
Applying Wide & Deep Learning Model for Android Malware Classification

Le Duc Thuan1,2,*, Pham Van Huong2, Hoang Van Hiep1 and Nguyen Kim Khanh1

1Ha Noi University of Science and Technology, Ha Noi, 100000, Viet Nam
2Academy of Cryptography Techniques, Ha Noi, 100000, Viet Nam
*Corresponding Author: Le Duc Thuan. Email: thuanld@actvn.edu.vn

Received: 16 June 2022; Accepted: 26 July 2022

Abstract: Android malware has exploded in popularity in recent years, due to the
platform’s dominance of the mobile market. With the advancement of deep learn-
ing technology, numerous deep learning-based works have been proposed for the
classification of Android malware. Deep learning technology is designed to han-
dle a large amount of raw and continuous data, such as image content data. How-
ever, it is incompatible with discrete features, i.e., features gathered from multiple
sources. Furthermore, if the feature set is already well-extracted and sparsely dis-
tributed, this technology is less effective than traditional machine learning. On the
other hand, a wide learning model can expand the feature set to enhance the clas-
sification accuracy. To maximize the benefits of both methods, this study proposes
combining the components of deep learning based on multi-branch CNNs (Con-
volutional Network Neural) with wide learning method. The feature set is evalu-
ated and dynamically partitioned according to its meaning and generalizability to
subsets when used as input to the model’s wide or deep component. The proposed
model, partition, and feature set quality are all evaluated using the K-fold cross
validation method on a composite dataset with three types of features: API, per-
mission, and raw image. The accuracy with Wide and Deep CNN (WDCNN)
model is 98.64%, improved by 1.38% compared to RNN (Recurrent Neural Net-
work) model.

Keywords: Wide and deep (W&D) learning; convolutional neural network; image
feature; raw features; generalized features

1 Introduction

Today, as the fourth industrial revolution accelerates, smart devices pervade every sector of the economy
and society. Android devices continue to dominate the market. According to [1], Android 10 was released in
March 2019 and includes numerous enhancements to the application’s security and usability. This version of
Android has demonstrated superiority and is rapidly growing in popularity. Android 10 held a 43.13%market
share in the Android operating system as of January 2021. Android’s rapid development, particularly its
Android 10 version, has resulted in a significant increase in malicious code on this platform.

Fig. 1 illustrates the number of new malwares discovered on Android devices. With the current emphasis
on research and application of artificial intelligence, malwares are constantly improving their techniques,

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI: 10.32604/csse.2023.033420

Article

echT PressScience

mailto:thuanld@actvn.edu.vn
https://www.techscience.com/journal/CSSE
http://dx.doi.org/10.32604/csse.2023.033420
https://www.techscience.com/
https://www.techscience.com/doi/10.32604/csse.2023.033420

distribution methods, and attack methods. According to [2], each day, AV-TEST registers over 450,000 new
malicious programs and potentially unwanted applications (PUA). Normally, we analyze and classify new
malware based on its signature and handling characteristics. Unfortunately, Android malware detection
and prevention are more challenging due to the variety of environments and Android devices.

Numerous methods for determining whether an Android application is benign or malicious have been
proposing. These methods can be classified into three main categories: traditional signature-based
techniques, traditional machine learning techniques, and deep learning techniques.

The signature-based method is quite simple to implement in real time. This method, however, requires
periodic database updating to ensure that the most recent malware types are included. For the traditional
machine learning method, feature extraction is very important and must be done manually. The selection
of which malware features to be extracted is critical, as these manually extracted features may affect the
final classification rate. However, as malware types evolve at a tremendous rate, manually extracting
features may become obsolete and unsuitable for classifying new malware. Prominently from 2017 until
now, deep learning models have been increasingly applied to malware detection on Android framework,
such as DBN (Deep Belief Network) [3–5], DNN (deep neural network) [6,7], RNN, LSTM (Long Short-
Term Memory) [8,9], DAE (Deep AutoEncoder) [10], CNN [11–16]. These models allow learning
features from the malware dataset themselves, and they give positive classification results on individual
test datasets. Among deep learning models, the most widely used is the CNN, which has been
successfully applied to image recognition problems where all the necessary information exists within the
image. Based on this theory, a study has applied deep learning for malware classification on the Windows
platform by converting the whole malware file into an “image” [17]. Since all information about a
Windows malware is typically stored in a single PE file, the deep learning model can therefore extract
useful information by learning features from the PE file’s “image” and thus produce good classification
results. However, applying deep learning to Android malware classification is not that straightforward due
to the fact that an Android APK file is not a single file but rather a collection of sub files with varying
structures. Physically converting the APK file into “image” may not work well due to the lack of
connection information among sub files inside the APK. This also explains why the CNN model has a
low classification rate on the Drebin Android malware dataset [18].

Figure 1: The new malware on Android

2742 CSSE, 2023, vol.45, no.3

Recently, the Wide and Deep (W&D) model has been successfully applied to flower classification and
power forecasting. This model is well suited for aggregate datasets gathered from multiple sources. In this
paper, we propose a WDCNN model for Android malware classification. In our W&D (Wide and Deep)
model, the deep component is responsible for extracting generalized malware features with minimal
feature engineering, whereas the wide component is responsible for memorizing specific Android
malware features such as the used API list, the requested permission list, etc., To prove the feasibility of
our proposed model, we compare our model to (i) the deep learning-only model, (ii) the wide learning-
only model, and (iii) the state-of-the-art RNN model in terms of performance. Experimental results show
that our model achieves the best classification rate on the same datasets compare to other models.

The rest of this study is organized as follows: Section 2 discusses about the related works; Section 3
shows the overall mathematical model of the problem, the synthesis of feature set for W&D model to
classification malware; Section 4 presents our experimental results and evaluation; Section 5 summarizes
the achieved results, limitations, and some directions for further research and development.

