Computer Systems Science & Engineering L < Tech Science Press

DOI: 10.32604/csse.2023.032509
Article .

Check for
updates

Latency Minimization Using an Adaptive Load Balancing Technique in
Microservices Applications

G. Selvakumar'-", L. S. Jayashree” and S. Arumugam’

"Department of Computer Science and Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641407, India
“Department of Computer Science and Engineering, PSG College of Technology, Coimbatore, 641004, India
3Department of Computer Science and Engineering, Nandha College of Engineering, Erode, 638052, India
*Corresponding Author: G. Selvakumar. Email: selvakumarguru@gmail.com
Received: 20 May 2022; Accepted: 04 July 2022

Abstract: Advancements in cloud computing and virtualization technologies have
revolutionized Enterprise Application Development with innovative ways to
design and develop complex systems. Microservices Architecture is one of the
recent techniques in which Enterprise Systems can be developed as fine-grained
smaller components and deployed independently. This methodology brings
numerous benefits like scalability, resilience, flexibility in development, faster
time to market, etc. and the advantages; Microservices bring some challenges
too. Multiple microservices need to be invoked one by one as a chain. In most
applications, more than one chain of microservices runs in parallel to complete
a particular requirement To complete a user’s request. It results in competition
for resources and the need for more inter-service communication among the ser-
vices, which increases the overall latency of the application. A new approach has
been proposed in this paper to handle a complex chain of microservices and
reduce the latency of user requests. A machine learning technique is followed
to predict the weighting time of different types of requests. The communication
time among services distributed among different physical machines are estimated
based on that and obtained insights are applied to an algorithm to calculate their
priorities dynamically and select suitable service instances to minimize the latency
based on the shortest queue waiting time. Experiments were done for both inter-
active as well as non interactive workloads to test the effectiveness of the solution.
The approach has been proved to be very effective in reducing latency in the case
of long service chains.

Keywords: Microservices; load balancing; cloud computing; latency optimization;
netflix

1 Introduction

In recent years, virtualization techniques have gained much attention due to their advantages in optimum
resource utilization, reduced capital and operating expenditure, increased agility and responsiveness, and,
most importantly, minimized downtime [1]. In cloud computing, virtualization revolutionized how

This work is licensed under a Creative Commons Attribution 4.0 International License, which
@ @ permits unrestricted use, distribution, and reproduction in any medium, provided the original

work is properly cited.


mailto:selvakumarguru@gmail.com
https://www.techscience.com/journal/CSSE
http://dx.doi.org/10.32604/csse.2023.032509
https://www.techscience.com/
https://www.techscience.com/doi/10.32604/csse.2023.032509

1216 CSSE, 2023, vol.46, no.1

Enterprise applications are developed. With cloud-based services, the remote servers take care of the
infrastructure and platform requirements of the applications, which make the applications’ faster
development, flexibility, and easier maintainability [2]. Microservices Architecture is one of the latest
innovations happening in this segment which has influenced several companies like Amazon, Netflix,
Twitter, eBay, Uber, and many more.

Microservices have evolved from the concepts of service-oriented architecture (SOA) by inheriting all
its fundamental principles of it. SOA allows designing an application as a collection of loosely coupled
software services that can communicate with each other to perform the business functionalities [3].
According to Martin Fowler and James Lewis, microservices are an approach to developing an
application as a composition of multiple more minor services. Also, the microservices can be upgraded or
replaced independently to support significant levels of scalability. It makes microservices a preferred
architectural pattern for many enterprise application development activities [4]. Horizontal scaling is one
of the primary reasons for migration from monolithic systems, which is essential to maintain the user
experience irrespective of the higher traffic. Conventional enterprise applications are developed as
monolithic systems and grow in size over time due to multiple updates and enhancements. The strong
coupling among the components of monolithic systems makes them very difficult to maintain and scale.
It also results in cascading failures [5]. On the other hand, Microservices architecture addresses these
problems. It suggests creating a system evolved from a group of independent services that are scalable
and resilient to a single point of failure shown in Fig. 1.

