
Android IoT Lifelog System and Its Application to Motion Inference

Munkhtsetseg1 and Jeongwook Seo2,*

1Next Social Platform LLC., Ulaanbaatar, 15150, Mongolia
2Department of IT Transmedia Contents, Hanshin University, Osan-si, 18101, Korea

*Corresponding Author: Jeongwook Seo. Email: jwseo@hs.ac.kr
Received: 14 June 2022; Accepted: 24 August 2022

Abstract: In social science, health care, digital therapeutics, etc., smartphone data
have played important roles to infer users’ daily lives. However, smartphone data col-
lection systems could not be used effectively and widely because they did not exploit
any Internet of Things (IoT) standards (e.g., oneM2M) and class labeling methods for
machine learning (ML) services. Therefore, in this paper, we propose a novel Android
IoT lifelog system complying with oneM2M standards to collect various lifelog data
in smartphones and provide two manual and automated class labeling methods for
inference of users’ daily lives. The proposed system consists of an Android IoT client
application, an oneM2M-compliant IoT server, and an ML server whose high-level
functional architecture was carefully designed to be open, accessible, and internation-
ally recognized in accordance with the oneM2M standards. In particular, we explain
implementation details of activity diagrams for the Android IoT client application, the
primary component of the proposed system. Experimental results verified that this
application could work with the oneM2M-compliant IoT server normally and provide
corresponding class labels properly. As an application of the proposed system, we
also propose motion inference based on three multi-class ML classifiers (i.e., k nearest
neighbors, Naive Bayes, and support vector machine) which were created by using
only motion and location data (i.e., acceleration force, gyroscope rate of rotation,
and speed) and motion class labels (i.e., driving, cycling, running, walking, and stil-
ling). When compared with confusion matrices of the ML classifiers, the k nearest
neighbors classifier outperformed the other two overall. Furthermore, we evaluated
its output quality by analyzing the receiver operating characteristic (ROC) curves with
area under the curve (AUC) values. The AUC values of the ROC curves for all
motion classes were more than 0.9, and the macro-average and micro-average
ROC curves achieved very high AUC values of 0.96 and 0.99, respectively.

Keywords: Android; Internet of Things; lifelog; motion inference; oneM2M

1 Introduction

Smartphones with various sensors have enabled researchers to develop and commercialize many useful
systems and applications in different domains such as social science, health care, digital therapeutics, etc. [1–
9]. A heart rate monitoring device working on a smartphone application was presented for the elderly and for

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI: 10.32604/csse.2023.033342

Article

echT PressScience

mailto:jwseo@hs.ac.kr
https://www.techscience.com/journal/CSSE
http://dx.doi.org/10.32604/csse.2023.033342
https://www.techscience.com/
https://www.techscience.com/doi/10.32604/csse.2023.033342


patients with heart disease in [1], the structure of social networks constructed with smartphone datasets was
analyzed [2], and personal lifelog data generated from smartphones were used for modeling and discovering
human behavior for identification purpose [3]. A smartphone based framework called Smart Diary was
developed to infer, predict, and summarize people’s behavior patterns and life styles, and it could interwork
with a wearable galvanic skin response signal monitor [4]. To create practical guidelines on the use of
smartphones as a behavioral observation tool in psychological science, highlighted areas of opportunity for
psychological research and practical considerations, including ongoing methodological and ethical
challenges, for designing smartphone studies were discussed in [5]. Two different smartphone-based
monitoring systems (i.e., the Pulso and the Trilogis-Monsenso) were compared to examine their feasibility
and usability in patients with bipolar disorder in [6]. As a pilot study, the authors in [7] developed a digital
therapeutic software system for hypertension based on a smartphone and a home blood pressure monitoring
device. Nowadays, Ribiro et al. in [8] narratively reviewed the existing literature over the past decade
which were related to lifelogging, a process analyzing and understanding personal experiences and
behaviors by using images, audio, location, physical activity, and physiological signals from smartphones
and wearable devices. By narratively reviewing smartphone-sensing literature from the past 5 years in [9],
Kulkarni et al. highlighted the predominance of mental health studies and discussed the opportunities of
using standardized sensing approaches and machine-learning (ML) advancements. However, the previous
studies mentioned above did not exploit any standardized approaches which can conserve resources for
developing and deploying smartphone-based applications and also accelerate research on them.

