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Abstract: Engineering and applied mathematics disciplines that involve differen-
tial equations in general, and initial value problems in particular, include classical
mechanics, thermodynamics, electromagnetism, and the general theory of relativ-
ity. A reliable, stable, efficient, and consistent numerical scheme is frequently
required for modelling and simulation of a wide range of real-world problems
using differential equations. In this study, the tangent slope is assumed to be
the contra-harmonic mean, in which the arithmetic mean is used as a correction
instead of Euler’s method to improve the efficiency of the improved Euler’s tech-
nique for solving ordinary differential equations with initial conditions. The sta-
bility, consistency, and efficiency of the system were evaluated, and the
conclusions were supported by the presentation of numerical test applications
in engineering. According to the stability analysis, the proposed method has a
wider stability region than other well-known methods that are currently used in
the literature for solving initial-value problems. To validate the rate convergence
of the numerical technique, a few initial value problems of both scalar and vector
valued types were examined. The proposed method, modified Euler explicit meth-
od, and other methods known in the literature have all been used to calculate the
absolute maximum error, absolute error at the last grid point of the integration
interval under consideration, and computational time in seconds to test the perfor-
mance. The Lorentz system was used as an example to illustrate the validity of the
solution provided by the newly developed method. The method is determined to
be more reliable than the commonly existing methods with the same order of con-
vergence, as mentioned in the literature for numerical calculations and visualiza-
tion of the results produced by all the methods discussed, Mat Lab-R2011b has
been used.
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1 Introduction

Differential equations include ordinary and partial derivatives. Initial value problems (IVPs) are formed
by utilizing ordinary differential equations and initial conditions to provide the value of an unknown function
at a specific place in the domain. Differential equations are commonly used in physics, chemistry, biology,
and economics, as well as in many physical problems in science and engineering.

Numerous analytical techniques are available to solve differential equations. Analytical techniques [1,2],
however, are sometimes unable are very difficult to provide closed form solutions of linear or nonlinear
differential equations. Therefore, numerical methods are frequently used to solve highly nonlinear and
linear differential equations [3]. Numerical techniques are important tools for quickly solving difficult
problems using computer programming. To solve IVPs, engineers and researchers from a variety of
disciplines [4–7] needed numerical schemes that were more efficient, stable, and had a larger region of
convergence than other techniques that already existed and had the same order of convergence.

Numerous numerical algorithms for solving ordinary differential equations (ODEs) with initial value
problems have been developed by many researchers. Many authors have attempted to solve initial value
problems with great accuracy and speed up using various methods such as Euler’s method, Heun’s
method, and others (see e.g., [8–12]). Euler’s method calculates the slope of the function over the interval
by using the line, tangent to the function at the beginning of the interval. In comparison, Heun’s method
considers tangent lines to the solution curve at both ends of the interval. Some have attempted to improve
these precision approaches, while others have enhanced them for greater accuracy, stability, and
consistency [13,14]. Some changes have been made to numerical algorithms from time to time to
improve the performance based on our needs.

The main aim of this study was to construct a novel numerical technique for solving both linear and
nonlinear initial value problems. Using consistency and stability analyses, we illustrate that the region of
stability of our recently proposed numerical techniques is wider than the methods currently available in
the literature. Compared with other techniques already in use, our newly developed method is more
reliable, consistent, and efficient.

2 Proposed Method’s Methodology Approach

Consider the following first-order differential equation with an initial value problem:

dy

dx
¼ f ðx; yÞ; yðx0Þ ¼ y0: (1)

The most well-known and simple approach for solving Eq. (1) is the explicit Euler equation’ with step
length h, which is given by

ypnþ1 ¼ yn þ hf xn; ynð Þ: (2)

The explicit Euler method [15] approximates the derivative of y0 at x ¼ xn using forward difference.
Heun’s method has a slope that is the average of the slope of the tangents to the integral curve at the
endpoint of the interval, given by

ycnþ1 ¼ yn þ h

2
f ðxn; ynÞ þ f ðxnþ1; y

p
nþ1Þ

� �
: (3)