= > API
Gateway
P t
Fs User Management

1
R 1
Transaction 1
1
N e e e e e e .. — e - ’

Business logic of an E commerce Application

\
Product Order 1
Catalogue Management 1

.

User Requests

Figure 1: Monolithic architecture

Distributing the requests across the group of backend servers in which multiple instances of the services
reside is called load balancing. The primary objective of load balancing is to optimize the use of resources,
maximize throughput, and minimize response time [6]. In Microservice Architecture, applications are
constructed as a collection of separate and independent services that need to communicate with each
other to complete the operation shown in Fig. 2. These service chains ensure that the system scales better
with growing demand and low operating costs. However, these service chains and communication among
them results in higher latency. In cloud-native microservices applications, there are three main
optimization objectives. To reduce the cost of cloud services by optimizing the usage, reducing the
overall latency, and handling the application when one of the service providers becomes unavailable [7].
In our paper, we try to focus on the latency problem.

The main contributions of our work can be summarised as follows. The literature on load balancing in a
cloud environment and cloud-native application development activities has been reviewed. The one area
where load balancing has been still challenging is managing the service chains in complicated
applications with multiple tasks spanning physical machines and various service instances [8]. Then, a
load balancing index by calculating the various dependencies concerning the inter-service communication



CSSE, 2023, vol.46, no.1 1217

and communication among the physical machines has been calculated. Based on the inferences, a default
load-balancing algorithm is modified with the proposed approach and implemented. The implementation
of Netflix Eula was used for this purpose [9]. The solution was deployed in the Google Cloud Platform,
and experiments were conducted with different client requests to test the latency. Finally, we proved that
the proposed solution could significantly reduce the latency in microservices chains.

Product
l:{> Data
= Catalogue base
Payment L::>
- Data
Transaction base
=/ API
Gateway
—— User Management,:{> Data
= base
U]
Order D
Data
Management base

User Requests

Independent Microservices

Figure 2: Microservices architecture

The rest of the paper has been organized in the following manner. Section 2 discusses the state-of-the-art
research work that has happened so far in microservices load balancing and the identified limitations in the
existing approaches. Section 3 discusses Microservices service chains and the latency problems in detail.
Section 4 illustrates the system under consideration and analyses contemporary cloud-native application
architecture characteristics to describe the research challenge. Section 5 explains how the proposed
solution has been derived mathematically and how the load balance index can be calculated, which plays
a vital role in the load balancing process. In section 6, we discuss the experimental setup we used and the
implementation details we used with the support of Netflix open source components. In section 7, the
results are documented along with the discussion, and in section 8, we conclude the paper.

2 Related Research

Several noteworthy contributions have been made to reduce the latency in Microservices applications,
primarily when a chain of Microservices handles the user request. Xu, Yan & Shang propose a dynamic
priority-based weighted scheduling algorithm, Yanlei, to address the issue of latency when multiple
microservices are required to collaborate with each. The latency in these systems becomes more than in
Monolithic systems and collapses the purpose of using Microservices Architecture [10].

A load balancing technique supported by priority queues has been proposed to minimize the latency of
microservices long chains, considering the competition for resources among the different chains. They used
message queues with different priorities to differentiate the microservices chains, and the resource allocation
is done dynamically by adjusting their priority dynamically [11]. Multiple priority queues were proposed for



1218 CSSE, 2023, vol.46, no.1

microservices at the edge cloud server. They implement a multiple-level feedback system to set the priorities.
The transition from higher to lower queues happens systematically based on the packet size. It results in short
microservices being prioritized over long microservices. In general, it follows the shortest job first technique
for load balancing.