The Internet of Things (IoT) has been a promising technology in many vertical industries such as healthcare,
agriculture, smart home, smart factory, smart city, etc. because that enables advanced services by interconnecting
physical and virtual things (e.g., sensors, actuators, etc.) and collecting various data from them [10–14]. Yun et al. in
[10] presented an oneM2M standards-compliant device software platform for consumer electronics to lead to
interoperability across different IoT consumer electronics where oneM2M is a global partnership initiative
between the world’s standards development organizations (SDOs) to develop standards (i.e., technical
specifications) that ensure the most efficient deployment of the IoT and machine-to-machine (M2M)
communications. Kim et al. in [11] introduced and tested standardized interworking interfaces and procedures
based on oneM2M standards to verify use cases involving multiple IoT platforms. The authors in [12] designed
and implemented a smart home scenario by using oneM2M-based IoT platform where the IoT end-user
Android application was developed only for monitoring the data from remote sensors and actuators. In [13], the
authors emphasized the importance of IoT-based health big-data process technologies to reduce medical data
management costs and enhance safety, and the authors in [14] addressed massive and cellular IoT in 5G as
new studies for enhancement of the 5G core network. Unfortunately, to the best of our knowledge, we could
not find any study published in the literature that proposed smartphone data collection systems based on the
global IoT standards, namely oneM2M to collect and utilize users’ lifelog data effectively and widely.

Therefore, this paper proposes an Android IoT lifelog system whose high-level functional architecture was
designed according to the oneM2M standards to collect lifelog data in smartphones such as motion, location,
phone call, short message service (SMS) message, application usage statistics, etc. and provide two manual and
automated class labeling methods necessary for machine learning services (e.g., motion inference). In addition,
for motion inference as one of the applications of the proposed system, we present three multi-class ML
classifiers (i.e., k nearest neighbors, Naive Bayes, and support vector machine) created by using only
motion and location data and motion class labels. The rest of the paper is organized as follows. In Section
2, the proposed Android IoT lifelog system with an Android IoT client application, an oneM2M-compliant
IoT server, and an ML service is explained in details. In Section 3, we describe implementation and
experimental results of the proposed system and then compare performances of three multi-class ML
classifiers for motion inference in terms of confusion matrices or receiver operating characteristic (ROC)
curves with area under the curve (AUC) values. In Section 4, the concluding remarks are given.

2990 CSSE, 2023, vol.45, no.3



2 Android IoT Lifelog System

The proposed Android IoT lifelog system is illustrated in Fig. 1. It has three main components: An
Android IoT client application, an oneM2M-compliant IoT server, and an ML service. First, the Android
IoT client application collects all data related to a personal record of one’s daily life, referred to as a
lifelog, from a smartphone. In detail, the sensor manager offers accelerometer and gyroscope data, and
the location manager does longitude, latitude, and speed data. Also, the content provider provides
application usage statistics and calendar events, and the broadcast receiver does phone calls and short
message service (SMS) events. The open weather application programming interface (API) provides
weather and air pollution information. Then, all data are stored in the SQLite database until the
synchronization service transmits them to the thing adaptation software (TAS) through socket
communication running in the background. The TAS adapts received data to an open IoT client platform
called &Cube [12]. The &Cube modeled as an application dedicated node-application entity (ADN-AE)
sends requests to an open IoT server platform called Mobius [12] modeled as an infrastructure node-
common service entity (IN-CSE) through a reference point M2M communication with application entity
(Mca) to ask for creating its registration, access control policy, initial resources such as container, content
instance, subscription etc. The Mobius processes the requests and generates the corresponding responses.
In addition, it stores all data from the &Cube in the MySQL database.

