m + nlogn).

4.2.3 Worst Case Analysis of Procedure 1

T nð Þ ¼ C1 þ C3 þ C6 mþ 1ð Þ þ C7mþ C8
m

2
þ C9

m

2
þ C10n

2 þ C11

¼ C6 þ C7 þ C8

2
þ C9

2

� �
mþ C10n

2 þ ðC1 þ C3 þ C6 þ C11Þ

T nð Þ ¼ Amþ Bn2 þ C (3)

where, A ¼ C6 þ C7 þ C8

2
þ C9

2
, B ¼ C10; C ¼ C1 þ C3 þ C6 þ C11

Eq. (3) is a quadratic equation. The coefficients of the highest order terms and the constant term are
neglected to get the asymptotic notation of the algorithm, which is O(m + n2). Therefore, the time
complexity of Procedure 1 in the worst-case is O(m + n2).

Table 1 (continued)

Share_Arr[] R_Share(Total_Ts, Total_Rs) Cost Best case Average case Worst case

Share_Arr[i] ← (Total_Ts/Total_Rs) + 1 C8 0
m

2

m

2

else Share_Arr[i] ← (Total_Ts/Total_Rs) C9 0
m

2

m

2
sort (Share_Arr) C10 n n log n n2

return Share_Arr C11 1 1 1
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Analysis of the proposed algorithm has been done in the form of the general expression of the
asymptotic notations Ω, Θ, and O, with respect to the size of input data. The computational complexity
for each step is expressed in Tab. 2 that corresponds to the algorithm provided in Algorithm 1 (Balanced
Allocation of Tasks in Three Categories).

Table 2: Algorithm for analysis of balanced allocation of tasks in three categories

Balanced allocation of tasks in three categories
(Input: Rs_Arr[NR][2], Ts_Arr[NT][2]
Output: HR_Arr[], MR_Arr[], LR_Arr[])

Cost Best case Average
case

Worst case

HR ← 0, MR ← 0, LR ← 0 C1 1 1 1

for each R in Rs_Arr[r][1] (R = 1:NR) C2 n + 1 n + 1 n + 1

if (Rs_Arr[r][1] > = 0.5) C3 n n n

HR + + C4
n

3

n

3

n

3
else if (Rs_Arr[r][1] > = 0.3) C5 n n n

MR + + C6
n

3

n

3

n

3
else LR + + C7

n

3

n

3

n

3
for each R in Rs_Arr (R = 1:NR) C8 n + 1 n + 1 n + 1

if (Rs_Arr[r][1] > = 0.5) C9 n n n

HR_values ← HR_values + Rs_Arr[r][1] C10
n

3

n

3

n

3
else if (Rs_Arr[r][1] > = 0.3) C11 n n n

MR_values ← MR_values + Rs_Arr[r][1] C12
n

3

n

3

n

3
else LR_values ← LR_values + Rs_Arr[r][1] C13

n

3

n

3

n

3
Total_Weight ← HR_values + MR_values + LR_valuess C14 1 1 1

Ts_Per_Rs_Weight ← NT/Total_Weight C15 1 1 1

LR_Total_Ts ← LR_values * Ts_Per_Rs_Weight C16 1 1 1

MR_Total_Ts ← MR_values * Ts_Per_Rs_Weight C17 1 1 1

HR_Total_Ts ← Ts – (MR_Total_Ts + HR_Total_Ts) C18 1 1 1

HR_Arr ← R_Share(HR_Total_Ts, HR) C19 n M + nlogn M + n2

MR_Arr ← R_Share(MR_Total_Ts, MR) C20 n M + nlogn M + n2

LR_Arr ← R_Share(LR_Total_Ts, LR) C21 n M + nlogn M + n2

4.2.4 Best Case Analysis of Algorithm 1

T nð Þ ¼ C1 þ C2 nþ 1ð Þ þ C3nþ C4
n

3
þ C5nþ C6

n

3
þ C7

n

3
þ C8 nþ 1ð Þ þ C9nþ C10

n

3

þ C11nþ C12
n

3
þ C13

n

3
þ C14 þ C15 þ C16 þ C17 þ C18 þ C19nþ C20nþ C21n

¼
�
C2 þ C3 þ C5 þ C8 þ C9 þ C11 þ C19 þ C20 þ C21 þ C4

3
þ C6

3
þ C10

3
þ C12

3

þ C13

3

�
nþ ðC1 þ C2 þ C8 þ C14 þ C15 þ C16 þ C17 þ C18Þ

T nð Þ ¼ Anþ B (4)
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where, A ¼ C2 þ C3 þ C5 þ C8 þ C9 þ C11 þ C19 þ C20 þ C21 þ C4

