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Abstract: Unmanned Aerial Vehicles (UAVs) or drones introduced for military
applications are gaining popularity in several other fields as well such as security
and surveillance, due to their ability to perform repetitive and tedious tasks in
hazardous environments. Their increased demand created the requirement for
enabling the UAVs to traverse independently through the Three Dimensional
(3D) flight environment consisting of various obstacles which have been effi-
ciently addressed by metaheuristics in past literature. However, not a single opti-
mization algorithms can solve all kind of optimization problem effectively.
Therefore, there is dire need to integrate metaheuristic for general acceptability.
To address this issue, in this paper, a novel reinforcement learning controlled Grey
Wolf Optimisation-Archimedes Optimisation Algorithm (QGA) has been exhaus-
tively introduced and exhaustively validated firstly on 22 benchmark functions
and then, utilized to obtain the optimum flyable path without collision for UAVs
in three dimensional environment. The performance of the developed QGA has
been compared against the various metaheuristics. The simulation experimental
results reveal that the QGA algorithm acquire a feasible and effective flyable path
more efficiently in complicated environment.

Keywords: Archimedes optimisation algorithm; grey wolf optimisation; path
planning; reinforcement learning; unmanned aerial vehicles

1 Introduction

Unmanned Aerial Vehicles (UAVs) are an evolving aerospace technology with immense potential for
numerous applications. Even though formerly devoted for defence applications, the range of applications
of UAVs have been extended to several commercial and domestic fields. Disaster management and
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disaster zone mapping [1], construction [2], search and rescue, survey, security, and traffic surveillance [3]
are some of the applications in which UAVs have been immensely utilised. The ever increasing usage of
UAVs in day-to-day life applications requires the UAVs to autonomously navigate in a real world
environment. The accessibility to 3D for traversing and the presence of obstacles make the path planning
a perplexing task. The 3D path planning of UAV, aims to create a flyable path in a challenging
environment. The path optimisation of UAV enables to detect a safe collision-free flight route.

The path planning of UAVs in 3D environment can be formulated as an optimisation problem, for which
the fitness function can be designed and an optimisation technique can be devised to obtain the optimum
solution path. The objective of path planning is to construct a collision-free flight route for the UAV from
the start to the target position where it is deployed. Along with the collision avoidance, other constraints,
such as energy consumption and time required to accomplish the desired path are also considered to
frame the objective function. Throughout the literature, metaheuristic algorithms prove to be successful
optimisation techniques for several engineering optimisation problems, due to their advantages such as
ease of implementation and simplicity [4]. Several proficient metaheuristics have been utilised
successfully for path optimisation as well. Furthermore, metaheuristics have been examined to perform
better than graph based methods for UAV path planning [5]. The previous literature reveals the
employability of metaheuristics for 2D (Two Dimensional) path planning however, for UAVs, it restrict
the mobility in any one of the plane [6,7].

For 3D path planning of UAVs, Particle Swarm Optimisation (PSO) and Global Best path competition
(GBPSO) have been exhausted in past [8,9]. For military environments containing radar guided Surface-to-
Air Missiles (SAM), an Improved Particle Swarm Optimisation (IPSO) algorithm has also been employed
[10]. However, PSO struggles with the problem of early convergence and trapping in local minima and
therefore, to overcome these limitations, Rauch-Tung-Striebel (RTS) smoother and Metropolis criterion
have been extensively incorporated [11]. Recently Double Dynamic Biogeography-Based Learning PSO
has also been investigated to improve PSO for UAV path planning [12]. Further, being motivated by the
efficacy of Grey Wolf Optimization (GWO), it has been exhaustively utilised with improved and hybrid
versions, such as Markov Decision Process based GWO with Level Comparison (GWOLC) [13],
Modified Symbiotic Organism Search (MSOS) based GWO [14] and hybrid Golden Eagle Optimiser-
GWO [15] for optimal flight route mapping. Considering UAVs as an emerging technology for disaster
management, a constrained Differential Evolution (DE) algorithm has been proposed for flight route
optimisation [1]. Additionally, Improved Bat Algorithm (IBA) [16] and Glow-worm Swarm Optimisation
(GSO) [17] have been employed to estimate the efficient route in static and dynamic environment,
respectively. In addition to this, physics inspired optimisers such as Equilibrium Optimiser (EO) [18],
Quantum-Entanglement Pigeon-inspired Optimisation (QEPO) [19], Multiverse optimiser (MVO) [20]
and Gravitational Search Algorithm (GSA) [21] have been successfully employed for automatic optimal
flight path generation in the 3D flight environment. Recently, other physics inspired algorithms have also
been introduced such as Archimedes Optimisation Algorithm (AOA) [22], Flow Direction Algorithm
(FDA) [23], Artificial Electric Field Algorithm (AEFA) [24], etc. However, the capabilities of these
developed algorithms for optimal path planning have been seldom examined. Apart from metaheuristics,
other Artificial Intelligent (AI) techniques such as Heuristic search, Artificial Neural Networks, Local
search techniques have been studied extensively for UAV path planning [25].