2 Related Works

This section summarizes the related works, including issues related to feature extraction, classification
model development, and evaluation method development. There are two primary methods for detecting
malware: dynamic analysis and static analysis. Dynamic analysis is concerned with analyzing and
investigating malware’s behavior during execution. Dynamic analysis requires an isolated environment (a
sandbox) to execute, collect, and investigate malicious behavior, and thus requires a significant amount of
time and resources. Static analysis is performed without executing the malware. It analyzes the reverse
code, machine code, or virtual machine code directly. As a result, static analysis is frequently used to
solve several malware classification problems and is more suited to the current rapid growth of malware.
This work proposes to use static analysis for Android malware classification. Features extracted by static
method can be divided into two types:

� Features extracted in form of “image”: these are raw features, represented by a color or gray-scale
image. The “image” feature can be obtained by converting from a separate classes.dex file, or from the
classes.dex file combined with the Androidmanifest.xml file, or from the entire APK file.

� Features extracted in form of “string”: these are the features extracted based on the investigation of
strings in the APK file, e.g., application requested permissions and API calls, memory access, etc.

Feature extraction in the form of images is also an area of interest to many research groups. In [19],
Byeongho Kang et al. proposed to convert the file classes.dex to byte code form and then put it into the
Random Forest (RF) model. The method was tested on a 1,300 malwares dataset, of which 26 malware
families were taken from the Android Malware Genome project. The average accuracy was 94%. Of
these 26 malware families, seven malware families obtain 100% classification accuracy, while the lowest
malware family is over 60%.

In [20], the authors convert Android malware into gray-scale images and use K-Nearest Neighbors
(KNN) to classify them. Each malware corresponds to a vector of 8-bit unsigned integers and is
converted into a 2-dimensional array; each array element represents a gray level pixel, with a value in
range 0–255. The classification results for 9,458 malware samples, including 25 families, achieved an
accuracy of 97.18%. With the approach in research [20], it gives high classification results, but it is easy
to be exploited or deceived when malicious codes are added with redundant code or simply meaningless
comments. With a similar approach, FM Darus and authors extracted .DEX files from .apk files, then
converted them to 8-bit grayscale and fed them into a machine learning model for malware classification
and evaluation [21]. To extract features of 8-bit grayscale images, the author uses the GIST descriptor.

CSSE, 2023, vol.45, no.3 2743

The experiment was conducted on 300 malware and 300 benign samples for binary classification; the results
with the RF algorithm was 84.14%, KNN was 80.69% and the Decision Tree (DT) was 78.62%.

All the above studies [19–21] used conventional machine learning models to classify malware based on
converting bytecode files to images. The problem is that this approach leads to information being missing
from non-APK files, such as information about permissions, services, and intents stored in the file
AndroidManifest.xml.

Besides traditional machine learning models, deep learning models have also been studied and applied
in many fields, with typical models such as CNN, DNN, LSTM and RNN. Among the deep learning models,
the CNN model is the most commonly used method. This model has high feature gener- alization ability,
suitable for classification problems on large datasets. In [22], Xiao et al., collected malware from the
three largest AMD datasets, namely Airpush, Mecor and Youmi with a total of 6,234 malware samples,
then combined them with 4,406 benign files downloaded from Google Play. The authors converted the
classes.dex files to binary code files, then to RGB color images. These color image data were fed into the
CNN model, which produced a 93% classification rate. Similarly, in [23], Arp et al., converted .DEX
file to RGB image for classification. However, the author converts every element in the .DEX file
including the header section, string ids, type ids, etc., and the entire data section into RGB image. The
size of the image is limited by the length of the file. Experimental results on the AMD dataset give an
accuracy of 96%. The results of the paper are high when using deep learning. However, the study only
used three large malware families of the AMD dataset. It is not clear what the results will be if using all
71 families of malicious code in AMD.

In [24], the authors directly converted malware samples into gray level images and used histogram
features to classify them with CNN. Experimental results on a dataset containing 50,000 samples, of
which 25,447 benign samples and 24,553 malware samples, including 71 families, achieved an accuracy
of 92.9%. To further evaluate how to combine color image features with CNN, in [18], the authors
proposed a capsule network based on dynamic routing in which the feature set is collected by converting
the malware binary files to color images [18]. The performance of the Capsule network is compared to
that of CNN on two malware datasets: Windows and Android. The Android dataset was collected from a
part of Drebin dataset with 20 families of malware, including 4,000 malware samples and 6,000 benign
samples. The classification rate achieved on Windows malware is 96.5% with Capsule network and
96.8% with CNN. The results achieved on the Android dataset with the Capsule network and the CNN
network is 99.3% and 79.3% respectively. These experimental results show that applying CNN with
image features directly converted from binary to color images is not effective for Android malware. The
difference is that Windows malware executes on real machine code while Android malware executes on
virtual machine code.

There are some works applying deep learning models with the features extracted in the form of strings.
Lee et al., proposed an anti-obfuscation classification method for malware Android applications integrating
Recurrent Neural Network and Convolutional Neural Network, with anti-obfuscation ability and lightness
[9]. This method extracts the application package name, authentication data, permission, and intention
features from multiple short strings. The sample dataset consists of 1,152,750 benign samples and
1,279,389 malware samples. In addition to the CNN model, this study uses a deep learning model called
RNN. This method reduces the training time of the RNN model and achieves a 97.7% true positive rate
with a false positive rate of 0.01. Research using deep learning gives high results in the test data set.
However, the study only uses two classes of clean code and malicious code to evaluate with numerous files.

The article [13] proposes a multi-mode malware detection method based on multiple convolutional
neural networks, which uses permissions, APIs, and URL features to train subnetworks. It uses a
backtracking method to solve the limitations of malware detection’s poor interpretability based on neural

2744 CSSE, 2023, vol.45, no.3

networks. The backtracking method selects the most important features that make vital contributions to
classification decision-making. This method reduces the detection time and achieves 96.54% accuracy on
the data set composed of 10,948 benign samples and 8,652 malware samples. In [25] Ganesh et al., used
the permissions extracted from the AndroidManifest.xml file as features and applied the CNN model for
training. The dataset was collected manually with 2000 malware files and 500 benign files. The average
classification result is 93%. Our previous work proposes improving the feature set based on the Apriori
algorithm. The features are in the form of strings, including permission and API from DREBIN [23]
malware and 7,140 benign files [26]. CNN was used as a learning model, and the classification rate
reached 96.71%.