A latency estimation approach to manage the interactive workloads is proposed to handle the uncertainty
in latency due to multiple queues. They also suggest a feedback scheme to validate workload distribution’s
fairness and ensure that non-interactive workloads are not affected. A Task Chain-Based Load Balancing
Algorithm is proposed that focuses on the chain of service calls and the data transmission between the
servers. It uses the three algorithms, Particle Swarm Optimization, Simulated Annealing and Genetic
algorithm, to develop the load balancing methodology. They try to address the problems of unbalanced
load and lengthier turnaround time in microservices container applications with the help of a load model
which combines the service discovery and performance monitoring of the server ecosystem [12]. They
made use of the Optimized Ant Colony algorithm for this purpose. Power consumption has been analysed
along with latency improvement. A black bo monitoring infrastructure is created to measure performance
and power consumption. They designed and developed a graph-based analysis that maps each
microservice in the cluster to a service time requirement. Also, a feedback and control loop named
Observe Decide Act (ODA) was created along with an interface to ensure maximum power usage. Their
methodology plays a vital role in reducing the energy consumption of the workloads significantly.
Similarly, proposes shark smell optimization and a fuzzy logic approach to balance the load for the sole
purpose of decreasing the energy consumption. The load balancing for energy preservation plays a vital
role IoT based environments.

A simple linear progression approach was proposed to predict the time-weight of the request queues and
was used in the shortest queue-waiting-time load balancing algorithm. This approach appears effective.
However, it has an overhead in running a machine learning algorithm in parallel with the load balancing
algorithm. Optimal latency may not always be guaranteed in this approach since it depends on the
efficiency of the learning algorithm. As per the analysis, load balancing has two essential aspects. Firstly,
the types and numbers of service instances should be selected, and secondly, the physical or virtual
machines should be selected. Combined, they propose an approach for scheduling microservices in multi-
cloud scenarios.

Since many approaches have proven that the complex requests are optimized significantly at the cost of
increasing the latency of standard requests, they used a latency estimation approach to identify the final
latency and focus on interactive workloads. According to achieve a high-performance workload should be
migrated among the servers. These load balancing activities are implemented as a part of container
solutions. The commercially available container orchestration platforms like Kubernetes, Docker Swarm
and others provide various strategies for these objectives. Their effectiveness is yet to be demonstrated
clearly in enterprise applications. The container based cloud-native applications experience the application
level isolation rather than server level, so that if anything goes wrong in a container it will not impact the
entire virtual machine or the server. However, handling excessive consumption of a set of specific
resources due to increase in load is still a problem not perfectly solved [13].

Moreover, when the number of microservices instances is large, the load balancing solution could also
become a bottleneck. While load balancers are traditionally available as hardware for balancing network
traffic, service-oriented models are analysed to provide load balancing. The developed load balancers can
be rented to the customers, similar to software as a service.



CSSE, 2023, vol.46, no.1 1219

3 Microservices Service Chains
3.1 Service Chains in Applications

When a request from a user arrives at the micros services system, it is processed by more than one
service implementation. They form a chain in which each service has a specific role, and the request
processing is completed only when all the services are executed. This need for communication among
multiple services is the primary reason for higher latency in microservices systems.

As shown in Fig. 3, the user request reaches Service B through A and A and C. They may ask for the.
Service B simultaneously. The chain of services ACB is more extended than AB, and obviously, it would
experience higher latency. In real-world applications, the length of the chains varies according to the
implementation complexity of the functionalities. Many times, more than one chain happens to compete
for resources during the execution. The load balancing methods used in recent times fail to consider the
increase in latency due to the resource competition among the multiple chains in a single microservices

application.
( \ :
Service A Service B | | |
:Hl —
[

API L : : '
ServiceD ||[ | sericechain1
Gateway L
V%
| y
/
(e ]

| Instances of services |

Figure 3: Microservices chains

The service chains are the primary cause of increased latency in the application since different queues on the
cloud servers handle each service. Multiple queues should be handled to complete a given user request. It
significantly challenges optimising the queueing delay for a microservices request. While most of the current
research solutions focus on load balancing and latency optimization in various perspectives concerning cloud-
native applications, no complete solution is available to optimize latency in complicated service chains that
ensure reasonable delay for interactive and non-interactive workloads. While most of the solutions are
working fine for the interactive workloads, it is achieved only at the cost of increasing the delay for leaf
requests. Our approach ensures that all kinds of workloads are given a fair allocation while optimizing the latency.

3.2 Latency in Service Chains

As per the literature survey, most load balancing solutions focus wholly on individual tasks. However,
they discount the dependencies among the tasks. In most enterprise applications, complex and hybrid service
chains are created during the run time by several microservices. Security functionalities like deep packet
inspection, firewall and database operations may take longer to complete and contribute to increased
latency most of the time.