Moreover, with the advent of Machine Learning (ML), enormous work has been extensively reported to
elevate the optimisation capabilities of metaheuristics. In this sequence, Reinforcement Learning (RL) has
been commonly utilised to control the exploration and exploitation behaviours [26]. The efficacy of RL
based metaheuristic for UAV flight route planning has been validated to achieve better flying path and
convergence speed [27]. Furthermore, as per No Free Lunch (NFL) [28] theorem, an optimisation
algorithm promising good performance in terms of accuracy and convergence speed on one set of

2484 CSSE, 2023, vol.45, no.3



problems does not ensure similar performance on other set of problems. This provides a possibility to
develop a new and advance optimization algorithms for UAV path planning.

Therefore, the present work investigates the possibilities to develop a novel metaheuristic by employing
AOA and GWO. Further, the RL based algorithm selection mechanism has been developed in order to reach
the new horizons with proposed metaheuristics. In AOA, the capability to optimize any real time
optimization problem has been controlled by transfer operator that maintains the global-local search
balance. The transfer operator assures that the first 30% iterations are exploration, by updating the
individual positions based on the position of a randomly selected individual. During the next phase, the
exploitation, the positions of the individuals are updated utilising the position of the best individual.
However, the low convergence speeds of AOA is the consequence of absence of exploitation during the
first one-third iterations. Additionally, the previous literature comprehensively employed the use of GWO
for UAVs path planning because of its higher convergence speed and capability to generate optimum path
with obstacle [29,30]. The GWO estimates three best individuals, alpha, beta, and delta wolves and the
positions of all the individuals are updated based on these best individuals. This ensures good
exploitation capacity for the GWO algorithm however, it suffers by the premature convergence and
stagnation at local minima [31].

To effectively address the above mentioned issues, the Q learning controlled GWO-AOA (QGA) has
been proposed in the present work. The exploitation capabilities of GWO and the exploration abilities of
AOA have been combined in the introduced algorithm. For maintaining the balance between global and
local search, e greedy Q learning has been employed [32]. The Q learning states and actions are labelled
as AOA and GWO. The Q learning agent selects between GWO and AOA according to the Q table
values to achieve maximum reward. The incorporation of Q agent for regulating the exploration and
exploitation balance will provide higher convergence rates and prevents trapping in the local optimal
solutions.

The performance of the developed QGA has been validated against 22 popular benchmark functions and
then, employed to estimate the optimum path for UAVs. For this purpose, the results obtained for the
benchmark functions have been compared with GWO, AOA, RL based GWO (RLGWO) [27], Enhanced
AOA (EAOA) [33], and PSO [34]. Further, the popular statistical test such as Friedman test and
Wilcoxon rank-sum test have also been executed on the benchmark results to endorse the efficacy of the
compared metaheuristics. For path planning also, the developed QGA has been exhaustively compared
with aforementioned metaheuristics under complex 3D environment. Summarising the main contribution
of the present investigation are:

� Development of Q-controlled GWO-AOA (QGA) to enhance the exploration-exploitation balance.

� Development of algorithm selection mechanism to efficiently select the employed metaheuristics
based on Q-State parameters.

� Exhaustive validation of developed QGA against other metaheuristics for various benchmark
functions based on statistical tests.

� Examining the employability of QGA for real-time path-planning optimization problem of UAV in 3D
environment.

The rest of the paper is organised as follows. Section 2 includes the brief description about Q learning,
GWO, and AOA. The detailed description of the proposed QGA is presented in Section 3. The path planning
problem statement is formulated in Section 4. The performance analysis of QGA over benchmark functions
and the effectiveness of proposed algorithm for path planning in 3D flying field is presented in Section 5.
Lastly, Section 6 concludes the work with discussions on future research.
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2 Background

2.1 Q Learning

RL comprises four sub-elements, namely, policy, reward signal, a value function, and a model of the
environment. RL depends on the interactivity between the learning agent and its environment. Reward
signal is the feedback from the environment to the RL agent which quantifies this interactivity. Q learning
is an off policy Temporal Difference (TD) method. Q indicates the action-value function. One of the main
components of Q learning is the Q table. The reward is the reinforcement signal which guides the learning
agent during the process. The main objective of the learning agent is to maximise the reward signal. The Q
value is dependent on the reward signal. During each operation, the Q table is updated based on the Eq. (1).
For each state-action pair there will be a corresponding Q table value (QðSitr; AitrÞ). Each Q table update
depends on the reward signal (Reward) from the environment. The goal of maximizing the reward at the
end of the operations is ensured by performing an action with the highest Q value.

Qitrþ1ðSitr; AitrÞ ¼ QðSitr; AitrÞ þ l Rewarditrþ1 þ c
max
A

QðSitrþ1; AitrÞ � QðSitr; AitrÞ
� �

(1)

where, S is the state, A is the action, itr is the current iteration, l indicates the learning rate, and c denotes the
discount factor.

2.2 Archimedes Optimisation Algorithm (AOA)

The Archimedes Optimisation Algorithm (AOA) is based on Archimedes’ principle that defines the
relation between buoyant forces or upthrust and the weight of the displaced fluid. According to
Archimedes’ principle, if a body is completely or partially immersed in a liquid, the net upward force,
also known as the buoyant force acting on the body will be equal to the weight of the liquid displaced by
the body. If the weight of the displaced liquid is greater than the upward force, the body will be
completely immersed in the liquid whereas, if the weight of the body is equal to the weight of
the displaced liquid, the body will be floating in the liquid. The initial population of AOA consists of
various bodies with different densities and volumes. Each of these bodies will try to achieve an
equilibrium state with neutral buoyancy. This can be mathematically represented by Eq. (2), which is
further expanded to Eq. (3)

Fliq ¼ Fb (2)

qliqV liqacnliq ¼ qbV bacnb (3)

where, qliq, Vliq, and acnliq are the density, volume and acceleration of the liquid, respectively. Similarly,
qb, Vb, and acnb are the density, volume and acceleration of the object floating in the liquid, respectively.