In [16], using Euler’s method as a predictor, a second stage of the second-order method (MRK2M) based
on the harmonic mean is presented as:
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ynþ1 ¼ yn þ h
2

k21þk22
k1þk2

� �
;

k1 ¼ f ðxn; ynÞ;
k2 ¼ f ðxnþ1; ypnþ1Þ:

8><
>: (4)

Here, we propose modified version (MMRK2M) of Eq. (4) as:

ynþ1 ¼ yn þ h
k21þk23
k1þk3

� �
;

k1 ¼ f ðxn; ynÞ;
k2 ¼ f ðxnþ1; y

p
nþ1Þ;

k3 ¼ f xn þ h; yn þ h k1þk2
2

� �� �
:

8>>><
>>>:

(5)

3 Analysis of the Proposed Method’s Stability

Dahlquist’s test problem [17] can be used to analyze the stability of the proposed scheme.

dy

dx
¼ kyn; yðx0Þ ¼ y0; k 2 C: (6)

Eq. (5) can also be written as:

ynþ1 ¼ yn þ h
f ðxn; ynÞð Þ2 þ f xn þ h; yn þ h

f ðxn; ynÞþf ðxnþ1; y
p
nþ1Þ

2

� �� �� �2
f ðxn; ynÞ þ f xn þ h; yn þ h

f ðxn; ynÞþf ðxnþ1; y
p
nþ1Þ

2

� �� �
0
B@

1
CA: (7)

To test the stability of the suggested approach, substitute Eq. (6) with Eq. (5), and we have

ynþ1 ¼ yn þ h
f ðxn; ynÞð Þ2 þ f xn þ h; yn þ h

f ðxn; ynÞþf ðxnþ1; y
p
nþ1Þ

2

� �� �� �2
f ðxn; ynÞ þ f xn þ h; yn þ h

f ðxn; ynÞþf ðxnþ1; y
p
nþ1Þ

2

� �� �
0
B@

1
CA ; (8)

ynþ1 ¼ yn þ
h2k2y2n þ hkyn þ h2k2yn þ 1

2 h
3k3yn

� �2
hkyn þ hkyn þ 1

2 h
3k3yn

; (9)

ynþ1 ¼ 1þ h2k2 þ hkþ h2k2 þ 1
2 h

3k3
� �2
hkþ hkþ 1

2 h
3k3

 !
yn: (10)

Putting z ¼ hk in Eq. (10), we have

QðzÞ ¼ ynþ1

yn
¼ 1þ z2 þ zþ z2 þ 1

2 z
3

� �2
zþ z2 þ 1

2 z
3

; (11)

The stability region of numerical systems is depicted in Figs. 1 and 2. The stability polynomial is given
by

QðzÞj j ¼ ynþ1

yn

����
���� ¼ 1þ z2 þ zþ z2 þ 1

2 z
3

� �2
zþ z2 þ 1

2 z
3

�����
����� � 1: (12)
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Figure 1: Stability region of MMRK2M is represented by white color where shading region shows
instability region of the proposed method

Figure 2: Comparison of the stability region of the proposed method MMRK2M (Black color) with MRK2
(Red color) and MRK2M (Cyan color) respectively
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4 Consistency

To verify the consistency [17,18] of the proposed method, Eq. (5) can be written as:

ynþ1 ¼ yn þ h#ðxn; yn; hÞ; (13)

and numerical scheme will be consistent if

lim
h!0

#ðxn; yn; hÞ ¼ f ðxn; ynÞ: (14)

In this case, we used equation Eq. (13) to determine the consistency of the proposed technique as
follows:

lim
h!0

#ðxn; yn; hÞ ¼ lim
h!0

f ðxn; ynÞð Þ2 þ f xn þ h; yn þ h
f ðxn; ynÞþf ðxnþ1; y

p
nþ1Þ

2

� �� �� �2
f ðxn; ynÞ þ f xn þ h; yn þ h

f ðxn; ynÞþf ðxnþ1; y
p
nþ1Þ

2

� �� �
0
B@

1
CA;

¼ f ðxn; ynÞ:

(15)

Thus, proposed method is consistent.