Figure 1: Block diagram of the proposed Android IoT lifelog system with an Android IoT client application,
an oneM2M-compliant IoT server, and a machine learning service

CSSE, 2023, vol.45, no.3 2991



In Tab. 1, we describe the data in detail. We define eight types of Android IoT lifelog data: motion,
location, phone call, short message service (SMS) message, application usage statistics, calendar event,
weather information, and air pollution information. We can use motion data to infer mobility-related user
activities such as driving, cycling, running, walking, and stilling. Location data provides hints on visited
places and location context and it also can be used to infer mobility-related user activities. Based on
phone calls and SMS data, we track user’s human relationships and social activities. By analyzing
application usage statistics, we guess user’s interests and preferences. The events in a calendar tell us
important schedules such as appointments, birthdays, and business meetings. They allow us to estimate
how busy or free a user will be and predict whom the user will meet and when and where the user will
go. Weather and air pollution information reveals the user’s environmental conditions. We might find its
effects on the patterns of user’s movements and daily activities if we analyze it with other data.

2.1 Android IoT Client Application

This section explains activity diagrams of the proposed Android IoT client application to explain its
workflow graphically. In Fig. 2, the activity diagram shows the workflow from login to main activity. If a
user runs the application, it first checks permissions such as Internet, access coarse location, access fine
location, access background location, read phone state, read SMS, read contacts, read calendar, process
outgoing calls, etc. In the login process, a user has to insert a unique identifier (ID) such as his/her phone
number which is also used as the ADN-AE name in the registration process of the oneM2M-compliant
IoT server. After checking or verifying user registration, Internet connection, and ID, the Android IoT
client application starts the main activity.

In Fig. 3, the user interface (UI) of the main activity component has six fragments. During its lifecycle,
each fragment defines and manages its own layout, and it can handle its own input events and data described
in Tab. 1. In the Looper, the data stored in the SQLite database are added to the ListView and displayed on the
smartphone screen through the Adapter.

Table 1: Description of Android IoT lifelog data in the MySQL database

Data type Details

Motion Accelerometer (x, y, z), gyroscope (x, y, z), datetime

Location Latitude, longitude, speed, datetime

Phone call Phone number, call start datetime, call end datetime, call time (duration), call type
(incoming, outgoing, missed)

SMS message Address (phone number), message type (receive, send), datetime

App usage
statistics

App name, duration, end datetime, start datetime, last datetime

Calendar event Title, begin datetime, end datetime

Weather
information

Weather, humidity, wind speed, temperature, max temperature, min temperature,
datetime

Air pollution
information

Air quality index, CO (Carbon monoxide), NO (Nitrogen monoxide), NO2
(Nitrogen dioxide), O3 (Ozone), SO2 (Sulphur dioxide), PM2.5 (Fine particles
matter), PM10 (Coarse particulate matter), NH3 (Ammonia), datetime

2992 CSSE, 2023, vol.45, no.3



check 
permissions

main activity

check Internet 
connection

launch 
screen

phone number 
verification

login activity

granted

denied

true

false

verified

unregistered

registered

check user 
registration

unverified/canceled

1 2 3 4

Figure 2: Activity diagram from login to main activity

set fragments for 
pager adapter

1

add sensor 
fragment

add location 
fragment

add call 
fragment

add sms 
fragment

add usage 
fragment

add event 
fragment

start timer for 
loop

onViewDestroy

cancel timer task

stop backround
threads

onCreate

get data from 
SQLite

set data into list 
adapter

set adapter into 
listView

open SQLite

close SQLite

looper

Figure 3: Six fragments of the main activity component to display the data stored in the SQLite database on
the smartphone screen

CSSE, 2023, vol.45, no.3 2993



Fig. 4 shows the broadcast receiver component that receives phone call or SMS and stores their data in
the SQLite database through the Intent. The service component running in the background is also shown in
Fig. 4 where location, sensor, and calendar services are used for repetitively checking for their new data and
storing them in the SQLite database.

Fig. 5 presents the synchronized service component as a client socket to send the data stored in the
SQLite database and the app usage statistics to the Things Adoption Software (TAS) server as a server
socket once a day. The stored data and app usage statistics are saved to a temp list which will be changed
to the JavaScript Object Notation (JSON) array object when the socket connection is successful. The
JSON array object is sent to the TAS server, and then all data are removed from the SQLite database.