To obtain the acceleration of the body, Eq. (3) is rearranged as shown in Eq. (4)

acnb ¼
qliqV liqacnliq

qbVb
(4)

If other forces such as collision with other bodies are affecting the body under consideration,
Eqs. (2)–(3) are modified as Eqs. (5)–(6) respectively.

Wliq �Web ¼ Fb (5)

qliqV liqacnliq � qebV ebacneb ¼ qbV bacnb (6)
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where, qeb, Veb, and acneb denotes the density, volume, and acceleration of the external object, Wliq is the
weight of the liquid displaced and Web is the weight of the external object.

The initial position (Pbi) and acceleration (acnbi) of the i th body immersed in the liquid are generated
using Eqs. (7)–(8). The density and volume of each body is initialised randomly in the range [0, 1].

Pbi ¼ lbb þ r1ðubb � lbbÞ (7)

acnbi ¼ lbb þ r2ðubb � lbbÞ (8)

where, r1 and r2 indicates random numbers in the range [0, 1], lbb and ubb are the lower bounds and upper
bounds of the search space, respectively.

The density factor and transfer operator helps in maintaining exploration-exploitation balance in AOA.
During first 30% of the iterations, AOA is in global search followed by the local search. The exploration and
exploitation phases are defined using transfer operator (TR) defined by Eq. (9). Density factor (df ) represents
the exploration to exploitation shift and is calculated by Eq. (10).

TR ¼ exp
itr �Max

Max

� �
(9)

df ¼ exp
itr �Max

Max

� �
� itr

Max

� �
(10)

where, itr and Max depicts the current iteration and maximum number of iterations, respectively.

During each iteration the density (qbi) and volume (Vbi) of each body are updated using Eqs. (11)–(12).

qbiðitr þ 1Þ ¼ qbiðitrÞ þ r3ðqalpha � qbiðitrÞÞ (11)

Vbiðitr þ 1Þ ¼ VbiðitrÞ þ r4ðValpha � VbiðitrÞÞ (12)

where, r3 and r4 corresponds to the random numbers [0, 1], qalpha and Valpha represents the best density and
volume of the body obtained from the previous iteration, respectively.

Further, if TR � 0:5, exploration is performed and, the acceleration and position are updated using the
previously selected random body, respectively. This acceleration update mechanism is represented by
Eq. (13) where, qbr, Vbr and acnbr denotes the density, volume and acceleration of the randomly selected
body respectively.

acnbiðit þ 1Þ ¼ qbr þ Vbracnbr
qbiðitr þ 1ÞVbiðitr þ 1Þ (13)

Then, the acceleration, acnbi is normalised using Eq. (14), where, u and l are constants.

norm acnbiðitr þ 1Þ ¼ u� acnbiðitr þ 1Þ � minðacnÞ
maxðacnÞ � minðacnÞ þ l (14)

The position of i th individual during the exploration stage is updated using Eq. (15).

Pbiðitr þ 1Þ ¼ PbiðitrÞ þ c1 � r5 � norm acnbiðitr þ 1Þ � df � ðPbr � PbiðitrÞÞ (15)

where, c1 is a constant, r5 is a random number, and Pbr is the position of the selected random object.
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Moreover, if TR > 0.5, the algorithm will perform local search (exploitation). The acceleration is updated
using the Eq. (16) and then normalised by employing Eq. (14).

acnbiðitr þ 1Þ ¼ qalpha þ Valphaacnalpha
qbiðitr þ 1ÞVbiðitr þ 1Þ (16)

where, qalpha, Valpha, and acnalpha indicates the density, volume, and acceleration of the best body
obtained so far, respectively.

Afterwards, if Palpha is the position of the body with best fitness function then, the position of the i th
body is updated by Eq. (17) considering c2 and r6 as constant and random number, respectively.

Pbiðitr þ 1Þ ¼ PalphaðitrÞ þ Flag � c2 � r6 � norm acnoiðitr þ 1Þ � df � ðTF � Palpha � PbiðitrÞÞ (17)

Additionally, based upon the constant (c3 and c4) and random value (r7), TF and Flag are also regularly
estimated by Eqs. (18)–(20).

TF ¼ c3 � TR (18)

Flag ¼ þ1; if F � 0:5
�1; otherwise

�
(19)

F ¼ 2� r7 � c4 (20)

2.3 Grey Wolf Optimisation (GWO)

The Grey Wolf Optimisation (GWO) is inspired from the hunting behaviours and social hierarchy of
grey wolf packs. Grey wolves live in groups called packs and maintain a strict social hierarchy among
the group. The topmost leader of the group is called the a wolf, followed by leader groups, the b, and the
d wolves, and the rest of the pack is called as the x wolves. The candidate solutions (wolf population) is
updated based on the leader groups which represent the best, the second best, and the third best solutions,
respectively using Eqs. (21)–(28).