5 Local Truncation Error

The local truncation error of a numerical technique is an estimate of the error introduced in a single
iteration of the method, assuming that everything provided in the method is exact.

The Taylor series expansion of yðxnþ1Þ is given by:

yðxnþ1Þ ¼ yðxn þ hÞ ¼ yðxnÞ þ hy0ðxnÞ þ h2

2!
y00ðxnÞ þ h3

3!
y000ðxnÞ þ Oðh4Þ; (16)

yðxnþ1Þ ¼ yðxnÞ þ hf ðxn; ynÞ þ h2

2!

@f ðxn; ynÞ
@x

þ f ðxn; ynÞ @f ðxn; ynÞ
@y

	 

þ… (17)

The Taylor series expansion of

k1 ¼ f ðxn; ynÞ; (18)

k2 ¼ k2 ¼ f ðxn þ h; yn þ hf ðxn; ynÞÞ;

¼ f ðxn; ynÞ þ h
@f ðxn; ynÞ

@x
þ f ðxn; ynÞ @f ðxn; ynÞ

@y

	 

þ

h2

2!

@2f ðxn; ynÞ
@x2

þ 2f ðxn; ynÞ @
2f ðxn; ynÞ
@x@y

þ f ðxn; ynÞð Þ2 @
2f ðxn; ynÞ
@2y

	 

þ Oð h3Þ;

(19)

k1 þ k2
2

¼ f ðxn; ynÞ þ h

2

@f ðxn; ynÞ
@x

þ f ðxn; ynÞ @f ðxn; ynÞ
@y

	 

þ Oðh2Þ; (20)

k3 ¼ f ðxn; ynÞ þ h
@f ðxn; ynÞ

@x
þ f ðxn; ynÞ @f ðxn; ynÞ

@y

	 

þ Oðh2Þ; (21)
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ynþ1 ¼ yn þ h
f ðxn; ynÞð Þ2 þ f ðxn; ynÞ þ h @f ðxn; ynÞ

@x þ f ðxn; ynÞ@f ðxn; ynÞ@y

� �
þ Oðh2Þ

� �2
f ðxn; ynÞ þ f ðxn; ynÞ þ h @f ðxn; ynÞ

@x þ f ðxn; ynÞ@f ðxn; ynÞ@y

� �
þ Oðh2Þ

0
B@

1
CA; (22)

ynþ1 ¼ yn þ hf ðxn; YnÞ þ h2

2!

@f ðxn; ynÞ
@x

þ f ðxn; ynÞ @f ðxn; ynÞ
@y

	 

þ Oðh3Þ: (23)

As a result of subtracting Eq. (23) or Eq. (22) from Eq. (17), the proposed numerical technique has a
local truncation error of order Oðh3Þ; hence, the order of the proposed method is 2.

6 Numerical Outcomes

We execute the following iterative methods

1. Newly constructed method MMRK2M

2. Modified Euler method MRK2

3. Ram et al. method MRK2M

to solve IVPs and the system of IVPs [19], [20]. All numerical computations were performed using aMat Lab
2011Rb laptop (Processor Intel® Core™ i3-3310m CPU@2.4GHz with 64-bit operating system) on
Windows 8. In all Tables 1–7, the maximum absolute and local truncation errors are defined as yn � yðxnÞj j.
Example 1:

Consider the IVP-I

dyðtÞ
dt

�
¼ 1

4
70� 10 cos

pt
12

� yðtÞ
� �� �

; yð0Þ ¼ 60; 0 � t � 12:

Using MMRK2M, MRK2 and MRK2M for different values of step-size h, we find approximate solution
of the non-linear IVP-I. The numerical results are presented in Tables 1 and 2 respectively. The exact and
numerical approximate solutions are shown in Figs. 3 and 4.