For summarizing, CNN model with “image” feature seems not good for Android malware classification.
It can be seen that the CNN model has high classification accuracy for the data in the form of “image”.
However, it seems that only the CNN model with image dataset is not sufficient for Android malware
classification. Because it depends a lot on how the data is arranged and the noise in the code. If we apply
CNN to the malware feature in the form of “string” such as permission list, API list, etc., the CNN
performance is almost the same as that of other traditional machine learning models. Therefore, it is
necessary to find a better machine learning model than CNN.

In recent research, W&D model has been applied to synthetic feature sets [27–32]. In [27], Binh et al.,
applied a wide and deep model to predict type 2 diabetes. Zheng et al., and the authors used W&D
Convolutional Neural Network to detect power theft [29]. In [30], Lee et al., also used a wide and deep
model with a CNN deep learning component to classify the growth status of plants. The W&D models in
the above research achieved better results compared to conventional machine learning methods. To
address the challenge posed by the problem of classifying Android malware with large datasets and
aggregate feature sets, this study proposes a classification method using W&D model. This model is
suitable for Android malware classification since the feature set of Android can be simplified as two
groups: synthetic features (bytecode data in the form of “image”) and complement features (in the form
of “strings”).

3 Proposed Scheme

3.1 Mathematical Model

The model aims to combine the fast classification ability of wide learning with the generalization ability
of deep learning. Each input feature set will be split into two corresponding subsets. To implement the deep
learning part, we use multiple CNNs. Each CNN can be configured to use both convolutional layers and
pooling layers, or to use only convolutional layers (including convolution and filtering). This makes it
easier to generalize features and reduce dimension. The deep and wide feature set partitioning needs to be
done concurrently. To build the mathematical model, we first give the following definitions:

Definition 1 (Initial feature set): The initial feature set, denoted by F0, is the set containing all features
included in the W&D learning model.

Definition 2 (Wide feature set): The wide feature set, denoted by Fw, is a subset of F0, used for the wide
learning component in the W&D learning model.

Definition 3 (Deep feature set): The deep feature set, denoted by Fd, is a subset of F0, used to generalize
features in the deep learning component of the W&D learning model.

On the basis of the above definitions, we build an overall mathematical model of the problem as shown
in Eq. (1).

CSSE, 2023, vol.45, no.3 2745

e:F0 ! L
fp:F0 ! fFw; Fdg
F0 ¼ Fw [Fd

e1:Fw ! t1
e2:Fd ! t2
fc: ftg ! L

8>>>>>><
>>>>>>:

(1)

where,

� L is a set of labels, including benign labels and malware labels.

� fp is a partition function, to divide the set F0 into Fd and Fw.

� ε1 is the mapping from wide feature set to vector t1.
� ε2 is the mapping from wide feature set to vector t2.
� t is the composite vector for train in W&D.

3.2 Data Partitioning Scheme

To evaluate and partition the original feature set into a deep feature set and a wide feature set, we give the
following definitions:

Definition 4 (Raw feature): A raw feature, denoted by r, is a feature that does not represent or does not
fully mean a behavior, operation, or attribute of malware. For example, one byte in the “.dex” file, i.e., one
pixel in the converted “image” of the “.dex” file.

Definition 5 (General features): The general feature, denoted by α, is a feature that represents a
behavior, operation, or property of malware. For example, a permission or an API.

Definition 6 (Group-level general features): A group-level generic feature, denoted by g, is a feature
that represents a group of malware behaviors, operations, or attributes. For example, the memory access
permission group and file manipulation API group can be understood as group-level generic features.

The proposed solution must also tackle the problem of set division. We need to divide set F into Fd and
Fw. Because a raw feature often doesn’t have a full meaning, it needs to be generalized to form a
generalizable feature or a group-level generalizable feature to reduce on the number of dimensions. Thus,
the features are put into the set Fd. Group-level generic features are often divided into Fw because these
features take on the meaning and generalizability of the malware. However, when the system has a large
group-level generalizable feature set, it is still possible to include Fd to reduce the number of dimensions.
Depending on the problem context and the level of generality, the general features and the group level
features can be included in Fd or Fw.

The partition of the feature set

A partition is a division of the initial feature set into a wide feature set and a deep feature set that is
suitable for the problem context and properties of the feature set. To partition the feature set, we build the
following Algorithm 1.

The scope of this article is focused on the initial feature set, which is composed of three subsets of
features: the permissions set, APIs set, and image file converted from the byte code in the *.dex format
file. As previously stated, the set of pixels in the image file represents the raw feature set, as pixels do not
fully describe a malware behavior, operation, or attribute. Permissions and APIs are two broad categories
of features, each of which represents a malware behavior or operation. The deep component will receive
the raw features, while the wide component will receive the general features. To implement Algorithm 1,
within the scope of the paper, we choose Fd as the raw feature set and Fw as the set of all generalized

2746 CSSE, 2023, vol.45, no.3

features including permission and API. On the basis of this feature set division, the W&D model in the study
is described in the next section.