1220 CSSE, 2023, vol.46, no.1

Understanding latency is significant while deriving a solution for latency optimization in cloud-native
applications. The time elapsed from the time user requested the time user received the response can be
due to three components. The delay was due to network communication, time taken to complete the
service, and the time spent waiting in the queues. The latency due to network communication is caused
by several factors that the application owners cannot handle. The time that is taken by the physical server
to process the user request is known as the service time. Various research works focus on techniques like
enhancing cache efficiency and optimizing the instructions or query statements. Our objective is primarily
to focus on the third component, which is the time taken by the user request to wait in a queue for
execution. This component is the major contributor to increased latency. However, few studies have been
done in this segment since the vast adoption of microservices in enterprises has happened only recently.
The complexity of this problem is also higher due to the run-time competition among microservices
chains for the resources.

4 The System Analysis

In this section, we discuss the system under consideration for load balancing and the basic ideas behind
the techniques proposed for load balancing.

The system we consider for our research work has containers as its core component in which the
microservices application runs independently. A container is a place where the service is executed with
all its dependencies like runtime, libraries and the database. Tools like Kubernetes are used to schedule
and manage the applications defined by the containers. It enables running hundreds or thousands of
containers as a part of a complete application which is common in an enterprise scenario. A logical
wrapper for a container is usually applied, known as a pod, and pods are the minor deployable units.
They may contain one or more containers that could share resources. The containers within the pod share
the specifications of their execution-style. We make use of clusters to run all the pods in a more
organized manner. Node is a physical or a virtual machine used to host the pods. The collection of nodes
is called clusters, and they are responsible for managing the instances and need to take care of scaling the
service instances when the load increases.

The communication between the microservices happens through HTTP protocols, and message queues
are shown in Fig. 4. Here the microservices are connected directly with the help of service calls without any
middleware. The target instance is located by a specific URL of the microservice.

Service Discovery - > Services

Eureka

—» Container

API
Gateway
Zuul

]

00|00 [
00| 0Qg

Client devices Data stores

IMOZPrPO0O0>Q0F

Cluster & Nodes

Figure 4: The system architecture



CSSE, 2023, vol.46, no.1 1221

Since the services are small composable units, a unified interface should be provided for the users.
Netflix has provided the solution to this problem. Netflix corporation is one of the primary adopters of
microservices architecture and has created open-source several microservices-based solutions. Zuul proxy
server is one of them that proxies requests from users to the services running in the background. It acts as
a unified entrance to the system that can be used by the browser, mobile application or any other user
application to consume the services.

Zuul can easily integrate with other Netflix projects such as Hystrix and Eureka. Hystrix is for fault
tolerance, and Eureka is used for service discovery and load balancing. Zuul functions as a server-side
load balancer.

5 Proposed Approach for Optimal Latency

Scalability is one of the primary objectives of microservices architecture, and one service is deployed
multiple times as instances to achieve this. These instances are available on different physical machines.
A task is usually executed on different service instances, which may present in different machines. When
tasks are executed as a chain of services, we must select the appropriate service instance to reduce
latency and increase API response time. Our algorithm selects the appropriate services to be invoked for
the given request and tries to minimize the latency by estimating the system resource utilization for each
service instance during the execution shown in Fig. 5.

Weighted queue Leaf %‘
request

1
1
1
1
1
1
1
1
1
:
1

i i 1

‘ -.-RZ -Rl = Service A instances | !
\|/J :

1

1

[t Chained !
1

1

1

1

1

1

1

1

1

1

1

1

1

request 1 5‘
‘ .. | Service B instances |

TASK 2 2 /P Physical Machine 1

| Service A instances I

LT

]
| Service Cinstances |

/f Physical Machine 2

A4

Figure 5: Leaf and chained requests

5.1 Analysis of the Proposed Approach

The proposed approach can be analysed using a sample microservices application. The application is
deployed in more than one physical machine, p', p* p°..., p". The application consists of ‘m’ service
instances in each physical machine s', §%, §°..., s™ Each task may contain multiple service invocations
that create a chain of an API call containing q tasks {t', %, t*...., t4}.