2.2 Machine Learning for Motion Inference

Machine learning, referred to as ML, is a branch of artificial intelligence that enables machines to
automatically learn and improve from experience without being explicitly programmed, and machine
learning algorithms for classification problems have been applied to nearly every industry from healthcare
to web services [15–18].

In this section, we present three multi-class ML algorithms used for motion inference. We assign five
mobility-related user activities: driving, cycling, running, walking, and stilling as motion class labels, and
we only consider motion data (acceleration force along x, y, z axis, gyroscope rate of rotation around x,
y, z axis) and location data (speed kilometers/hour) stored in the MySQL database in the Mobius server.

register broadcast 
receivers

2

looper

register call 
receiver

register sms 
receiver

call/sms service Android system

get data from 
Intent

put data into 
SQLite

open SQLite

close SQLite

broadcast

start background 
receivers

3

looper

start location 
service

start calendar 
service

sensor 
manager

get received 
data

put data into 
SQLite

open SQLite

close SQLite

start sensor 
service

Start loop for 
specific time

onStartCommand

Figure 4: Two broadcast receiver components for phone call and SMS and three background services for
location, sensor, and calendar to store each data in the SQLite database

2994 CSSE, 2023, vol.45, no.3



A training dataset DN can be represented by

DN ¼ xn; ynð Þf gNn¼1 (1)

where xn ¼ x1;n; x2;n; � � � ; xM ;n

� �T
denotes a training feature vector of length M, and yn 2 1; 2; � � � ; Cf g

denotes a corresponding one among C class labels. We apply three ML classifiers created by the training
dataset for motion inference.

First, the k nearest neighbors (kNN) classifier is a kind of instance-based classifier that is a simple non-
parametric algorithm abstracting no information from the training dataset during the training stage [19,20].
For a new instance or feature vector xnew, it is labeled as the same class as that of the majority of its k nearest
neighbors, which is shown in Eq. (2). The nearest neighbors are measured by the Euclidean distance function
in Eq. (3).

ŷnew ¼ argmax
c¼1;2;���;C

Xk
i¼1

I c; yið Þ (2)

where I a; bð Þ denotes an indicator function that I a; bð Þ ¼ 1 if a ¼ b and I a; bð Þ ¼ 0 otherwise.

d Xn; Xnewð Þ ¼ Xn � Xnewk k2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM
m¼1

xm;n � xm;new
� �2

vuut (3)

The kNN is suitable for small datasets, and it does not learn anything from the training data. If the dataset
is large with high dimensions, the searching of k neighbors can be slow and inefficient. Also, it can be easily
affected by noisy data and outliers [19].

start synch 
service

4

Start loop for 
specific time

onStartCommand

get all data 
from SQLite

save data in 
temp list

open SQLite

check 
once a day

save data
to temp list

get app usage 
statistics

create socket 
connection

create JSON array 
object from temp list

send data into 
remote server

remove data from 
SQlite

close SQLite

false

true

success

looper

true

false

Figure 5: Synchronize service to transmit all data to the TAS server

CSSE, 2023, vol.45, no.3 2995



Second, the Naive Bayes classifier is a simple probabilistic classifier that depends on Bayesian theorem.
Here, we define PðcÞ as the probability of the occurrence of the class c. The conditional probability of a new
instance, called a likelihood function, is given by

P Xnewjcð Þ ¼
YM
m¼1

P xm;newjc
� �

(4)

Then, the Naive Bayes classifier can be represented by

ŷnew ¼ argmax
c¼1;2;���;C

P cð Þ
YM
m¼1

P xm;newjc
� �

(5)

The advantages of the Naive Bayes classifier are that it is easy to handle large amount of data, and fast to
train and make classifications and it is not sensitive to irrelevant features. However, the Naive Bayes classifier
assumes features are independent, and it is loss of accuracy which is its drawbacks [19].