3
þ C6

3
þ C10

3
þ C12

3
þ C13

3
; B ¼ C1þ

C2C8 þ C14 þ C15 þ C16 þ C17 þ C18

Eq. (4) is a linear equation. The coefficient of the highest order term and the constant term are neglected
to get the asymptotic notation of the algorithm, which is Ω(n). Therefore, the time complexity of Algorithm
1 in the best-case is Ω(n).

4.2.5 Average Case Analysis of Algorithm 1

T nð Þ ¼ C1 þ C2 nþ 1ð Þ þ C3nþ C4
n

3
þ C5nþ C6

n

3
þ C7

n

3
þ C8 nþ 1ð Þ þ C9nþ C10

n

3
þ C11nþ C12

n

3

þ C13
n

3
þ C14 þ C15 þ C16 þ C17 þ C18 þ C19 mþ nlognð Þ þ C20 mþ nlognð Þ þ C21ðmþ nlognÞ

¼ ðC19 þ C20 þ C21Þmþ ðC19 þ C20 þ C21Þnlognþ
�
C2 þ C3 þ C5 þ C8 þ C9 þ C11

þ C4

3
þ C6

3
þ C10

3
þ C12

3
þ C13

3

�
nþ ðC1 þ C2 þ C8 þ C14 þ C15 þ C16 þ C17 þ C18Þ

T nð Þ ¼ Amþ Bnlognþ Cnþ D (5)

where, A ¼ C19 þ C20 þ C21; B ¼ C19 þ C20 þ C21; C ¼ C2 þ C3 þ C5 þ C8 þ C9 þ C11 þ C4

3
þ C6

3
þ

C10

3
þ C12

3
þ C13

3
; D ¼ C1 þ C2 þ C8 þ C14 þ C15 þ C16 þ C17 þ C18

Eq. (5) is a sub-linear equation. The coefficients of the highest order terms and the lower order term as
well as the constant term are neglected to get the asymptotic notation of the algorithm, which is ϴ(m +
nlogn). Therefore, the time complexity of Algorithm 1 in the average-case is ϴ(m + nlogn).

4.2.6 Worst Case Analysis of Algorithm 1

T nð Þ ¼ C1 þ C2 nþ 1ð Þ þ C3nþ C4
n

3
þ C5nþ C6

n

3
þ C7

n

3
þ C8 nþ 1ð Þ þ C9nþ C10

n

3
þ C11nþ C12

n

3

þ C13
n

3
þ C14 þ C15 þ C16 þ C17 þ C18 þ C19 mþ nlognð Þ þ C20 mþ nlognð Þ þ C21 mþ nlognð Þ

¼ ðC19 þ C20 þ C21Þmþ ðC19 þ C20 þ C21Þn2 þ
�
C2 þ C3 þ C5 þ C8 þ C9 þ C11 þ C4

3

þ C6

3
þ C10

3
þ C12

3
þ C13

3

�
nþ ðC1 þ C2 þ C8 þ C14 þ C15 þ C16 þ C17 þ C18Þ

T nð Þ ¼ Amþ Bn2 þ Cnþ D (6)

where, A ¼ C19 þ C20 þ C21; B ¼ C19 þ C20 þ C21; C ¼ C2 þ C3 þ C5 þ C8 þ C9 þ C11 þ C4

3
þ C6

3
þ

C10

3
þ C12

3
þ C13

3
; D ¼ C1 þ C2 þ C8 þ C14 þ C15 þ C16 þ C17 þ C18

Eq. (6) is a quadratic equation. The coefficients of the highest order terms and the lower order term as
well as the constant term are neglected to get the asymptotic notation of the algorithm, which is O(m + n2).
Therefore, the time complexity of Algorithm 1 in the worst-case is O(m + n2).
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5 Example