Figure 3: Comparison of exact and approximate solution of IVPs used in Example 1
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Figure 4: Error comparison of the numerical schemeMMRK2M,MRK2, MRK2M for solving IVPs used in
Example 1

Table 1: Comparison of exact and approximate solution of system of IVPs used in Example 1

All numerical computation are done using 64-digit floating point arithmetic for finding exact and
approximate solution using RK2M, MRK2M, MMRK2M for h = 0.5 and h = 0.1

RK2M MMRK2M Exact

t yðtÞ yðtÞ yðtÞ yðtÞ yðtÞ
h = 0.5 h = 0.1 h = 0.5 h = 0.1

0 60 60 60 60 60

1 60.0182 60.02498 60.04256 60.02753 60.02676

2 60.16981 60.19366 60.22886 60.20092 60.19967

3 60.56893 60.61378 60.66059 60.62641 60.62495

4 61.28446 61.34943 61.4023 61.36701 61.36552

5 62.34187 62.42258 62.47667 62.44388 62.4425

6 63.72647 63.81614 63.8674 63.83942 63.83825

7 65.38819 65.47873 65.52397 65.50197 65.50105

8 67.248 67.33095 67.3679 67.35207 67.3514

9 69.20561 69.27293 69.30034 69.28998 69.28954

10 71.14802 71.19282 71.21048 71.20416 71.20389

11 72.95864 72.97571 72.98455 72.98015 72.97997

12 74.52627 74.51249 74.51472 74.50938 74.50917
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Table 2: Comparison of the local error of the numerical methods for finding solution of the system of the
IVPs used in Example 1

RK2M MMRK2M MRK2M

t yðtÞ yðtÞ yðtÞ yðtÞ yðtÞ
h = 0.5 h = 0.1 h = 0.5 h = 0.1 h = 0.5

0 0 0 0 0 Div.

1 0.008567 0.001788 0.015798 0.000765 Div.

2 0.029856 0.006014 0.029188 0.001247 Div.

3 0.056015 0.011166 0.035645 0.001467 Div.

4 0.081063 0.016086 0.036784 0.001492 Div.

5 0.100629 0.019926 0.034166 0.001378 Div.

6 0.111778 0.02211 0.02915 0.001175 Div.

7 0.112862 0.022316 0.022919 0.000926 Div.

8 0.103399 0.020446 0.016504 0.00067 Div.

9 0.083929 0.016606 0.0108 0.000441 Div.

10 0.055867 0.011072 0.006589 0.000269 Div.

11 0.021322 0.004258 0.004586 0.000181 Div.

12 0.017099 0.003325 0.005552 0.000207 Div.

Table 3: Comparison of exact and approximate solution of system of IVPs used in Example 2

All numerical computation are done using 64-digit floating point arithmetic for finding exact and
approximate solution using RK2M, MRK2M, MMRK2M

RK2M MRK2M MMRK2M Exact

t i1ðtÞ i2ðtÞ i1ðtÞ i2ðtÞ i1ðtÞ i2ðtÞ Exact solution

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 4.7496 1.5902 4.8096 1.6055 4.7804 1.5903 4.7804 1.5903

0.2 5.98877 2.6643 6.0216 2.6932 6.0003 2.6730 6.0003 2.6730

0.3 6.418609 3.0857 6.4362 3.1030 6.4240 3.0909 6.4240 3.0909

0.4 6.575453 3.2421 6.5840 3.2507 6.5780 3.2447 6.5780 3.2447

0.5 6.633103 3.2997 6.6370 3.3037 6.6342 3.3009 6.6342 3.3009

0.6 6.654315 3.3209 6.6560 3.3227 6.6548 3.3214 6.6548 3.3214

0.7 6.662121 3.3287 6.6628 3.3295 6.6623 3.3290 6.6623 3.3290

0.8 6.664994 3.3316 6.6653 3.3319 6.6650 3.3317 6.6650 3.3317

0.9 6.666051 3.3327 6.6661 3.3328 6.6660 3.3327 6.6660 3.3327

1.0 6.66644 3.3331 6.6664 3.3331 6.6664 3.3331 6.6664 3.3331
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Table 4: Comparison of the local error of the numerical methods for finding solution of the system of the
IVPs used in Example 2