3.3 WDCNN Implementation

In this part, we propose our WDCNN model, including the detailed parameters as shown in Fig. 2. First,
the sample dataset, a set of .Apk files, is extracted to produce an original feature set consisting of API calls,
permissions, and grey image pixel features. Each gray image is generated from a bytecode file extracted from
an .Apk file. According to Algorithm 1, the original feature set is divided into two subsets: Fw and Fd. Fw

includes general features such as API calls and permission features; Fd consists of grey image pixel

CSSE, 2023, vol.45, no.3 2747

features. Fw is put in the wide component of the model. Fd is put in the deep component of the model using
CNN. This model includes two components: wide and deep component as follows

� The deep component The deep learning component can help derive new features (highly
generalizable deep learning model) based on an internal structure consisting of convolutional and
pooling layers. The raw “image” feature (features in Fd) described in Definition 4 is used as the
input to our DeepCNN model. It has an input matrix of 128 × 128, four convolutional layers and
pooling layers, which are used to generalize the features. In the first layer, the convolution has
32 filters used to create 32 matrices. The size of max-pooling is set at a 2 × 2 matrix, the size of
each output convolutional matrix is reduced by 4 times, resulting in a 64 × 64 matrix. In the
second layer, using 32 filters and the max-pooling of 2 × 2, the number of matrices is 32, but the
size of a matrix is reduced by 4 times to the 32 × 32 matrix. On to the third layer, 64 filters and
the max-pooling of 2 × 2 are used to create 64 matrices of 16 × 16. The number of filters and the
size of the max-pooling in the fourth layer are similar to those in layer 3, so the output is
64 matrices of size 8 × 8. Finally, in the flattening layer, the outputs of the fourth layer are
converted to a vector of 4069 neural units. This vector is the output of the deep component. The
detailed implementation steps are shown in the left of Fig. 3.

� Wide model component The wide component is a generalized linear model used for large-scale
regression and classification problems [28]. This component is responsible for memorizing feature
interactions. In this work, the wide component is the vector of API and Permission features. Scine
there are too many API calls in original dataset, we take only top (1000) of the most popular ones
in the dataset.
The API features are the top (1000) features from the original dataset, and all permission features are
in the original data set. They are part of the wide component. The neurons of the DeepCNNmodel and
the Wide model were combined as input to a dense layer of 1,024 neurons, which produced the output
layer as a set of labels. The detailed implementation steps are shown in the right of Fig. 3.

Figure 2: WDCNN model operation diagram

2748 CSSE, 2023, vol.45, no.3

4 Experiment Results and Evaluation

4.1 Experimental Data and Program

Experimental data

Drebin [23] and AMD [33] are two widely used datasets for Android malware classification. However,
there are very few benign samples in these two datasets. Therefore, more benign samples are collected from
archive.org [26], a large and free application database. Two test datasets, dubbed “Simple dataset” and
“Complex dataset”, were created in this study. The Simple dataset is comprised of all malware in the
AMD dataset blended with all benign files downloaded from archived.org [26]. The Complex dataset was
created by combining malware files from the AMD, Drebin, and benign datasets. Because the AMD and
Drebin datasets contain 16 identical malware families, those malware families were reduced when
combined. These datasets, however, have the following limitations:

Figure 3: Structure and parameters of the WDCNN model

CSSE, 2023, vol.45, no.3 2749

http://archive.org
http://archived.org

� The malware files are not equally distributed into families; some families are much more dominant
than others. Thus, the total number of files in the top (10) malware families is 16,684 files, and
those of the next 10 families are 1,612 files (number of malware files in AMD and Drebin suite is
17,742 and 3,551, respectively).

� There are some malware families having few sample files, i.e., less than 10 files. The Simple dataset
has nine malware families having a number of sample files less than 10, while the Complex dataset
has 127 malware families similarly.

Although the malware dataset is used in the Simple dataset and the Complex dataset is widely used in the
research, the uneven addition will greatly affect the model evaluation. Fig. 4 shows an overview of the
distribution of files in the top (20) malware families. Because these two datasets are not evenly
distributed among the malware families, we divide each dataset into 3 sets: the full set, the top (20) set,
and the top (10) set as shown in Tab. 1.

Figure 4: Top (20) number of files in malware dataset

Table 1: Experimental datasets

Dataset Total simple Benign Malware Malware source Description

1 26,029 6,730 19,299 AMD Full dataset

2 31,467 6,730 24,737 AMD & DREBIN Full dataset

3 24,953 6,730 18,222 AMD Top (20) dataset

4 27,826 6,730 21,096 AMD & DREBIN Top (20) dataset

5 22,883 6,730 16,153 AMD Top (10) dataset

6 25,829 6,730 19,099 AMD & DREBIN Top 10 dataset

2750 CSSE, 2023, vol.45, no.3

Experimental program

To build the dataset and conduct the experiment, we implemented the programs as described in Tab. 2.
The dataset and experimental program in the research were compiled and published on GitHub [34].

4.2 Feature Extraction

There are two types of features we need to extract from dataset: “image” features and “string” features.
For the image feature, we convert all the classes.dex files into images with size 128 × 128. Thus, the
dimension of an image feature is 16,384. The conversion is done by treat every three bytes of the classes.
dex as a color pixel of the target image. The color image is then converted into a gray scale 128 × 128 image.

For the features in form of strings, permissions and APIs are the two most used in malware classification.
If a program is malware, it may need to transfer some sensitive data from the victim’s device to the outside,
i.e., the hacker’s server. To do that, the programmust ask for some permissions related to the network such as:
INTERNET, ACCESS WIFI STATE, etc. The malware may ask for some other permissions such as the
permission to have access to the location: ACCESS_FINE_LOCATION, ACCESS_COARSE_LOCATION,
etc. Obviously, there is a relationship between permission requests and API calls in the malware.
Therefore, in this work, we extract the “string” features including permissions and APIs:

� To extract requested permissions from APK files we read all the permission registered in the
AndroidManifest.xml file.

� To get the APIs, we use the tool “AKPtool” [35] to read the classess.dex files. Then we extracted all
the APIs used in the dataset, and make statistics about the APIs that appear in each file of the dataset.
We take the top (1000) of the most used APIs. The number of files corresponding to the top (1) API is
22,082 and were reduced to 7,110 respectively to the 1000th API. This shows that the APIs in the top
(1000) are good features, appearing on many files in the dataset.

Those extracted features were used as input to theWDCNN operation model as described in the previous
section. The entire feature of our dataset is contained in a CSV file. In the CSV file, we arrange the above
permission and API call characteristics into columns (the first column is the label), the corresponding rows
are APK files. The cell will be filled with the number “1” if the feature is extracted in the file. Cells are filled
with “0” if the feature is not present in the file.