Suppose we have a pool of prioritized tasks (PTs = 250), and a pool of prioritized resources (PRs = 7).
Suppose the PTs are ordered (T1, T2, …, T250) where T1 has the highest priority and T250 has the lowest
priority. Both tasks and resources have been prioritized based on the AHP, where the weight of the PRs is
shown in Tab. 3. By adopting Algorithm 1, we first store PTs in Ts_Arr and PRs in Rs_Arr along with
their weights. The algorithm traverses all Rs to calculate how many resources are in each category (High,
Medium, or Low) based on the given threshold. From this example, no Rs falls under HR category, Two
Rs fall under MR category, and Five Rs fall under LR category. Thus, we come up with the total number
of Ts for each category as follows:

LR_Total_Ts = 250 * 0.64 = 160 Ts

MR_Total_Ts = 250 * 0.36 = 90 Ts

HR_T otal_T s = 250-(160 + 90) = 0 Ts

Now, we pass the number of Ts assigned for each category to Procedure 1 in order to assign and return
the suitable number of Ts for each R as follow:

HR_Arr ← {0}

M R_Arr ←{R1{T 1, T 2, …T 80}, R2{T 81, T 82, …, T 160}}

LR_Arr ← {R3{T 161, T 162, …T 178}, R4{T 179, T 180, …T 196}, R5{T 197, T 198, …T214},

R6{T215, T 216, …T 232}, R7{T 233, T 234, …T 250}}

The maximum number of T s for each R in Medium rank are 80 Ts, while the maximum number of Ts for
each R belong to Low rank are 18 Ts. Therefore, the first 80 Ts in Ts_Arr are assigned to R1, and the second
80 Ts are assigned to R2. The rest of T s are sequentially assigned to R3, R4, R5, R6, and R7 where 18 T s are
assigned to each R respectively.

6 Experiment

To validate the effectiveness of the proposed framework, we test a various number of tasks, resources,
and criteria and provide the evaluation and analysis of the results. The successful application of the AHP in
cloud environment has been done by many researches, for example, [38] and [39]. Thus, we build our testing
on the second part of the model where we create various sets of prioritized tasks and resources based on
various sets of cloud criteria.

Table 3: Weight of resources

Resource Weight

R1 0.33

R2 0.31

R3 0.14

R4 0.08

R5 0.05

R6 0.05

R7 0.04
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6.1 The Setup

The algorithm 1 has been designed to support the research work. It has been implemented in Java
language due its elegance and efficiency. developing and testing were conducted on IntelliJ IDEA
Community Edition 2019.2.3 x64, PC with processor Intel(R) Core(TM) i7-4600U CPU @ 2.10 GHz
2.70 GHz, RAM 8.00 GB, Windows 10: 64-bit operating system, and x64-based processor.

6.2 Dataset

We have randomly created various sets of tasks, resources, and criteria, as shown in Tab. 4, to measure
the efficiency of the proposed framework.

7 Finding and Results

We have run the algorithm on the three sets of tasks. Tab. 5 exhibits the maximum number of tasks that
can be assigned for each rank in order to have a well-balanced and efficient execution of the assigned tasks.
To have deeper explanations on the results, we explain the results of each experiment as follow:

7.1 Experiment I

The approximate rate for Low rank is 5.33% and the number of Rs in Low rank is 3 (cumulative rate is
16%) which allows for each R in Low rank to have a maximum of 6 Ts, see Tab. 6. The rate for Medium rank
is 6% and the number of Rs in Medium rank is one, which allows for the only R in Medium rank to have a
maximum of 6 Ts. Similarly, the approximate rate for each R in High rank is 13%, and the number of Rs in
this rank is six. Therefore, the average cumulative rate for all six Rs is 78% which allows for each R to have
up to 13 Ts.