Pbiðitr þ 1Þ ¼ ðP1 þ P2 þ P3Þ=3 (21)

P1 ¼ PalphaðitrÞ � A1Dalpha (22)

P2 ¼ PbetaðitrÞ � A2Dbeta (23)

P3 ¼ PdeltaðitrÞ � A3Ddelta (24)

Da ¼ jC1PalphaðitrÞ � PoiðitrÞj (25)

Db ¼ jC2PbetaðitrÞ � PoiðitrÞj (26)

Dd ¼ jC3PdeltaðitrÞ � PoiðitrÞj (27)

Ck ¼ 2rck

Ak ¼ 2at:rtk � at (28)

where, at is linearly decreased from 2 to 0 during each iteration, rck is a random number which gives Ck ,
k ¼ 1; 2; 3, rtk is another random number used to calculate the parameter Ak, PbiðitrÞ is the position of
i th candidate solution at the current iteration itr, Pbiðitr þ 1Þ is the updated position. Pbi is given by the
mean of P1, P2, and P3, which depends on the positions of the leader group, Palpha, Pbeta, and Pdelta,
respectively.
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3 The Q Learning-Controlled GWO-AOA

GWO and AOA are both population based algorithms. In the case of AOA, the exploration and
exploitation behaviour is selected by TR which leads to slow convergence rate. In GWO, extremely
efficient exploitation capabilities are witnessed because of the dependence on the leader group only.
However, this also reduces the population diversity which lead to premature convergence and premature
local minima. Therefore, the GWO and AOA are combined to obtain more efficient global-local
capabilities. But, selecting a particular optimization algorithm at different stages is very challenging task
and therefore, the artificially intelligent, Q learning is employed. Additionally, premature convergence and
stagnation at local optima can also be avoided since, the Q agent maintains the balance between
exploration and exploitation. The Q agent makes selection based on the Q table values, such that it
enables to increase the reward as the iterations progress. The reward is assigned to the agent when the
performance is improved. The accumulated performance along with reward decides the change of state or
action selection.

The Q learning is a value based RL technique where, Q denotes the action-value function. In this work,
two actions and states are defined, AOA and GWO. The Q table contains the Q values for each state-action
pair. The training agent and the environment are represented by the individuals of the population and the
search space, respectively. During each operation, the Q table is updated using Eq. (1) and the
exploration-exploitation balance is maintained using e greedy policy. As per policy, exploration operation
is performed with a probability, 1� e, and exploitation with a probability, e. The exploitation operation
forces the Q agent to attain maximum reward by choosing the current best selection, whereas exploration
indicates a random selection. The flowchart for the algorithm is illustrated in Fig. 1.

The agent decides the next action based on the Q table values, which are further depending on the reward
signal. By selecting the action with the maximum Q value during the exploitation operation, the agent
maximizes its reward. When an operation results in a better cost function value, a positive reward is

Start
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positions, volumes 
and densities

Initialise 
state, action, 
and table

Calculate the cost function 
and choose the leaders , 
and position, acceleration, 
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Figure 1: Flowchart for QGA
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assigned, otherwise, the Q agent is penalised by a negative reward. If Reward indicate the reward signal
achieved by the agent from the environment then the reward assignment is represented by Eq. (29).

Reward ¼ þ1; if cost function is improved
�1; otherwise

�
(29)

Pseudocode 1 The QGA

Set the parameters

Set the states and actions

Set the Q table

Initialize the population

Initialize density, volume and acceleration

Calculate the cost function

Choose the leader group, a, b, and d

Set itr ¼ 0

while itr,Max do

e greedy policy derived from Q selects the action

for every Pbi in population do

Update densities and volumes

switch action

Case 1: AOA

if TR � 0:5

Update position using Eqs. (13)–(15)

else

Update position using Eqs. (16)–(17)

end if

Case 2: GWO

Update position using Eqs. (21)–(28)

end switch

end for

Update cost function

Get reward using Eq.(29)

Update Palpha, Pbeta, and Pdelta

Update the Q table

itr ¼ itr þ 1

end while

Return best position
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4 The Path Planning

4.1 Problem Formulation and Cost Function

The present work attempts to formulate the NP Hard problem such as UAV path planning in 3D
environment as an optimisation problem and metaheuristics is found as the most effective approach to
solve such problems. The prime objective of path planning for UAV is to find an optimal flyable path
from source to destination without collisions in minimum time and energy. To fulfill these requirements,
the cost function is formulated based on [14] and [27]. Then, an initial population of candidate paths is
generated and by employing an optimisation algorithm, the feasible path is achieved as per the designed
cost function. The shortest path between the start and target position have M waypoints, which are
initialised with coordinates, ðxml; yml; zmlÞ, where ml ¼ 0; 1; 2; . . . ; M then, the population
individuals for optimisation with 2M dimension is initialised as shown in Eq. (30).

Pi ¼ ½yi1; yi2; . . . yiM ; zi1; zi2; . . . ziM � (30)

where, yik and zik are the y and z coordinates of the k th waypoint of the i th individual. Initially, the population
individuals, Pi, are generated randomly and then, the QGA is employed to optimise the cost function during
each iteration.