4.3 Experimental Scenarios

To prove the effectiveness of WDCNN, we did two experiments for two scenarios as follows:

Scenario 1: Compare the effectiveness of the WDCNN model to each component individually.

� Compare WDCNN model to the DeepCNN model only.

� Compare WDCNN model to the Wide model only.

To compare the performance of WDCNN to each component individually, we conduct the experiment
on six datasets including Simple dataset full, Simple dataset top (10), Simple dataset top (20), Complex

Table 2: Experimental program set

Number Program Function

1 Program Collect and create the experimental raw dataset

2 Program Feature extraction

3 Program Implement and execute the classification models

CSSE, 2023, vol.45, no.3 2751

dataset full, Complex dataset top (10), and Complex dataset top (20). The experimental process on these six
datasets follows the following three scripts:

� Script 1: putting Image features into the DeepCNN model.

� Script 2: putting Permission & API feature in Wide model.

� Script 3: putting Image into the DeepCNN component while putting Permission & API to the Wide
component in our WDCNN model.

Scenario 2: Compare the effectiveness of WDCNN model to other machine learning models including
KNN, RF, Logistic, DNN, and RNN. To make the comparison to be fair, we do follow experiments:

� Using the same feature set extracted from our Simple dataset and the Complex dataset for the
WDCNN model and other machine learning models.

� Using an independent feature extraction scheme, which is proposed in research [7], and apply two
malware datasets. We compare the performance of our proposed WDCNN model to the best
model in the research [7] using the new feature set.

4.4 Results and Evaluation

To evaluate the proposed method, we conduct experiments according to the model described in Fig. 5.
The initial data set is feature extracted by 3 different methods to create a composite feature set including:
Image feature set, API feature set, and permission feature set. Algorithm 1 was used to divide the
aggregate feature set into Fd and Fw. Then, these two feature sets are included in the built WDCNN
model for evaluation. To compare with other machine learning models, we also installed experimental
programs on the synthetic feature set with models: DNN, RF, KNN, Logistic, and RNN. Then, the
experimental results could be evaluated using cross test method presented in the previous section.

Figure 5: Experimental model

2752 CSSE, 2023, vol.45, no.3

Model Evaluation Method

Since the number of malware family files are various as shown in Fig. 4, using only the average classification
rate will not accurately reflect the classification result. Therefore, we propose to evaluate the accuracy of the
classification for every single malware family. The metrics used for evaluating is shown in Tab. 3.

Correct classification of all malware families is calculated as Eq. (2):

TP ¼
X
c2C

TPc (2)

Misclassification of all malware families is as Eq. (3):

FP ¼
X
c2C

FPc (3)

Final false negative score is calculated as Eq. (4):

FN ¼
X
c2C

FNc (4)

Final true negative is as Eq. (5):

TN ¼
X
c2C

TNc (5)

Classification Macro Accuracy (Accuracy): percentage of malware which are correctly classified into
their corresponding families as Eq. (6):

ACC ¼
P
c2C

TPc

P
c2C

ðTPc þ FNcÞ (6)

Classification Micro Accuracy for Recall (Recall): Average correct classification of each malware family
as Eq. (7):

Recall ¼
P
c2C

TPc

TPc þ FNc

Cj j (7)

From Eqs. (2)–(7), we have:

� c: label of a family of malware.

� C: Label set.

Table 3: Model evaluation parameters

Term Definition

T Pc The number of the malware in the family c classified correctly

FPc The number of the malware that is not labeled as family c, but classified into the family c

FNc The number of the malware in the family c, not classified into the family c

TNc The number of the malware, not in the family c, classified correctly

CSSE, 2023, vol.45, no.3 2753

In this experiment, we use the K-fold cross validation method with 10-fold. The dataset is divided into
10 parts, 8 parts for training, 2 parts for testing, of which one part is testing during training (validation) and
one part for final testing (test). The experimental process was conducted according to the described scenarios.
Experimental results on dataset 1 are summarized in Tab. 4. Experimental results on dataset 2 are
summarized in Tab. 5.

Table 4: Experimental results of Simple dataset

(a) Input: Image; Model: DeepCNN

Set Measure 1 2 3 4 5 6 7 8 9 10 AVG

Full Acuracy 67.85 68.28 65.4 64.07 66.45 67.39 66.33 68.18 66.44 65.61 66.6

Recall 54.57 42.96 55.9 44.41 52.44 45 46.88 47.56 50.45 46.32 48.65

Top (20) Acuracy 68.37 69.29 65.72 64.87 66.92 68.17 66.96 68.85 67.85 66.32 67.33

Recall 52.91 56.31 50.8 49.95 54.92 51.8 48.62 54.71 53.45 51 52.45

Top (10) Acuracy 70.28 71.16 67.61 66.78 68.27 70.28 69.54 70.81 70.36 68.32 69.34

recall 67.44 72.45 65.1 63.85 67.54 67.77 67.72 68.34 67.5 65.17 67.31

(b) Input: Pemision+API; Model: Wide

Set Measure 1 2 3 4 5 6 7 8 9 10 AVG

Full Acuracy 96.21 98.45 97.64 97.56 97.25 98.37 98.45 97.48 97.06 98.38 97.68

Recall 86.82 80.87 88.72 83.96 86.62 86.96 89.3 87.26 90.53 85.79 86.68

Top (20) Acuracy 96.58 99.24 97.99 98.11 97.79 98.75 98.71 97.83 98.01 98.83 98.19

Recall 94.9 97.22 94.37 95.37 92.45 95.74 96.34 94.49 94.8 95.35 95.1

Top (10) Acuracy 96.94 99.61 98.64 98.69 98.56 99.3 99.08 98.21 98.66 99.43 98.71

recall 97.52 99.66 98.01 98.63 98.61 99.26 98.87 98.52 97.82 99.4 98.63

(c)WDCNNmodel with input: Image into model DeepCNN; Input: permission+API into model WideCNN