1222 CSSE, 2023, vol.46, no.1

Our objective is to choose a service instance s; in a physical machine p; for a given task t;. Our algorithm
considers various system resource usages. CPU, memory, and bandwidth utilization are the primary things to
be considered in the approach. Services are available to use in the different service instances, and load
balancing can be done by ensuring that the use of system resources is roughly the same across the
instances. No instance is neither overloaded with its resources or underutilized. To measure this, each
service instance is characterised by an indicator called load balance degree, and it is obtained by
following the following equations.

URt, — AURy,

D)= —om,

(1

D = Usage indicator of a particular system resource. The utilization of one system resource is taken, and
its relative difference to the average of all the other service instances of the same type is calculated. This is
considered the usage indicator.

U® = usage of one system resource on one service instance
AUR = average usage of all the service instances of same type.

The usage indicator of the service instance plays a vital role in estimating the utilization of CPU,
memory and other system resources for a specific request.

LBDy = <LI1 D w) )

R q

The above equation is to find out the load balance degree of a particular type of service instance. The
usage indicator found in the previous step in each instance is used to calculate the load balance degree of
the whole application.

Multiple data transmissions across the physical machines are required to complete an API call and
considered for load balancing calculations. The application developers can predetermine a sequence of
tasks to be accomplished for one particular API request. Thus, the task chain can be quickly evaluated for
its resource requirements. If every service instance has the exact technical specifications and
configurations, the processing time would be the same for any given task. Considering the above facts,
the service instances in which a specific task needs to be done can be chosen for a sequence of tasks
when the system receives an API request. When the service instances are on the same machine, the
necessity for more data transmissions across different machines is reduced. It will reduce the delay in
responding to the request.

The relationships among the tasks are very significant to analyse since they directly influence the
response time. When two tasks are involved, there can be a single data transmission from one task to
another, or it may be a call-back request which needs two data transmissions. On the other hand, we have
another set of tasks among which there is no dependency.

In the next step, we find the association among the tasks. Three types of associations can exist among the
tasks. The association between tasks t; and tj, A (t;, tj) = 1, if s; calls s; and it is 2 if task t; needs a call back
from t;. If there is no known association, then A becomes zero.

M (S;, S;) = 1 if S; and S; are located in the different physical hosts. Otherwise, the value is zero.
DT (t, 4j) = A(ti, ) = M(S(ti), S(4)) (€)

The number of data exchanges required among the machines for executing the tasks ti and tj, can be
written as,



CSSE, 2023, vol.46, no.1 1223

J

q
TP(t;) = Y (DT(ti, 4;) + DT(4;, 1)) )
=0

q
N = i=0 TP(tl) (5)
2

The above is the estimated value for the API request. The calculated load balance degree and the
communications across the machines are the primary parameters in the proposed methodology. The above
parameters are combined to form an index called LBI to simplify the approach. However, every
application is designed and developed differently, necessitating a factor to balance the above equation,
which is indicated by the weight ‘k’. It is estimated with the help of experiments. Our algorithm
calculates this load balance indicator, LBI, for every task chain.

LBI =k % LBDy + (1 — k) * N (6)

The above load balance indicator will be used in our algorithm to determine the priority of each service
chain. Here we are trying to use an algorithm inspired by the GPS (Generalized processor sharing) algorithm
related to the fair queuing principle. Different tasks require different priority levels in a cloud-native
application with service instances distributed across physical machines. For example, transaction-sensitive
and financially critical service chains may be given more priority since they may get failed if latency
exceeds a specific limit. When multiple service chains are queued up on one end of the API gateway, the
load balancing mechanism should decide how it should serve the chains. In our approach, the service
chains are provided different weights, and the algorithm ensures that scheduling is maintained to
minimize the latency of critical service chains and also the less critical service chains are taken care of
with adequate fairness.