The cost function to be minimised for the optimal flight trajectory from start to target position is
formulated considering the collisions with the obstacles in the environment, energy consumption, and
travel time. The collision cost, Fcollision is defined to indicate the collision with any obstacles in the flying
environment. The energy consumption will be low for the path with shortest length. The shortest possible
collision-free path will also have minimum travel time. Therefore, the cost function, Fcost, is computed as
the weighted sum of the collision cost, energy cost, and the deviation cost. Hence, Fcost is represented as
shown in Eq. (31),

Fcost ¼ p1Fenergy þ p2Fcollision þ p3Fdeviation (31)

Since the length of the path is directly proportional to the energy consumption, the energy cost (Fenergy)
is estimated as the length of the path. When the generated flight path passes through the obstacles present in
the environment, a collision cost is evaluated. The flight path with length, l, is divided into M, number of
waypoints from start to target positions. For calculating the collision cost, each path segment is again
divided into 5 equidistant points, and each of these path segments is examined whether, they are passing
through the obstacle or not. If the path segment of length, lm is colliding with an obstacle j as shown in
Fig. 2 then, Fcollision is calculated by Eqs. (32)–(33), otherwise, fcollision;lm is assigned as zero (Eq. (33)).
Here, sm0:25;j is the length from the centre of the obstacle to the second equidistant point on the path
segment, rj is the base radius of the obstacle and N is the maximum number of obstacles.

Fcollision ¼
Z l

0

f collisiondl (32)

f collision;lm ¼ lm
5

XN
j ¼ 1

1

5
ðjsm0;j � rjj þ jsm0:25;j � rjj þ jsm0:5;j � rjj þ jsm0:75;j � rjj þ jsm1;j � rjjÞ (33)
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The deviation cost, Fdeviation, is calculated using Eqs. (34)–(35)

Fdeviation ¼
Z l

0

f deviation (34)

fdeviation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðym � ymlÞ2 þ ðzm � zmlÞ2

q
(35)

where, ym and zm are the y and z coordinates respectively of the m th waypoint of obtained path, yml and zml
are the y and z coordinates respectively corresponding to the m th waypoint on the shortest path between the
start and the target position. Further, to generate the flyable path for UAVs, the obtained path is smoothen by
employing cubic spline curves [35,36].

4.2 Simulation Environment

A real world 3D UAV flight environment will contain several threats. Hence, in order to prove the
efficiency of the developed algorithm, a simulation environment that resembles the real world civilian
environment is required. Therefore, for simulating the results a 3D flight environment consisting of
different kinds of obstacles is created. The 3D environment constitutes a Gaussian obstacle, cone,
hemispheres, and cylinders of various sizes. The configurations of the simulated obstacles are presented
in Tab. 1. The proposed algorithm is utilised to minimise the cost function to obtain an optimal flight
path. Finally, all the simulation work are accomplished on the MATLAB 2019a programming platform
installed in the Windows-10 operating system with an AMD Ryzen 5 (2.10 GHz) processor and 8GB RAM.

Figure 2: Calculating the collision cost

Table 1: Obstacle configurations

Obstacle Base center Radius (m) Height (m)

Gaussian (0, 0, 0) - 7

Cone (−17, 7, 0) 2.5 10

Hemispheres (6, 7, 0) 5 -

(20, 16, 0) 5 -

Cylinders (12, 0, 0) 3.5 8

(22, 0, 0) 5 12

(25, 25, 0) 2.3 9

(15, 8, 0) 2 10

(10, 15, 0) 4 8
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5 Results and Discussions

5.1 Benchmark Function Analysis

The performance of the developed QGA is evaluated on 22 benchmark functions as mentioned in
Supplementary A. The obtained simulated results are compared with GWO, AOA, RLGWO, EAOA, and
PSO. The results are analysed for 20 runs, with the maximum number of iterations limited to 1000. The
population size is chosen as 30 for all the algorithms for fair comparison. Further, the statistical
performance parameters such as Mean and Standard Deviation are computed using the obtained simulated
results from 20 runs and tabulated in Tab. 2. Moreover, for the estimation of the rank and overall
performance validation, Friedman test is performed and average rank based on the test is also rendered in
Tab. 2. The obtained results reveals that QGA is able to provide optimal or near optimal mean values
compared with GWO, AOA, PSO, EAOA, and RLGWO for 11 benchmark functions. GWO is resulting
in optimal average solutions for 9 benchmark functions, whereas, RLGWO provided optimal average
results for 5 only. Therefore, QGA outperforms others by minimum margin of approximately 22%. This
is also validated by the Friedman test which estimates the average rank of QGA as 2.31 that is lower than
7.60% by its nearest counterpart. Conclusively, the QGA is ranked 1 as per the Friedman test among the
6 algorithms under consideration.