Set Measure 1 2 3 4 5 6 7 8 9 10 AVG

Full Acuracy 98.76 99.15 98.99 98.84 98.3 98.72 98.68 98.68 9.46 98.8 98.64

Recall 90.01 88.89 93.3 86.98 91.48 89.78 86.22 90.64 91.54 83.84 89.27

Top (20) Acuracy 99.16 99.6 99.2 99.24 98.51 99 99.08 99.16 98.4 99.28 99.06

Recall 95.09 98.65 97.78 96.9 93.17 96.11 97.41 95.68 95.76 96.52 96.31

Top (10) Acuracy 99.82 99.78 99.47 99.65 99.39 99.52 99.39 99.69 98.96 99.74 99.54

recall 99.62 99.83 99.25 99.66 99.37 99.36 99.22 99.81 99.42 99.68 99.42

2754 CSSE, 2023, vol.45, no.3

Based on the experimental results presented in Tabs. 4 and 5, we conduct an evaluation of the
characteristics, models and datasets.

Assess the suitability of the model WDCNN

Tabs. 4 and 5 show the average classification results of all malware families on two datasets (Simple and
Complex datasets) for three methods (proposed WDCNN, DeepCNN, and the Wide model). It can be seen
that the WDCNN shows the best performance compared to the others. The average accuracy and recall of
DeepCNN is quite low, less than 70%. This leads to the conclusion that using only the image feature as
an input for the CNN model is not suitable for Android malware classification. The average accuracy of
the wide model with permission and API features is high and reaches 97.68% and 94.53% for Simple
Full and Complex Full datasets, respectively. These results demonstrated the critical importance of
performance and API features in classifying Android malware. The superior performance of
WDCNN demonstrates that our proposed model is an ideal candidate for Android malware classification,

Table 5: Experimental results of Complex dataset

(a) Input: Image; Model: DeepCNN

Set Measure 1 2 3 4 5 6 7 8 9 10 AVG

Full Acuracy 62.36 62.98 62.83 66.94 64.72 61.69 64.48 60.93 63.59 58.78 62.93

Recall 36.2 36.87 46.81 45.51 43.23 41.68 46.28 39.38 43.04 27.49 40.65

Top (20) Acuracy 65.3 65.41 64.83 68.94 67.06 63.57 66.31 62.63 67.85 62.67 65.45

Recall 52.74 54.5 54.07 57.49 56.43 55.48 55.88 51.75 60.79 54.09 55.32

Top (10) Acuracy 68.03 67.48 66.55 71.39 68.91 64.75 68.32 64.92 69.57 64.41 67.43

recall 164.59 63.96 62.88 68.29 66.5 64.22 64.49 62.87 66.56 62.22 64.66

(b) Input: Pemision+API; Model: Wide

Set Measure 1 2 3 4 5 6 7 8 9 10 AVG

Full Acuracy 94.31 93.98 94.33 94.84 95.02 94.65 95.97 95.63 93.87 92.73 94.53

Recall 66.88 74.83 81.64 75.59 77.41 5.72 85.59 87.02 79.67 64 76.84

Top (20) Acuracy 96.61 95.5 95.78 96.36 96.68 96 96.83 96.25 96.32 95.71 96.21

Recall 93.811 88.5 91.2 92.23 95.1 93.22 94.65 94.05 92.3 93.39 92.94

Top (10) Acuracy 96.89 96.6 96.18 96.51 96.81 96.18 96.89 96.18 96.76 96.55 96.45

recall 95.44 92.4 92.71 92.57 95.52 92.69 93.42 93.37 92.46 92.58 93.32

(c)WDCNNmodel with input: Image into model DeepCNN; Input: permission+API into model WideCNN

Set Measure 1 2 3 4 5 6 7 8 9 10 AVG

Full Acuracy 94.63 95.65 94.98 95.06 95.21 95.2 96.07 95.6 94.85 93.52 95.08

Recall 65.04 81.13 81.45 76.32 79.93 79.17 83.76 82.09 84.29 60.97 77.42

Top (20) Acuracy 96.9 96.97 96.22 96.22 96.58 96.54 94.14 96.54 96.43 96.79 96.33

Recall 93.67 93.34 93.09 92.95 91.88 92.76 94.8 91.18 93.08 95.85 93.26

Top (10) Acuracy 97.31 97.35 96.34 96.55 97.06 97.06 99.04 97.06 96.93 96.6 97.13

recall 94.57 94.64 93.03 93.68 93.8 94.32 94.4 92.97 94.67 94.6 94.07

CSSE, 2023, vol.45, no.3 2755

as it retains the benefits of the wide model while utilizing deep learning to extract useful information from
raw features.

Evaluation on malware families

As mentioned above, the malware families differ widely in the number of files. There are some malware
families that only include three or four files, while the largest malware family includes 3,970 files, as shown
in Fig. 4. Hence, using the average accuracy of all families may not reflect the real performance of each
model. Instead, the recall metric will be measured for each family of the top (10) largest malware families
and the top (20) largest malware families for classification. The proposed WDCNN shows the best
performance on top (10) and top (20) of the Simple and Complex datasets, as shown in Fig. 6. In the
program, we used early stopping to prevent the model from overfitting.

Comparing WDCNN with some other machine learning models

Case 1: Experiment conducted on the same feature set extracted from our dataset scenario:

Experiment 2 was conducted on other models such as RNN [36], DNN [7], KNN, RF and Logistic using
the same feature set extracted from Simple dataset (Scenario 2). After 10-fold experiment, the results were
shown in Tab. 6. The results showed that our proposed WDCNN produced better results than the RNN
model’s (the best model mentioned in [36]) 1.38%, i.e., 98.64% compared to 97.26%. In [7], DNN gives
the best result of 10 hidden layers (DNN (10)) when running with our dataset, the average classifier result
is 94.5%, lower than the WDCNN model of 4.14%.