MRK2 MRK2M MMRK2M MRK2 MRK2M MMRK2M

Er-F1 ER-F1 ER-F1 ER-F2 ER-F2 ER-F2

t i1ðtÞ i1ðtÞ i1ðtÞ i2ðtÞ i2ðtÞ i2ðtÞ
0.0 0.00 0.00 0.000 0.0000 0.000000 0.000000

0.1 0.059976 0.030743 0.029233 0.015247 0.000102 0.015145

0.2 0.032832 0.011586 0.021246 0.028923 0.008684 0.020239

0.3 0.017611 0.005463 0.012148 0.017348 0.005259 0.012091

0.4 0.008633 0.002576 0.006058 0.008618 0.002563 0.006055

0.5 0.003961 0.001164 0.002797 0.00396 0.001163 0.002797

0.6 0.001739 0.000508 0.001231 0.001739 0.000508 0.001231

0.7 0.000741 0.000216 0.000525 0.000741 0.000216 0.000525

0.8 0.000309 9.01E-05 0.000219 0.000309 9.01E-05 0.000219

0.9 0.000127 3.71E-05 8.96E-05 0.000127 3.71E-05 8.96E-05

1.0 5.13E-05 1.51E-05 3.62E-05 5.13E-05 1.51E-05 3.62E-05

Table 5: Comparison of exact and approximate solution of system of IVPs used in Example 3

All numerical computation are done using 64-digit floating point arithmetic for finding exact and
approximate solution using RK2M, MRK2M, MMRK2M for h = 0.1

RK2M MRK2M MMRK2M Exact Solution

t xðtÞ yðtÞ zðtÞ xðtÞ yðtÞ zðtÞ xðtÞ yðtÞ zðtÞ xðtÞ yðtÞ zðtÞ
0.0 44.57 37.37 35.02 44.58 37.36 35.02 45 35 35 45 35 35

0.1 44.30 39.50 35.10 44.31 39.49 35.11 44.58 37.36 35.02 44.58 37.36 35.02

0.2 44.15 41.42 35.23 44.16 41.41 35.23 44.31 39.49 35.11 44.31 39.49 35.11

0.3 44.10 43.16 35.39 44.11 43.14 35.39 44.16 41.41 35.23 44.16 41.41 35.23

0.4 44.14 44.74 35.57 44.15 44.72 35.58 44.11 43.15 35.39 44.11 43.15 35.39

0.5 44.24 46.17 35.78 44.25 46.15 35.79 44.15 44.72 35.58 44.15 44.72 35.58

0.6 44.40 47.48 36.01 44.41 47.45 36.02 44.25 46.15 35.79 44.25 46.15 35.79

0.7 44.60 48.67 36.25 44.61 48.65 36.26 44.41 47.46 36.01 44.41 47.46 36.01

0.8 44.84 49.77 36.51 44.85 49.75 36.51 44.61 48.66 36.26 44.61 48.66 36.26

0.9 45.11 50.79 36.76 45.12 50.76 36.77 44.85 49.75 36.51 44.85 49.75 36.51

1.0 44.57 37.37 35.02 44.58 37.36 35.02 45.11 50.77 36.77 45.11 50.77 36.77
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Table 6: Comparison of the local error (ER) of the numerical methods for finding solution of the system of
the IVPs used in Example 3