Table 2: Mean and standard deviation of the optimized cost function values for benchmark functions

Function Parameter RLGWO GWO AOA QGA PSO EAOA

F1 Mean 9.98E - 34 9.95E - 59 7.82E - 14 1.00E - 72 1.04E - 06 4.36E + 04

SD 4.23E - 33 6.79E - 59 3.67E - 13 4.49E - 72 3.63E - 06 1.36E + 04

F2 Mean 1.47E - 14 1.10E - 34 3.92E - 05 3.75E - 42 8.87E + 00 2.47E + 11

SD 6.06E - 14 2.48E - 34 1.84E - 04 1.68E - 41 8.29E + 00 8.12E + 11

F3 Mean 6.15E - 03 8.77E - 16 2.92E - 25 8.86E - 53 1.53E + 03 9.63E + 04

SD 2.74E - 02 1.41E - 14 1.37E - 24 3.49E - 52 2.84E + 03 3.36E + 04

F4 Mean 1.56E - 04 1.44E - 14 3.84E - 23 2.37E - 29 1.29E + 00 1.03E - 175

SD 3.94E - 04 2.60E - 14 1.78E - 22 7.31E - 29 7.79E - 01 0.00E + 00

F5 Mean 2.80E + 01 2.69E + 01 2.70E + 01 2.75E + 01 2.25E + 04 1.67E + 08

SD 2.74E + 00 4.75E - 01 8.80E - 01 8.03E - 01 4.00E + 04 7.63E + 07

F6 Mean 2.89E + 00 5.75E - 01 2.96E + 00 1.51E + 00 4.95E + 02 5.04E + 04

SD 6.41E + 00 3.40E - 01 1.03E + 00 4.49E - 01 2.21E + 03 1.36E + 04

F7 Mean 2.21E - 03 8.41E - 04 5.02E - 02 7.39E - 04 7.01E - 01 2.47E + 01

SD 2.61E - 03 3.44E - 04 1.53E - 01 4.28E - 04 3.00E + 00 2.82E + 01

F8 Mean 1.72E + 01 5.00E - 02 9.36E + 01 1.14E - 01 1.44E + 02 3.56E + 02

SD 3.30E + 01 2.33E - 14 3.67E + 01 5.12E - 01 2.90E + 01 5.63E + 01

F9 Mean 3.28E - 06 1.62E - 14 1.33E - 01 6.93E - 15 3.13E + 00 2.00E + 01

SD 1.46E - 05 2.15E - 15 6.23E - 01 2.60E - 15 3.96E + 00 7.69E - 01

F10 Mean 6.01E - 02 2.58E - 03 8.57E - 04 1.52E - 03 4.61E + 00 4.50E + 02

SD 2.26E - 01 2.46E - 03 4.02E - 03 4.93E - 03 2.03E + 01 1.20E + 02

F11 Mean 7.75E - 02 3.56E - 02 1.97E + 00 8.78E - 02 2.08E - 01 3.97E + 08

SD 4.30E - 02 3.30E - 02 4.53E + 00 4.36E - 02 4.55E - 01 2.04E + 08
(Continued)
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Further, the optimum value for each benchmark are computed against the simulated runs and tabulated in
Tab. 3 which is also used to select the convergence curves of the respective benchmark. The QGA is able to
provide optimal values for 14 functions. Hence, for 63.60% of the benchmark, the QGA provides an optimal
or near optimal solutions for the considered 22 benchmark functions; whereas, GWO, AOA, RLGWO, PSO
and EAOA achieved the optimum values for 59%, 59%, 50%, 50% and 18.18% functions, respectively.
Therefore, the QGA dominates all the other comparison algorithm by a significant margin of 4.6%, 4.6%,
13.07%, 13.60% and 45.42%, respectively.

The P values evaluated for Wilcoxon rank-sum test are denoted in Tab. 4. The P value less than
0.05 indicates the statistical significance of QGA compared to the other algorithms. When compared with
PSO, the QGA is achieving statistically significant results for 14 functions. For 12 benchmark functions,
the QGA provides statistically significant results when compared with GWO. Except for the benchmark
functions, F3, F4, F13, F19, and F20, the cost function values achieved by QGA is statistically significant

Table 2 (continued)