Third, the support vector machine (SVM) method is considered as an optimization algorithm. The basic
ideas of SVMs are that it creates optimal hyperplane for linearly separable patterns, and for the patterns that
are not linear separable, kernel functions can be used to transform the original data into new space [19,21].
SVMs and kernel methods have a theoretical model that guarantees the performance. In addition, SVMs are
not affected by local minimum and the curse of dimensionality. We consider one-versus-all (OvA) multi-
class SVM classifier with the radial basis function kernel which can be represented by.

ŷnew ¼ argmax
c¼1;2;���;C

X
n2SV

ac;nyc;nK Xn; Xnewð Þ þ bc (6)

where SV denotes a set of support vectors, and ac;n denotes a Lagrange multiplier with a constraint
0 � ac;n � d for the class c. Here, d denotes a hyper-parameter controlling trade-off between slack
variable penalty and the margin [19]. Also, yc;n denotes a temporary label for the class c, and bc denotes a
bias term for the class c. The radial basis function kernel is given by

K Xn; Xnewð Þ ¼ exp �c Xn � Xnewk k22
� �

(7)

where c denotes a hyper-parameter defining how far the influence of a single training sample Xn reaches as
support vectors [19], and �k k2 denotes the L2 norm. The OvA is a heuristic method using binary classifiers
for multi-class classification by splitting a multi-class dataset into multiple binary classification problems
[21]. The SVM classifier has low generalization error and no distribution requirement. Also, it is
computationally inexpensive and easy to interpret results. However, its performance is sensitive to two
hyper-parameters of d and c [19].

3 Experimental Results

The proposed Android IoT lifelog system was developed by using oneM2M-compliant IoT client and
server platforms called &Cube and Mobius as mentioned before. In Fig. 6, we presented implementation
results of the Android IoT client application working on Android 10. It was developed according to the
activity diagrams explained in Section 2. The two images on the top-left corner show the login process
where a user enters his/her phone number and the verification code for permission to the Android IoT
client application. The phone number are also used as the AND-AE name for the registration process
between the Android IoT client application and the oneM2M-compliant IoT server. The other six images
present motion data, call log, SMS log, application usage statistics, calendar events, and location data,

2996 CSSE, 2023, vol.45, no.3



respectively. In summary, all data can be viewed on monitoring fragments as well as stored in the SQLite
database.

In Fig. 7, we presented a resource tree of the oneM2M-compliant IoT server that displays all data
received from the Android IoT client application, called Android IoT lifelog data described in Tab. 1. The
resource tree has eight container resources such as Sensors, Gps, Call, Sms, Usage, CalEvent, Weather,
and AirPollution to store corresponding content instance resources including the Android IoT lifelog data.
For instance, a content instance resource including motion data such as accelerometer and gyroscope is
shown in detail. If you look at the key-value pairs in the JSON format, you can find accelerometer and

Figure 6: Implementation results of the Android IoT client application working on Android 10

CSSE, 2023, vol.45, no.3 2997



gyroscope data. These experimental results confirm that the proposed Android IoT lifelog system is running
normally. Moreover, there are two key-value pairs for manual and automated motion class labeling (see the
keys of Activity state button and Activity state google). As mentioned before, the motion class labels such as
driving, cycling, running, walking, and stilling will be used to build a dataset for motion inference. The
manual motion class labeling denotes that the user should manually push motion class buttons in the
Android IoT client application before measuring and storing motion and location data. The automated
motion class labeling was implemented by using the Activity Recognition API for Android. We primarily
used the manual method and considered the automated one to verify the class labels resulting from the
manual one.

To build a dataset for motion inference, three persons collected the motion and location data for two
months through their own Android IoT client applications. In Fig. 8, we visualized some samples in the
dataset in a two-dimensional space where acceleration force, gyroscope rate of rotation, and speed
concerning the driving class were shown according to arbitrary time indices. By analyzing the curve of
speed changes, we can estimate that a car stopped for a while at about 2200 time index. If you look at
about 6000 time index, you can find that the car was traveling at about 100 km/h.