Table 4: Experiments

Experiment Number of tasks Number of resources Number of criteria

I 100 10 4

II 200 20 6

II 300 30 8

Table 5: Assigned number of tasks for each rank

Experiment Low rank Medium rank High rank

I 16 6 78

II 19 40 141

II 35 112 153

Table 6: Assigned tasks for Experiment I

Rank Rate per resource Number of resources Max. number of tasks per rank

Low 5.33% 3 16

Medium 6% 1 6

High 13% 6 78
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After dividing Rs into the appropriate rank and calculating the maximum number of Ts for each R, the
final results of assigning Ts for each R is depicted in Tab. 7.

The results in Tab. 7 show that six Rs that are R9, R3, R1, R2, R8, and R10, belong to the High rank;
thus, each of these Rs was assigned 13 Ts. R4 belongs to the Medium rank where six Ts are assigned to it.
Finally, R7, R6, and R5 belong to the Low rank where 16 Rs are divided among them. Six Ts are assigned to
R7 while five Ts are assigned to each of R6 and R5.

7.2 Experiment II

In Experiment II, the approximate rate for Low rank is 1.6% and the number of Rs in Low rank is six
(cumulative rate is 9.6%) which allows for each R in Low rank to have a maximum of four Ts, see Tab. 8. The
rate for Medium rank is 4% and the number of Rs in Medium rank is five (cumulative rate is 20%) which
allows for each R in Medium rank to have a maximum of eight Ts. Similarly, the approximate rate for
each R in High rank is 7.8%, and the number of Rs in this rank is nine. Thus, the average cumulative
rate for all nine Rs is 70.2% which allows for each R to have up to 16 Ts.

The results in Tab. 9 show that nine Rs, that are R20, R9, R8, R17, R14, R7, R3, R12, and R19, belong
to the High rank; thus, each of these Rs can be assigned up to 16 Ts. However, because only 141 Ts are
assigned to the high rank, each of R20, R9, R8, R17, R14, and R7 is assigned 16 Ts, and each of R3,
R12, and R19 is assigned 15 Ts. Five Rs, that are R11, R18, R6, R2, and R13, belong to the Medium
rank where eight Ts are assigned to each R. Finally, R15, R4, R10, R5, R16, and R1, belong to the Low
rank where a maximum of four Ts can be assigned to each R. Because only 19 Ts should be assigned to
the six Ts, only R15 is assigned four Ts, while each of R4, R10, R5, R16, and R1 is assigned three Ts.

Table 7: Experiment I: Assigned tasks for each resource

Resource Assigned tasks

R9 T50 T34 T27 T90 T56 T32 T93 T31 T22 T25 T49 T74 T53

R3 T11 T92 T85 T51 T10 T52 T4 T75 T44 T45 T79 T54 T47

R1 T97 T26 T30 T13 T24 T65 T1 T15 T29 T35 T14 T69 T70

R2 T40 T72 T87 T20 T71 T55 T94 T98 T41 T80 T8 T7 T66

R8 T17 T12 T61 T73 T78 T43 T58 T42 T5 T57 T19 T60 T6

R10 T16 T88 T76 T37 T64 T99 T83 T46 T95 T77 T21 T36 T84

R4 T2 T33 T23 T39 T18 T9

R7 T38 T91 T67 T3 T68 T28

R6 T100 T86 T82 T96 T59

R5 T62 T48 T63 T89 T81

Table 8: Assigned tasks for Experiment II

Rank Rate per resource Number of resources Max. number of tasks per rank

Low 1.6% 6 19

Medium 4% 5 40

High 7.8% 9 141
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Note that all Ts are assigned based on their weight where our model considers assigning Ts based on
their priority/importance. Also, all Rs are prioritized even if they belong to the same rank. To illustrate
this, both R15 and R4 in experiment II belong to the Low rank but R15 comes prior to R4. Therefore, we
find that the most important Rs within the same rank have a higher chance to be assigned the maximum
number of Ts compared to less important Rs. Thus, after the run of the algorithm 1 on Experiment II, we
find that R15 is assigned the maximum number of Ts, while R4 is assigned less Ts.