Figure 6: Classification of malware depending on the number of labels

Table 6: Accuracy comparison of models Features: Images 128 × 128 + permission + API

KNN Logistic RF(10) RF(50) DNN RNN WDCNN

Accuracy 39.61 62.98 77.72 84.8 89.46 97.26 98.64

2756 CSSE, 2023, vol.45, no.3

Case 2: Experiment conducted using the same feature extraction scheme:

We chose the feature extraction scheme mentioned in [7]. The scheme converts every *.Apk file to
binary, then to a 256-pixel image using a histogram. The converted image was then treated as input to the
DNN and DeepCNN models. On the other hand, we combine this 256-pixel image with permission and
API features into the WDCNN model and the DNN (10) model. The results are shown in Tab. 7. We
found that with the 256-pixel image features obtained as in [7], the result of the DeepCNN model
component was 8.16% higher than that of DNN (10). Both had very low accuracy though (less than
50%). When combined with the permission and API features, the WDCNN model gives a result of
97.73%, which is 1.26% higher than that of the DNN (10) model. In addition, for the recall metric, the
WDCNN model is much better than DNN (10), 85.65% compared to 47.8%. This shows that the average
correct recognition classifier of WDCNN is much higher than that of DNN (10).

Based on the results shown in Tabs. 6 and 7, although the features are taken in different ways, the
proposed WDCNN model always gives better performance compared to other models, especially recall
metric (the correct mean value of each label).

Discussion about the impact of different features to the final classification rate

In our experiments, we have used three types of features, including: “image” feature, which is converted
from classes.dex file in the APK malware file, the “permission” feature, and the API feature. To evaluate the
quality of each feature, each feature was separately put into the CNN model to test for the final classification
rate. For the image feature, we convert the file classess.dex to a RGB color image using a similar algorithm to
that used in [22]. The size of each image is 128 × 128. Based on experimental results, we found that using
only the “image” feature is inadequate for Android malware classification. The results of the CNN model
with the Simple and Complex datasets, in particular, were quite low, at 66.6% and 62.93%, respectively.
On the other hand, the CNN model’s results when only the API feature was used and when only the
permission feature was used were 92.97% and 95.54%, respectively. While the image feature alone does
not produce satisfactory results, when combined with other features, it can significantly improve
classification performance.

5 Conclusion

The WDCNN model is a combination of deep learning and traditional machine learning. This model is
extremely effective when used with aggregated datasets from a variety of different sources and features with
varying degrees of generalization. The purpose of this study was to propose and develop a method for
classifying Android malware that utilizes a WDCNN learning model. The proposed WDCNN architecture
consists of a DeepCNN and a wide component. The input for the deep component is a “Image” feature
converted from the classes.dex file, while the input for the wide component is a permissions and API list.
This configuration contributes to the final classification accuracy and recall metric improvements. The
proposed WDCNN model outperforms the DeepCNN model or the wide model alone in experiments.

Table 7: Experimental datasets

Features DNN Deep CNN WDCNN

Accuracy Recall Accuracy Recall Accuracy Recall

256 pixel images 37.43 2.99 44.59 9.11 – –

256 pixel images + permission 96.47 47.8 – – 97.73 85.65

CSSE, 2023, vol.45, no.3 2757

WDCNN and existing models can be compared in two ways to demonstrate that the proposed model is a
good idea.

We have already published the implementation source code and dataset on GitHub; you can freely
download them and evaluate the programs by visiting this link [34].

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] Statcounter GlobalStats: Mobile & Tablet Android Version Market Share Worldwide. https://gs.statcounter.com/

os-version-market-share/ android/mobile-tablet/worldwide last accessed: 24/8/2021.

[2] AV-test: Malware. https://www.av-test.org/en/statistics/malware/ last accessed: 25/8/2021.

[3] T. Chen, Q. Mao, M. Lv, H. Cheng and Y. Li, “Droidvecdeep: Android malware detection based on word2vec and
deep belief network,” KSII Transactions on Internet and Information Systems, vol. 13, pp. 2180–2197.

[4] X. Su, W. Shi, X. Qu, Y. Zheng and X. Liu, “DroidDeep: Using deep belief network to characterize and detect
android malware,” Soft Computing, vol. 24, no. 8, pp. 6017–6030, 2020.

[5] X. Qin, F. Zeng and Y. Zhang, “MSNdroid: The Android malware detector based on multi-class features and deep
belief network,” in Proc. of the ACM Turing Celebration Conf., New York, NY, USA, pp. 1–5, 2019.

[6] M. K. Alzaylaee, S. Y. Yerima and S. Sezer, “DL-Droid: Deep learning based android malware detection using
real devices,” Computers & Security, vol. 89, no. 5, pp. 101663, 2020.

[7] F. Mercaldo and A. Santone, “Deep learning for image-based mobile malware detection,” Computer Virology and
Hacking Techniques, vol. 16, no. 2, pp. 157–171, 2020.

[8] Z. Ma, H. Ge, Z. Wang, Y. Liu and X. Liu, “Droidetec: Android malware detection and malicious code localization
through deep learning,” ArXiv, vol. abs/2002.0394, pp. 1–13, 2020.

[9] W. Y. Lee, J. Saxe and R. Harang, “SeqDroid: Obfuscated Android malware detection using stacked convolutional
and recurrent neural networks,” in Deep Learning Applications for Cyber Security, Springer Cham, pp. 197–210,
2019.

[10] W. Wang, M. Zhao and J. Wang, “Effective android malware detection with a hybrid model based on deep
autoencoder and convolutional neural network,” Journal of Ambient Intelligence and Humanized Computing,
vol. 10, no. 8, pp. 3035–3043, 2019.

[11] D. Vasan, M. Alazab, S. Wassan, H. Naeem, B. Safaei et al., “IMCFN: Image-based malware classification using
fine-tuned convolutional neural network architecture,” Computer Networks, vol. 171, no. 1, pp. 107–138, 2020.