Function Parameter RLGWO GWO AOA QGA PSO EAOA

F12 Mean 1.18E + 00 5.35E - 01 3.60E + 00 1.21E + 00 4.20E - 01 7.38E + 08

SD 3.28E - 01 2.12E - 01 2.40E + 00 2.71E - 01 1.38E + 00 4.45E + 08

F13 Mean 4.96E + 00 5.06E + 00 4.91E + 00 6.21E + 00 1.20E + 00 4.64E + 00

SD 4.62E + 00 4.88E + 00 4.35E + 00 5.22E + 00 6.11E - 01 3.05E + 00

F14 Mean 8.10E - 04 1.33E - 03 3.88E - 03 4.01E - 04 6.81E - 03 4.12E - 03

SD 4.39E - 04 9.38E - 03 7.43E - 03 2.88E - 04 9.13E - 03 4.52E - 03

F15 Mean −1.03E + 00 −1.03E + 00 −9.82E−01 −1.03E + 00 −1.03E + 00 −1.02E + 00

SD 2.40E - 09 6.04E - 02 2.36E - 03 1.20E - 09 2.28E - 16 1.90E - 02

F16 Mean 3.98E - 01 3.98E - 01 3.87E - 01 3.98E - 01 3.98E - 01 4.39E - 01

SD 2.21E - 07 0.00E + 00 3.74E - 02 2.49E - 07 0.00E + 00 4.19E - 02

F17 Mean 3.00E + 00 3.00E + 00 2.86E + 00 3.00E + 00 3.00E + 00 3.35E + 00

SD 1.06E - 05 0.00E + 00 0.00E + 00 5.21E - 06 1.04E - 15 7.82E - 01

F18 Mean −3.86E + 00 −3.86E + 00 −3.68E + 00 −3.86E + 00 −3.74E + 00 −3.71E + 00

SD 1.67E - 03 2.40E - 03 2.42E - 03 3.03E - 03 2.96E - 01 1.33E - 01

F19 Mean −3.28E + 00 −3.25E + 00 −3.08E + 00 −3.28E + 00 −3.20E + 00 −2.12E + 00

SD 6.85E - 02 7.64E - 02 9.81E - 02 5.93E - 02 1.12E - 01 5.07E - 01

F20 Mean −8.76E + 00 −9.14E + 00 −5.39E + 00 −7.35E + 00 −6.76E + 00 −2.40E + 00

SD 2.21E + 00 1.56E + 00 3.76E + 00 2.60E + 00 3.57E + 00 1.91E + 00

F21 Mean −1.04E + 01 −1.04E + 01 −4.45E + 00 −8.81E + 00 −7.07E + 00 −2.98E + 00

SD 4.48E - 04 4.81E + 00 2.98E + 00 2.50E + 00 3.21E + 00 1.61E + 00

F22 Mean −1.05E + 01 −1.05E + 01 −4.67E + 00 −1.00E + 01 −7.02E + 00 −2.61E + 00

SD 7.02E - 04 2.26E - 04 3.40E + 00 1.66E + 00 4.00E + 00 1.50E + 00

Average rank 2.95 2.5 3.77 2.31 4.0 5.45

Total rank 3 2 4 1 5 6
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than AOA.While comparing with EAOA, the QGA attains statistically significant cost function values for all
the considered functions except the benchmark function F13. The comparison with RLGWO shows that for
12 functions, the QGA is achieving statistically significant results. Therefore, it is perceived that according to
Wilcoxon rank-sum test also, the QGA exceedingly dominates all the other employed algorithms.

Table 3: Best values of cost function obtained for benchmark functions

Function RLGWO GWO AOA QGA PSO EAOA

F1 4.11E - 48 3.79E - 61 1.33E - 171 8.12E - 127 6.24E - 18 2.12E + 04

F2 4.23E - 30 7.23E - 36 7.49E - 91 6.77E - 70 2.00E - 02 4.22E + 01

F3 3.08E - 13 1.41E - 19 5.87E - 114 1.58E - 100 1.36E + 00 3.90E + 04

F4 3.10E - 10 1.39E - 15 3.11E - 50 4.97E - 77 3.36E - 01 3.78E - 211

F5 2.63E + 01 2.61E + 01 2.60E + 01 2.62E + 01 1.81E + 01 1.55E + 07

F6 4.90E - 01 1.56E - 05 8.37E - 01 5.01E - 01 4.22E - 13 2.67E + 04

F7 6.33E - 04 5.33E - 04 7.30E - 03 2.66E - 04 1.56E - 02 6.04E + 00

F8 0.00E + 00 0.00E + 00 4.63E + 01 0.00E + 00 8.95E + 01 2.42E + 02

F9 2.22E - 14 1.51E - 14 4.00E - 14 4.44E - 15 1.15E - 06 1.82E + 01

F10 0.00E + 00 0.00E + 00 5.55E - 16 0.00E + 00 8.11E - 11 2.72E + 02

F11 3.48E - 02 6.60E - 03 9.10E - 02 3.40E - 02 2.39E - 14 1.02E + 08

F12 9.62E - 01 1.76E - 01 2.17E + 00 8.14E - 01 4.35E - 12 4.71E + 07

F13 9.98E - 01 9.98E - 01 9.98E - 01 9.98E - 01 9.98E - 01 1.00E + 00

F14 3.07E - 04 3.08E - 04 3.08E - 04 3.08E - 04 3.07E - 04 3.07E - 04

F15 −1.03E + 00 −1.03E + 00 −1.03E + 00 −1.03E + 00 −1.03E + 00 −1.03E + 00

F16 3.98E − 01 3.98E - 01 3.98E - 01 3.98E - 01 3.98E - 01 3.98E - 01

F17 3.00E + 00 3.00E + 00 3.00E + 00 3.00E + 00 3.00E + 00 3.00E + 00

F18 −3.86E + 00 −3.86E + 00 −3.86E + 00 −3.86E + 00 −3.85E + 00 −3.69E + 00

F19 −3.32E + 00 −3.32E + 00 −3.32E + 00 −3.32E + 00 −3.32E + 00 −2.91E + 00

F20 −1.02E + 01 −1.02E + 01 −1.02E + 01 −1.02E + 01 −1.02E + 01 −8.66E + 00

F21 −1.04E + 01 −1.04E + 01 −1.04E + 01 −1.04E + 01 −1.04E + 01 −5.84E + 00

F22 −1.05E + 01 −1.05E + 01 −1.05E + 01 −1.05E + 01 −1.05E + 01 −7.74E + 00

Table 4: Wilcoxon rank-sum test

Function QGA vs. PSO QGA vs. GWO QGA vs. AOA QGA vs. EAOA QGA vs. RLGWO

F1 1.01E-07 6.8E-08 0.008352 6.8E-08 6.77E-08
F2 6.8E-08 6.8E-08 0.031517 6.8E-08 6.8E-08
F3 6.8E-08 6.8E-08 0.113551 6.8E-08 6.8E-08
F4 6.8E-08 6.8E-08 0.076431 6.8E-08 6.8E-08
F5 0.243594 0.147847 0.000758 6.8E-08 0.903116

F6 1.2E-06 1.58E-06 2.6E-05 6.8E-08 0.967635
(Continued)
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Finally, the performance of all the employed algorithms is also compared based on convergence plots
and sample of these are presented in Fig. 3. It is very obvious from these plots, the QGA shows the faster
convergence compared to others and therefore, the adaptive algorithm selection mechanism based on Q
learning enables faster convergence without compromising accuracy.