7.3 Experiment III

In Experiment III, the approximate rate for Low rank is 0.8% and the number of Rs in Low rank is 14
(cumulative rate is 11.2%) which allows for each R in Low rank to have a maximum of three Ts, see Tab. 10.
The rate for Medium rank is 4.2% and the number of Rs in Medium rank is nine (cumulative rate is 37.8%)
which allows for each R in Medium rank to have a maximum of 13 Ts. Similarly, the approximate rate for
each R in the High rank is 7.3%, and the number of Rs in this rank is seven. Thus, the approximate average
cumulative rate for all seven Rs is 51.1% which allows for each R to have up to 22 Ts.

Table 9: Experiment II: Assigned tasks for each resource

Resource Assigned tasks

R20 T98 T38 T103 T170 T87 T185 T26 T193 T173 T119 T23 T79 T145 T75 T32 T172

R9 T11 T148 T162 T10 T168 T2 T124 T151 T140 T192 T73 T49 T46 T92 T123 T159

R8 T61 T101 T65 T28 T155 T149 T93 T163 T152 T86 T126 T180 T160 T80 T85 T157

R17 T59 T179 T68 T106 T40 T200 T27 T156 T97 T121 T63 T64 T167 T177 T137 T18

R14 T15 T188 T42 T71 T78 T84 T94 T113 T82 T133 T132 T67 T161 T184 T66 T52

R7 T112 T12 T189 T117 T165 T7 T111 T55 T169 T57 T109 T8 T74 T183 T51 T72

R3 T48 T20 T24 T62 T17 T136 T1 T31 T9 T138 T95 T182 T129 T70 T39

R12 T56 T150 T147 T5 T134 T104 T176 T25 T174 T76 T186 T3 T196 T4 T105

R19 T21 T128 T60 T175 T191 T22 T107 T83 T139 T35 T131 T125 T142 T181 T29

R11 T130 T143 T198 T69 T115 T108 T41 T44

R18 T58 T88 T102 T166 T99 T178 T6 T13

R6 T100 T37 T190 T54 T120 T194 T195 T43

R2 T14 T127 T77 T164 T146 T116 T144 T33

R13 T19 T114 T110 T141 T90 T36 T199 T153

R15 T118 T91 T187 T16

R4 T45 T34 T30

R10 T171 T96 T154

R5 T81 T122 T158

R16 T47 T89 T135

R1 T197 T53 T50

Table 10: Assigned tasks for Experiment III

Rank Rate per resource Number of resources Max. number of tasks per rank

Low 0.8% 14 35

Medium 4.2% 9 112

High 7.3% 7 153
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The results in Tab. 11 show that seven Rs, that are R15, R29, R10, R26, R1, R20, and R5, belong to the
High rank; thus, each of these Rs was assigned 22 Ts except R5 is assigned only 21 Ts to avoid exceeding the
maximum number of Ts allowed for the High rank. Nine Rs, that are R9, R19, R8, R28, R22, R14, R27, R11,
and R16, belong to the Medium rank where 13 Ts are assigned to each of R9, R19, R8, and R28, and 12 Ts
are assigned to each of R22, R14, R27, R11, and R16. Finally, R4, R2, R21, R12, R18, R7, R25, R23, R13,
R17, R24, R30, R6, and R3, belong to the Low rank where three Ts are assigned to each of the first seven Rs,
and two Ts are assigned to each of the remaining seven Rs. As in Experiment II, note that only two Ts are
assigned to the least important Rs.

7.4 Time Complexity Measurement

The time complexity of the proposed algorithm 1 and the associated procedure 1 are estimated in the
worst case to be O(m + n2). However, to illustrate the average time taken to find the best match between
the tasks and resources, we have run the algorithm on different combinations of inputs (Tasks and
Resources). A total of six combinations have been run on the proposed implementation of the algorithm.
The six combinations are illustrated in Tab. 12.