We trained and evaluated three multi-class ML classifiers for motion inference in terms of confusion
matrices [22,23]. In Tab. 2, we show the confusion matrix of the kNN classifier with a default hyper-
parameter, k ¼ 5. Actual motion class labels are listed along the y-axis, and predicted motion class labels
are listed along the x-axis. The correct classifications are along the diagonal, whereas all the other entries
show misclassifications. The rightmost column shows the accuracy for each actual motion class label. In
this confusion matrix, it can be seen that 726 samples of the driving class are correctly predicted, and
84 remaining samples are wrongly predicted. The stilling class has the best accuracy of 99.50%, while, in
contrast, the running class has the worst accuracy of 71.36%. The confusion matrix of the Naive Bayes

Figure 7: Resource tree of the oneM2M-compliant IoT server for monitoring Android IoT lifelog data

2998 CSSE, 2023, vol.45, no.3



classifier is presented in Tab. 3. It can be seen that the stilling class has the best accuracy of 94.53%, and the
walking class does low accuracy of 77.15%. The driving, cycling, and running classes have very low
accuracies of less than 65%. Overall, the Naïve Bayes classifier shows poor performance in terms of the
accuracy metric. In Tab. 4, the confusion matrix of the SVM classifier with default hyper-parameters,
d ¼ 1 and c ¼ 0:14 is presented. It can be seen that the stilling class has the best accuracy of 99.57%,
and the running class does the worst accuracy of 55.12%. The cycling class still has low accuracy of
76.79%. When compared with confusion matrices of three multi-class ML classifiers, it can be observed
that, in general, the kNN classifier outperforms the other Naive Bayes and the SVM classifiers. The
reason is mainly that insufficient datasets were used to create the other two classifiers. On the other hand,
the kNN classifier works well for a small dataset. In addition, the scale and distribution of motion and
location data for running and walking classes may be indistinguishable.

Figure 8: Graphical visualization of motion and location data with respect to the driving class: acceleration
force along x, y, z axis, gyroscope rate of rotation around x, y, z axis, and speed

Table 2: Confusion matrix of motion inference using multi-class kNN classifier

Predicted motion Accuracy
(%)

F1 Score

Driving Cycling Running Walking Stilling

Actual motion Driving 726 6 1 32 45 90.98 0.86

Cycling 21 335 6 34 9 84.19 0.85

Running 9 26 238 49 10 71.36 0.78

Walking 63 2 13 2393 147 90.45 0.91

Stilling 37 1 3 106 33588 99.50 0.99

CSSE, 2023, vol.45, no.3 2999



In Fig. 9, we evaluate the output quality of the kNN classifier in terms of ROC curves with AUC values
[23]. It typically plots a true positive rate on the y-axis and a false positive rate on the x-axis, which means
that its top-left corner is the ideal point where the false positive rate is zero, and the true positive rate is one.
The ROC curves of all classes (class 0 = driving, class 1 = cycling, class 2 = running, class 3 = walking, and
class 4 = stilling) are shown with AUC values. For instance, the ROC curve of class 2 has an AUC value of
0.93. It can be seen that all ROC curves show the AUC value of 0.9. The macro-average ROC curve means
the arithmetic average of the ROC curves for all class, and the micro-average ROC curve means a weighted
macro-average in which each class contribution to be average is weighted by the relative number of samples
available for the class [23]. In other words, the macro-average ROC curve does not take imbalanced datasets
into account, but the micro-average ROC curve does [23]. The macro-average ROC curve has the AUC value
of 0.96, and the micro-average ROC curve does the AUC value of 0.99.

Table 3: Confusion matrix of motion inference using multi-class Naive Bayes classifier

Predicted motion Accuracy
(%)

F1 Score

Driving Cycling Running Walking Stilling

Actual motion Driving 511 5 5 230 59 63.09 0.70

Cycling 47 252 18 82 6 62.2 0.71

Running 24 40 215 40 13 64.75 0.62

Walking 5 2 103 2020 488 77.15 0.60

Stilling 65 1 26 1752 31891 94.53 0.96

Table 4: Confusion matrix of motion inference using multi-class SVM classifier

Predicted motion Accuracy
(%)