[12] D. Zhu, T. Xi, P. Jing, D. Wu, Q. Xia et al., “A transparent and multimodal malware detection method for Android
Apps,” in Proc. of the 22nd Int. ACM Conf. on Modeling, Analysis and Simulation of Wireless and Mobile
Systems, New York, NY, United States, pp. 51–60, 2019.

[13] K. Zou, X. Luo, P. Liu, W. Wang and H. Wang, “ByteDroid: Android malware detection using deep learning on
bytecode sequences, ” in: Trusted Computing and Information Security, Singapore: Springer, pp. 159–176, 2020.

[14] Y. Sun, Y. Chen, Y. Pan and L. Wu, “Android malware family classification based on deep learning of code
images,” International Journal of Computer Science, vol. 46, no. 4, pp. 1–10, 2019.

[15] D. Li, L. Zhao, Q. Cheng, N. Lu and W. Shi, “Opcode sequence analysis of Android malware by a convolutional
neural network,” Concurrency and Computation: Practice and Experience, vol. 32, no. 22, pp. 1–8, 2019.

[16] Z. Ren, H. Wu, Q. Ning, I. Hussain and B. Chen, “End-to-end malware detection for android IoT devices using
deep learning,” Ad Hoc Networks, vol. 101, no. 4, pp. 102098, 2020.

[17] S. L. S. Darshan and C. D. Jaidhar, “Windows malware detector using convolutional neural network based on
visualization images,” IEEE Transactions on Emerging Topics in Computing, vol. 9, no. 2, pp. 1057–1069, 2021.

2758 CSSE, 2023, vol.45, no.3

[18] S. Wang, G. Zhou, J. Lu and F. Zhang, “A novel malware detection and classification method based on capsule
network,” in Artificial Intelligence and Security, Springer Cham, vol. 11632, pp. 573–584, 2019.

[19] B. Kang, B. Kang, J. Kim and G. E. Im, “Android malware classification method: Dalvik bytecode frequency
analysis,” in Proc. of Adaptive and Convergent System, New York, NY, United States, pp. 349–350, 2013.

[20] L. Nataraj, S. Karthikeyan, G. Jacob and B. S. Manjunath, “Malware images: Visualization and automatic
classification,” in Proc. of the 8th Int. Symp. on Visualization for Cyber Security, Pittsburgh Pennsylvania,
USA, pp. 1–7, 2011.

[21] F. M. Darus, N. A. A. Salleh and A. F. M. Ariffin, “Android malware detection using machine learning on image
patterns,” in Cyber Resilience Conf., Putrajaya, Malaysia, pp. 1–2, 2018.

[22] X. Xiao and S. Yang, “An image-inspired and CNN-based Android malware detection approach,” in Proc. of
IEEE/ACM Int. Conf. on Automated Software Engineering, San Diego, CA, USA, pp. 1259–1261, 2019.

[23] D. Arp, M. Spreitzenbarth, M. Hu¨bner, H. Gascon and K. Rieck, “Drebin: Effective and explainable detection of
android malware in your pocket,” in Symp. on Network and Distributed System Security, San Diego, California,
USA, vol. 14, 2014.

[24] F. mercaldo and A. Santone, “Deep learning for image-based mobile malware detection,” Journal of Computer
Virology and Hacking Techniques, vol. 16, no. 2, pp. 157–171, 2020.

[25] M. Ganesh, P. Pednekar, P. Prabhuswamy, D. S. Nair, Y. Park et al., “CNN-based Android malware detection,” in
Proc. of Int. Conf. on Software Security and Assurance, Altoona, PA, USA, pp. 60–65, 2017.

[26] Sketch the Cow, S.: Random .APK Collection (February 2018). https://archive. org/details/2018-02-random-apk-
collection last accessed: 24/8/2020.

[27] N. P. Binh, P. N. Hung, T. Hop, N. Nhung, N. H. Quang et al., “Predicting the onset of type 2 diabetes using wide
and deep learning with electronic health records,” Computer Methods and Programs in Biomedicine, vol. 182, no.
9, pp. 1–9, 2019.

[28] H. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra et al., “Wide & deep learning for recommender systems,”
CoRR abs/1606.07792, 2016.

[29] Z. Zheng, Y. Yang, X. Niu, H. N. Dai and Y. Zhou, “Wide and deep convolutional neural networks for electricity-theft
detection to secure smart grids,” IEEE Transactions on Industrial Informatics, vol. 14, no. 4, pp. 1606–1615, 2018.

[30] J. W. Lee and Y. C. Yoon, “Fine-grained plant identification using wide and deep learning model,” in Proc. of Int.
Conf. on Platform Technology and Service, Jeju, South, Korea, pp. 1–5, 2019.

[31] W. Yuan, H. Wang, B. Hu, L. Wang and Q. Wang, “Wide and deep model of multi-source information-aware
recommender system,” IEEE Access, vol. 6, pp. 49385–49398, 2018.

[32] M. Kim, S. Lee and J. Kim, “Awide & deep learning sharing input data for regression analysis,” in Int. Conf. on
Big Data and Smart Computing, Busan, South, Korea, pp. 8–12, 2020.

[33] F. Wei, Y. Li, S. Roy, X. Ou and W. Zhou, “Deep ground truth analysis of current android malware,” Springer
Lecture Notes in Computer Science, vol. 10327, pp. 252–276, 2017.

[34] Github: WDCNN–for-malware–Android. https://github.com/lethuan255/WDCNN-for-malware-Android last
accessed: 5/9/2021.

[35] Apktool: A tool for reverse engineering Android apk files. https://ibotpeaches.github.io/Apktool/ last accessed:
24/8/2020.

[36] M. Rhode, P. Burnap and K. jones, “Early-stage malware prediction using recurrent neural networks,” Computers
& Security, vol. 77, no. 2, pp. 578–594, 2018.

CSSE, 2023, vol.45, no.3 2759

	Applying Wide & Deep Learning Model for Android Malware Classification
	Introduction
	Related Works
	Proposed Scheme
	Experiment Results and Evaluation
	Conclusion
	References