RK2M MRK2M MMRK2M RK2M MRK2M MMRK2M RK2M MRK2M MMRK2M

ER-F1 ER-F1 ER-F1 Er-F2 ER-F2 ER-F2 ER-F3 ER-F3 ER-F3

t xðtÞ yðtÞ zðtÞ xðtÞ yðtÞ zðtÞ xðtÞ yðtÞ zðtÞ
0.0 0 0 0 0 0 0 0 0 0

0.1 0.003 0.003 0.0003 0.006 0.005 0.0003 0.001 0.001 0.0001

0.2 0.006 0.005 0.0009 0.01 0.01 0.001 0.002 0.002 5.5E-05

0.3 0.008 0.006 0.001 0.01 0.01 0.001 0.003 0.003 0.0002

0.4 0.009 0.007 0.002 0.01 0.01 0.002 0.003 0.003 0.0005

0.5 0.01 0.011 0.0004 0.02 0.017 0.003 0.004 0.003 0.0008

0.6 0.01 0.011 0.0004 0.02 0.017 0.005 0.004 0.003 0.001

0.7 0.01 0.010 0.001 0.02 0.01 0.006 0.004 0.002 0.001

0.8 0.01 0.009 0.002 0.02 0.01 0.006 0.004 0.002 0.001

0.9 0.01 0.008 0.002 0.02 0.01 0.007 0.003 0.002 0.001

1.0 0.01 0.007 0.003 0.02 0.01 0.008 0.003 0.001 0.001

Table 7: Shows the absolute maximum error (Max-Error) and central processing unit time (CPU-time) in
seconds for different grid points

Absolut maximum error, computational CPU-time in seconds of RK2M, MRK2M and MMRK2M for
solving IVP-I

Numerical methods MRK2 MRK2M MMRK2M

Max-error (h = 0.5) 1.13E-02 2.11E-02 0.12E-03

Max-error (h = 0.1) 4.53E-03 5.73E-03 1.44E-05

CPU-time 0.03254 0.02189 0.001215

Absolut maximum error, computational CPU-time in seconds of RK2M, MRK2M and MMRK2M for
solving system of IVPs used in example 2

Max-error (h = 0.1) 1.13E-02 2.11E-02 0.12E-03

CPU-time 1.120356 2.015167 1.001341

Absolut maximum error, computational CPU-time in seconds of RK2M, MRK2M and MMRK2M for
solving system of IVPs used in example 3

Max-error (h = 0.1) 1.13E-02 2.11E-02 0.12E-03

CPU-time 2.01534 3.01523 1.012357

Absolut maximum error, computational CPU-time in seconds of RK2M, MRK2M and MMRK2M for
solving system of IVPs used in example 4

Max-error (h = 0.1) 1.13E-02 2.11E-02 0.12E-03

CPU-time 0.01251 0.06874 0.001423
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6.1 Applications in Engineering

Here, we discuss some engineering applications that contain highly nonlinear differential equations with
information provided at the initial points.

Example 2: Application in Electrical Engineering

The differential equation system for the current i1ðtÞ and i2ðtÞ in the electrical network depicted in
Fig. 5 is

di1ðtÞ
dt ¼ �ðR1þR2Þ

L2
i1ðtÞ þ R2

L2
i2ðtÞ þ E

L2
;

di2ðtÞ
dt ¼ R2

L1
i1ðtÞ � R2

L1
i2ðtÞ;

i1ðt0Þ ¼ 0;
i2ðt0Þ ¼ 0:

8>>><
>>>:

(24)

The proposed and existing numerical techniques are used to solve the system of differential equations to
determine the behavior of the current i1ðtÞ and i2ðtÞ for R1 ¼ R2 ¼ 10�; E ¼ 100V ;L1 ¼ L2 ¼ L ¼ 1h and
t0 ¼ 0. By substituting the values of the resistance, voltage, and inductance, we obtain the following system
of differential equations:

di1ðtÞ
dt ¼ �20i1ðtÞ þ 10i2ðtÞ þ 100;

di2ðtÞ
dt ¼ 10i1ðtÞ � 20i2ðtÞ;

i1ð0Þ ¼ 0;
i2ð0Þ ¼ 0:

8>><
>>: (25)

The numerical results are presented in Tables 3 and 4 respectively. The exact and numerical approximate
solutions are shown in Figs. 6 and 7.