F1 Score

Driving Cycling Running Walking Stilling

Actual motion Driving 699 3 4 57 47 86.29 0.89

Cycling 11 311 12 68 3 76.79 0.85

Running 3 12 183 130 4 55.12 0.68

Walking 26 0 3 2416 173 92.28 0.89

Stilling 14 0 4 127 33590 99.57 0.99

3000 CSSE, 2023, vol.45, no.3



4 Conclusions

Smartphone data have played important roles in social science, health care, digital therapeutics, etc.
However, existing smartphone data collection systems are not good enough to be effectively and widely
used because they do not comply with any IoT standards and not provide any class labeling methods for
ML services. In this paper, the Android IoT lifelog system for inferring users’ daily lives was proposed to
collect various lifelog data in smartphones such as motion, location, phone call, SMS message,
application usage statistics, weather information, and air pollution information. The proposed system
consisted of an Android IoT client application, an oneM2M-compliant IoT server, and an ML server. It
should be noted that its functional architecture (i.e., AND-AE, IN-CSE) was based on oneM2M standards
that are open, accessible and internationally recognized. We mainly explained activity diagrams of the
Android IoT client application that is the primary component of the proposed system. The advantage of
the Android IoT client application is that it works well with the oneM2M-compliant IoT server and that it
supports manual and automated class labeling methods for the ML server. Through implementation and
experimental results, we showed that the proposed system was running normally. In addition, as an
application of the ML server in the proposed system, we developed three multi-class ML classifiers for
motion inference where we considered only motion and location data (i.e., acceleration force, gyroscope
rate of rotation, and speed) and assumed five motion class labels (i.e., driving, cycling, running, walking,
and stilling). Experimental results showed that when compared with confusion matrices of the ML
classifiers: a kNN classifier, a Naive Bayes classifier, and a SVM classifier, the kNN classifier was
superior to the other two classifiers because small datasets were used for creating them. To evaluate the
output quality of the kNN classifier, its ROC curves with AUC values were presented. All ROC curves
for all classes achieved the AUC of more than 0.9. The macro-average and micro-average ROC curves
showed the AUC values of 0.96 and 0.99, respectively. Accordingly, we found that the kNN classifier,
created by motion and location data in the proposed Android IoT lifelog system, can provide very good
accuracy.

Funding Statement: This work was supported by Hanshin University Research Grant.

Figure 9: ROC curves of all classes, macro-average and micro-average ROC curves with AUC values to
evaluate the output quality of the kNN classifier

CSSE, 2023, vol.45, no.3 3001



Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] P. Pierleoni, L. Pernini, A. Belli and L. Palma, “An android-based heart monitoring system for the elderly and for

patients with heart disease,” International Journal of Telemedicine and Applications, vol. 2014, article ID 625156,
pp. 1–11, 2014.

[2] V. D. Blondel, A. Decuyper and G. Krings, “A survey of results on mobile phone datasets analysis,” EPJ Data
Science, vol. 4, no. 10, pp. 1–57, 2015.

[3] R. Mafrur, I. G. D. Nugraha and D. Choi, “Modeling and discovering human behavior from smartphone sensing
life-log data for identification purpose,” Human-centric Computing and Information Sciences, vol. 5, no. 31, pp.
1–18, 2015.

[4] J. Liao, Z. Wang, L. Wan, Q. C. Cao and H. Qi, “Smart diary: A smartphone-based framework for sensing,
inferring, and logging users’ daily life,” IEEE Sensors Journal, vol. 15, no. 5, pp. 2761–2773, 2015.

[5] G. M. Harari, N. D. Lane, R. Wang, B. S. Crosier, A. T. Campbell et al., “Using smartphones to collect behavior
data in psychological science: Opportunities, practical considerations, and challenges,” Perspectives on
Psychological Science, vol. 11, no. 6, pp. 838–854, 2016.

[6] M. Faurholt-Jepsen, E. Torri, J. Cobo, D. Yazdanyar, D. Palao et al., “Smartphone-based self-monitoring in
bipolar disorder: Evaluation of usability and feasibility of two systems,” International Journal of Bipolar
Disorders, vol. 7, no. 1, pp. 1–11, 2019.

[7] K. Kario, A. Nomura, A. Kato, N. Harada, T. Tanigawa et al., “Digital therapeutics for essential hypertension
using a smartphone application: A randomized, open-label, multicenter pilot study,” Journal of Clinical
Hypertension, vol. 23, no. 5, pp. 923–934, 2021.