5.2 Path Planning Results

The developed algorithm is employed to generate 3D flight path in the simulated environment. The
maximum number of iterations utilised is 1500, with a population size of 50, for all the algorithms. The
results are compared with GWO, AOA, EAOA, RLGWO, and PSO. The Fig. 4 provides the top view of
the simulated environment and the generated paths. The 3D view of the created paths in the flight
environment is depicted in Fig. 5. The simulated results confirmed that QGA is providing the optimal
flight path. From these figures, it is witnessed that only QGA, RLGWO and AOA are able to avoid the
collision while estimating the optimum path however, both RLGWO and AOA are consuming higher
fuel. Therefore, only QGA successfully estimates the optimum flyable path with all the considered
constraints. Not only PSO, EAOA and GWO fails to avoid collision but also the length of the traced path
is higher compared to the path generated by QGA.

By comprehensive analysis of the convergence curves shown in Fig. 6, it is quite evident that though
QGA is converging slower as compared to GWO, EAOA, and PSO but, the QGA is able to achieve
collision free optimal flight path. Also, the final optimized objective function values achieved by QGA is
significantly lower than that of EAOA, PSO, and GWO.

Table 4 (continued)

Function QGA vs. PSO QGA vs. GWO QGA vs. AOA QGA vs. EAOA QGA vs. RLGWO

F7 6.8E-08 0.06388 6.8E-08 6.8E-08 0.009786

F8 1.51E-08 0.499262 1.51E-08 1.51E-08 2.32E-06
F9 4.37E-08 2.56E-07 4.19E-08 4.37E-08 4.31E-08
F10 2.25E-07 0.573704 5.21E-06 1.51E-08 0.000466

F11 0.060111 0.000179 1.58E-06 6.8E-08 0.560852

F12 1.2E-06 1.43E-07 1.06E-07 6.8E-08 0.579218

F13 1.93E-07 0.281366 0.439459 0.903112 0.860405

F14 0.132627 0.029084 0.013273 1.43E-07 0.000563

F15 8.01E-09 2.78E-07 1.51E-08 6.8E-08 0.001349

F16 8.01E-09 8.01E-09 1.13E-08 6.8E-08 8.29E-05
F17 4.91E-08 2.99E-08 2.99E-08 6.8E-08 0.839232

F18 0.388414 0.175637 0.001944 6.8E-08 0.285305

F19 0.283263 0.143627 0.635038 6.8E-08 0.049864

F20 0.421973 0.207791 0.187628 1.57E-06 0.189523

F21 0.559911 0.19835 1.99E-05 9.13E-07 0.776391

F22 0.594823 0.009473 0.000196 9.17E-08 0.096196
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Figure 3: Convergence curves for selected benchmark functions

Figure 4: 2D top view of the paths
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Tab. 5 demonstrate the ability to generate the optimal flyable path for UAVs by the developed QGAwith
others based on the statistical means. All the employed algorithms are used to estimate the path for 20 runs.
The obtained results reveals that the developed QGA achieved the optimum cost value function which is
approximately 28.50%, 26.83%, 11.00%, 60.90% and 5.80% lesser than PSO, GWO, AOA, EAOA and
RLGWO, respectively. Similarly, Mean value and Standard Deviations are estimated as 4.31% and 2.51%
lesser than its nearest competitor (RLGWO).

6 Conclusions

In the present work, a novel Q learning control GWO-AOA (QGA) has been proposed and validated on
22 different benchmark functions based on convergence curves, Freidman test, and Wilcoxon rank-sum test.
Additionally, the employability of QGA has been investigated for path planning of UAVs in three
dimensional environment. The experimental results reveals that the adaptive algorithm selection
mechanism based on Q learning enables QGA to achieve better exploration-exploitation capabilities

Figure 5: 3D view of the paths

Figure 6: Convergence curve for path planning

Table 5: Cost function values for UAV path planning

S. No. Algorithms Best cost function value Mean Value Standard Deviation

1 PSO [34] 145.44 200.87 6.62E-01

2 GWO [37] 142.13 180.52 5.24E-02

3 AOA [22] 116.84 180.46 8.51E-01

4 EAOA [33] 265.90 296.40 5.02E-02

5 RLGWO [27] 110.40 123.59 6.38E-02

6 QGA 104.00 118.26 6.22E-02
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because of which it dominates all the compared algorithms for both benchmark evaluations and path
planning of UAVs. Moreover, the cubic-spline curves has been utilized to smooth the generated flight
path for various adopted algorithms. The employability and superiority of the compared algorithms has
been comprehensively endorsed on the basis various statistical results and convergence curve analysis.
Though, the developed QGA achieved optimum cost for both benchmark and path planning of UAVs, it
is not the fastest one which open the window for the future research.
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