Example 3: House Heating Problem (An Engineering Application)

Consider a conventional house that has an attic, a basement, and an insulated main floor. Insulation is
present in the walls and ceilings of ordinary living spaces but not in the attic portion. The floor and walls of
the basement were insulated by soil. Air gaps in the joists, a layer of flooring on the main level, and a layer of
drywall all serve as insulation for the basement ceiling. Using the variables and Newton’s cooling law [19],
we examined how the temperatures in the three levels differ from one another. zðtÞ = Humidity in
the attic

yðtÞ ¼ Temperature in main living area

xðtÞ ¼ Basement Temperature

t ¼ Time in hours:

Figure 5: Shows the flow of current i1ðtÞ; i2ðtÞ through resistance R and inductance L along with source of
voltage E
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Primary Data: Imagine its winter and the daily high is 35°F. Furthermore, a basement earth temperature
of 45°F was predicted. The heating system was then gradually turned off. The initial values at midday (t = 0)
are x(t0) = 45, y(t0) = 35, and z(t0) = 35.

Portable heater: At noon, a small electric heater with a thermostat set to 100°F was turned on. When the
heater is turned on, it raises the temperature by 20°F per hour, so it will take some time (may never be!) to
reach 100°F.

Figure 6: Comparison of exact and approximate solution of IVP used in Example 2

Figure 7: Error comparison of the numerical scheme MMRK2M, MRK2, MRK2M for solving IVP used in
Example 2
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The attic walls and ceiling, main floor walls, basement walls and floor, and basement ceiling were all
subjected to temperature rate treatment. Newton’s cooling law gives rise to the positive cooling constants
h0; h1; h2; h3, and h4, as well as the equations

dxðtÞ
dt ¼ h0ð45� xðtÞÞ þ h1ðyðtÞ � xðtÞÞ;

dyðtÞ
dt ¼ h1ðxðtÞ � yðtÞÞ þ h2ð35� yðtÞÞ þ h3ðzðtÞ � yðtÞÞ þ 20;

dzðtÞ
dt ¼ h3ðyðtÞ � zðtÞÞ þ h4ð35� zðtÞÞ;

xðt0Þ ¼ a0;
yðt0Þ ¼ a1;
zðt0Þ ¼ a2:

8>>>>>>><
>>>>>>>:

(26)

The insulation constants were defined as h0 ¼ 1
2, h1 ¼ 1

2, h2 ¼ 1
4, h3 ¼ 1

4 and h4 ¼ 1
2 to indicate insulation

quality. Reciprocal 1
h represents the time required in hours to exchange 63 percent of the temperature

differential. The main floor, for example, takes 4h. The model is:

dxðtÞ
dt ¼ 1

2ð45� xðtÞÞ þ 1
2ðyðtÞ � xðtÞÞ;

dyðtÞ
dt ¼ 1

2ðxðtÞ � yðtÞÞ þ 1
4ð35� yðtÞÞ þ 1

4ðzðtÞ � yðtÞÞ þ 20;
dzðtÞ
dt ¼ 1

4ðyðtÞ � zðtÞÞ þ 1
2ð35� zðtÞÞ;

xðt0Þ ¼ a0;
yðt0Þ ¼ a1;
zðt0Þ ¼ a2:

8>>>>>>><
>>>>>>>:

(27)

The homogeneous solution in vector form is provided by the formula in terms of constants a = (7 + 21)/8,
b = (7 + 21)/8, c = 1 + 21, and d = 1 + 21 and arbitrary constants c1; c2; c3.

xðtÞ
yðtÞ
zðtÞ

0
@

1
A ¼ c1e

�t
2

1
2
2

0
@

1
Aþ c2e

7� ffiffiffiffi
21

p
8

� �
t

4
�1þ ffiffiffiffiffi

21
p

2

0
@

1
Aþ c3e

�1� ffiffiffiffi
21

pð Þ t 4
�1� ffiffiffiffiffi

21
p

2

0
@

1
A: (28)

The equilibrium solution is a specific solution. The exact solution to Eq. (27) is shown in Fig. 8.