[8] R. Ribeiro, A. Trifan and A. J. R. Neves, “Lifelog retrieval from daily digital data: Narrative review,” JMIR
Mhealth and Uhealth, vol. 10, no. 5, pp. 1–20, 2022.

[9] P. Kulkarni, R. Kirkham and R. McNaney, “Opportunities for smartphone sensing in E-health research: A
narrative review,” Sensors, vol. 22, no. 10, pp. 1–21, 2022.

[10] J. Yun, I. Y. Ahn, N. M. Sung and J. Kim, “A device software platform for consumer electronics based on the
internet of things,” IEEE Transactions on Consumer Electronics, vol. 61, no. 4, pp. 564–571, 2015.

[11] J. Kim, J. Yun, S. C. Choi, D. N. Seed, G. Lu et al., “Standard-based IoT platforms interworking: Implementation,
experiences, and lessons learned,” IEEE Communications Magazine, vol. 54, no. 7, pp. 48–54, 2016.

[12] V. Andrianto, J. Lam, R. Widodo, S. -G. Lee, H. -J. Lee et al., “Toward implementation of oneM2M based IoT
platform,” Journal of Theoretical and Applied Information Technology, vol. 96, no. 2, pp. 418–425, 2018.

[13] H. Yoo, R. C. Park and K. Chung, “IoT-based health big-data process technologies: A survey,” KSII Transactions
on Internet and Information Systems, vol. 15, no. 3, pp. 974–992, 2021.

[14] S. Husain, A. Kunz and J. Song, “3GPP 5 G core network: An overview and future directions,” Journal of
Information and Communication Engineering, vol. 20, no. 1, pp. 8–15, 2022.

[15] A. A. Farhan, C. Yue, R. Morillo, S. Ware, J. Lu et al., “Behavior vs. introspection: Refining prediction of clinical
depression via smartphone sensing data,” in Proc. IEEE WH, Bethesda, MD, USA, pp. 1–8, 2016.

[16] S. Durga, R. Nag and E. Daniel, “Survey on machine learning and deep learning algorithms used in internet of
things (IoT) healthcare,” in Proc. ICCMC, Erode, Tamil Nadu, India, pp. 1018–1022, 2019.

[17] J. Moon, S. Kim, J. Song and K. Kim, “Study on machine learning techniques for malware classification and
detection,” KSII Transactions on Internet and Information Systems, vol. 15, no. 12, pp. 4308–4325, 2021.

[18] M. Hasnain, I. Ghani, M. F. Pasha and S. R. Jeong, “Machine learning methods for trust-based selection of web
services,” KSII Transactions on Internet and Information Systems, vol. 16, no. 1, pp. 38–59, 2022.

[19] J. Watt, R. Borhani and A. K. Katsaggelos, Machine Learning Refined: Foundations, Algorithms, and
Applications. Cambridge University Press, Cambridge, UK, 2020.

3002 CSSE, 2023, vol.45, no.3



[20] L. Jiang, Z. Cai, D. Wang and S. Jiang, “Survey of improving K-nearest-neighbor for classification,” in Proc.
FSKD, Haikou, Hainan, China, pp. 679–683, 2007.

[21] C. -W. Hsu and C. -J. Lin, “A comparison of methods for multiclass support vector machines,” IEEE Transactions
on Neural Networks, vol. 13, no. 2, pp. 415–425, 2002.

[22] S. Visa, B. Ramsay, A. Ralescu and E. van der Knaap, “Confusion matrix-based feature selection,” in Proc.
MAICS, Cincinnati, OH, USA, pp. 1–8, 2011.

[23] A. Müller and S. Guido, Introduction to Machine Learning with Python: A Guide for Data Scientists. O’Reilly
Media, Sebastopol, CA, USA. 2016.

CSSE, 2023, vol.45, no.3 3003


	Android IoT Lifelog System and Its Application to Motion Inference
	Introduction
	Android IoT Lifelog System
	Experimental Results
	Conclusions
	References