Table 11: Experiment III: Assigned tasks for each resource

Resource Assigned tasks

R15 T136 T289 T209 T148 T140 T11 T23 T159 T120 T288 T62 T175 T28 T86 T146 T65 T154 T179 T103 T111 T17 T188

R29 T294 T230 T126 T164 T293 T248 T216 T133 T170 T274 T181 T234 T183 T297 T208 T163 T169 T232 T300 T56 T50 T84

R10 T138 T114 T279 T231 T161 T32 T157 T106 T68 T165 T93 T206 T127 T12 T196 T299 T276 T245 T260 T116 T144 T7

R26 T270 T142 T82 T268 T75 T210 T132 T92 T119 T141 T262 T26 T30 T36 T57 T44 T182 T237 T205 T21 T291 T229

R1 T2 T41 T298 T104 T95 T8 T272 T72 T257 T123 T46 T233 T1 T150 T66 T193 T96 T264 T242 T168 T194 T243

R20 T51 T177 T22 T117 T20 T238 T149 T204 T45 T211 T277 T247 T27 T173 T121 T178 T53 T207 T271 T70 T81 T89

R5 T224 T35 T223 T236 T13 T113 T256 T14 T187 T48 T203 T227 T90 T76 T122 T214 T33 T29 T135 T186 T273

R9 T25 T296 T213 T108 T143 T212 T185 T225 T139 T63 T240 T292 T4

R19 T153 T174 T15 T265 T78 T222 T158 T109 T251 T217 T134 T24 T52

R8 T295 T219 T49 T152 T59 T235 T99 T239 T267 T266 T261 T192 T285

R28 T189 T201 T87 T280 T31 T125 T162 T286 T198 T37 T155 T151 T5

R22 T180 T98 T9 T85 T176 T10 T105 T97 T43 T64 T18 T221

R14 T249 T278 T160 T19 T197 T166 T88 T184 T131 T283 T167 T255

R27 T156 T91 T145 T220 T77 T129 T124 T3 T34 T69 T269 T253

R11 T6 T252 T42 T102 T73 T195 T54 T16 T110 T281 T61 T250

R16 T258 T200 T39 T128 T101 T226 T80 T275 T282 T259 T118 T263

R4 T112 T171 T38

R2 T47 T147 T94

R21 T115 T241 T137

R12 T79 T71 T284

R18 T199 T40 T246

R7 T190 T218 T228

R25 T254 T60 T202

R23 T107 T290

R13 T215 T83

R17 T244 T74

R24 T172 T287

R30 T55 T100

R6 T67 T58

R3 T130 T191
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Fig. 3 depicts the run time for each combination where the results show higher growth of the required
time whenever the number of tasks exceeds 200 Ts. Therefore, results confirm that time complexity is
O(m + n2).

8 Conclusion

A trade-off between a variety of criteria and attributes in the cloud leads to complicating the efficiency
and effectiveness of task scheduling and resource allocation process. Both consumers and CSPs have their
preferences which should be taken into consideration to maximize the profit of both parties. The paper
introduces a model that acquires and manipulates consumers’ and providers’ preferences considering a set
of criteria that influence the task scheduling and resource allocation process. The manipulation of the
preferences is done by adopting the AHP. Then, the model proposes a matching process based on
thresholds to categorize the prioritized resources before the actual assignment of the prioritized tasks.

The proposed model was tested by conducting three experiments, each with a set of tasks and a set of
resources. Each of the tasks and resources was assigned a random weight/priority which represents the
weight of the task/resource after processing the consumers’ and providers’ preferences by the AHP.
The results of the three experiments show the effectiveness of assigning a high number of tasks to the
available resource with the consideration of both consumers’ and providers’ preferences. Further,
the results reflect the load-fairness technique where all available resources are assigned a suitable amount
of tasks based on the priority/importance of each resource. The proposed algorithm will be very suitable
and robust one to implement the model for a big scale cloud-based task scheduling and resource
allocation problem.

In the future, multifaceted improvements can be done to the current model. First, we will extend the
model by including criteria related to not only consumers’ and CSPs’ preferences, but also actual
measurements of the quality of services and other resource-related criteria. Also, different recent
techniques can be utilized to automatically evaluate the criteria of new CSPs and resources. For example,

Table 12: Sets of tasks and resources

Run 1 2 3 4 5 6

Number of tasks 50 100 150 200 250 300

Number of resources 5 10 15 20 25 30

Figure 3: Average time taken to assign the tasks to the best resource
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machine learning techniques can be utilized to extract important criteria and produce a model to evaluate CSP
and their resources. Finally, various MCDM methods, such as ANP and BWM, can be adopted; then,
analytical comparisons can be done to identify the most suitable MCDM method that provides reliable
and consistent results with less processing time.
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