xpðtÞ
ypðtÞ
zpðtÞ

0
@

1
A ¼

455

8
275

4
185

4

0
BBBBBB@

1
CCCCCCA
: (29)

The temperatures of the three spaces are approximately equal to x ¼ 57; y ¼ 69, and z ¼ 46 degrees
Fahrenheit because the homogeneous solution has a limit of zero at infinity. Solving for c1; c2, and c3
with the initial values of xð0Þ ¼ a0 ¼ 45; yð0Þ ¼ a1 ¼ 35; and zð0Þ ¼ a2 ¼ 35 yields specific

information. c1 ¼ �85
24 , c2 ¼ �25

24 � 115
ffiffiffiffi
21

p
168 and c3 ¼ �25

24 þ 115
ffiffiffiffi
21

p
168 are solutions.

Underpowered heater: Each hour, 20°F is added to the main floor, but the heat escapes quickly, so it is
approximately 51°F after one hour. The temperature was approximately 65°F after five hours. In this case, the
heater is so poor that the main living space remains cold after several hours. The forced-air furnace worked
similarly. The numerical results of the system of IVPs are presented in Tables 5 and 6 respectively.
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Example 4: Solution of the Lorentz System

Consider three dimensional chaotic Lorentz system [20] as:

dxðtÞ
dt

¼ r1ðyðtÞ � xðtÞÞ;
dyðtÞ
dt

¼ r2xðtÞ � yðtÞ � xðtÞ;
dzðtÞ
dt

¼ �r3 zðtÞ þ xðtÞyðtÞ:

8>>>>><
>>>>>:

zðtÞ; xð0Þ ¼ 1; yð0Þ ¼ 1; zð0Þ ¼ 0; (30)

MMRK2M, MRK2, and MRK2M methods are used to solve the Lorentz system for different values of
parameter, that is, r1 ¼ �1:9; r2 ¼ 120; r3 ¼ 44. The Computational CPU-time in seconds and the
maximum error are listed given in Table 7. The exact solution of the Lorentz system is shown in Figs. 9–12.

Figure 8: Comparison of exact and approximate solution of IVPs used in Example 3

Figure 9: Solution of the Lorentz system in three dimensional space
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6.2 Results and Discussion

Here, we discuss the superiority of the numerical method MMRK2M over existing methods in the
literature in terms of stability, residual errors and computational time. Tables 1–7, show that the newly
developed method, MMRK2M, is more stable and consistent than MRK2 and MRK2M. Figs. 1 and 2
shows the larger stability zone of MMRK2M compared to MRK2 and MRK2M. Figs. 3, 6, and 7 shows
the exact and approximate solutions of MMRK2M, MRK2M, and MRK2, respectively, of the IVPs used
in example 1–3. Figs. 4 and 7 show the maximum residual error computed by the numerical techniques
MMRK2M, MRK2M, and MRK2 for solving IVPs. In terms of residual error, MMRK2M exhibited
better convergence behavior than MRK2M and MRK2.

Figure 10: Phase diagram of the Lorentz system in xz-plane

Figure 11: Phase diagram of the Lorentz system in yz-plane
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7 Conclusion

We developed a numerical approach for solving initial value problems with linear and nonlinear
functions that are efficient, stable, reliable, and consistent. The numerical system exhibited consistency,
second order local convergence, and absolute stability. The Examples from engineering show that the
newly developed MMRK2M theoretical order of convergence matches computational outcomes.
MMRK2M computes the maximum error significantly more accurately than MRK2 and MRK2M. In
terms of the computation time measured in seconds, local truncation error and absolute maximum error,
Tables 1–7 and Figs. 1–12 show that our proposed technique outperforms MRK2 and MRK2M.
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