As per the GPS algorithm, considering there are N different service chains configured with different
weights ‘®’, and the capacity of the cluster is R, then the rate of service that can be guaranteed for a
particular service chain ‘i’ can be proved to be,

wi
Ri=—— R (7
N ]
ijo @

The generic GPS algorithm can be extended with fair queuing and weighted fair queuing approaches to
specify which service chain needs to be given how small amount of priority. Weighted fair queuing is the
natural extension of fair queuing, and our algorithm uses this to allocate resources for our service chains.

5.2 Algorithm to Find out the Optimum Values for the K Factor

Algorithm to predict the k value of request

Input:
Sample requests received in the past, RP
‘k’ values considered,
Relative error values
Output:
Newer values for ‘k’

From sklearn.linear model import Linear Regression as linReg

(Continued)



1224 CSSE, 2023, vol.46, no.1

Algorithm (continued)

Step 1: Initialize the values
K=1[0]
RType =[]
QLength =[]
Step 2: Calculate relative error for all sample requests for i in range (0, len(RP))
e Populate the RType and QLength values for all given requests
e linReg.predict(RP)

e calculate the relative error for a given request type and queue length for the predicted values of
waiting time and actual values of waiting time

end for

Step 3: Calculate the new optimum values for all sample requests for i in range (0, len(RP))

e assign new values of k for the request type so that the relative error identified in the previous step is
close to zero.

end for

While the above section focuses on determining the load balance indicator for the requests, the queue
waiting time of each request depends mainly on the nature of the application, and it is represented as ‘k’
in the calculations. A linear regression model can be created based on a set of requests. To find out the
optimum value for the ‘k’. A supervised machine learning technique is applied here. This approach will
impact the precision of our results immensely since the environment has become very dynamic due to the
factors like different nature of requests, heterogeneous clusters and ever-changing database sizes. Hence,
we develop a data science problem and use machine learning to solve this. The linear correlation between
queue waiting for time and type of request is simpler to implement, and it is ensured that it would not
create any performance bottleneck for the proposed approach. The computing complexity of this process
has been maintained less so that it can be exercised in any environment with burst internet traffic.

The implementation of the above algorithm is based on the scikit-learn library. This algorithm
continuously collects the new samples from different types of applications. The predicted values of
weighting time and the actual weighting times are compared to find the relative errors. It helps identify
the optimal value that can be assigned for a given request type.

5.3 Algorithm to Select the Appropriate Service Instance Chain for Optimal Latency

Algorithm to choose the service instance chain

Step 1: for Every new Request from the API Gateway
Please place it in the queue and fetch the request specifications created already.

Step 2: If the request is a leaf request, assign the priority to 1 and set the maximum delay ‘Winax = X
ms’ to ensure fair allocation.

Step 3: Else, if the request has to invoke a chain of services, do the following,

Step 3.1: calculate the LBI for the entire service chain.

(Continued)



CSSE, 2023, vol.46, no.1 1225

Algorithm (continued)

Step 3.2: the LBI for each service cain is stored for further calculations and dynamically changing
priorities.

Step 3.3: store the set of candidate solutions based on the GPS approach for further processing.

Step 3.4: based on the resource availability in each physical machine that has been chosen in the service
chain, calculate the Ly, the threshold value of latency.

Step 3.5: For all the service chains exceeding LT, update the priority by 1, recalculate the latency, and
update the candidate solutions.

Step 3.6: If a leaf request in a queue exceeds the delay W,.«, allocate the resources; keep them in the
queue.

Step 4: The candidate solution with the least latency is chosen, and the service chain sequence is finalised
accordingly.

Step 5: Repeat steps 2, 3, and 4 until all the API requests are completed servicing.

6 Experimental Set-Up and Implementation Details

The proposed approach has been experimented with in the following environment with an Intel Core-
7 processor system supported by 16GB of RAM. Eclipse IDE is used as a development environment with
Java 1.8. To develop test applications, we used Spring boot as the framework and REST API to expose the
microservices. Maven tool is used for building the application. For deployment, we used the Google cloud
platform and Kubernetes clusters.

6.1 Netflix Zuul and Eureka

Netflix is one of the most famous movies streaming platforms, serving over 200 million users as of 2021.
The service availability and global scalability are the two essential requirements of any subscription-based
video streaming platform of this scale. Their services are considered to be using nearly 15% of the world’s
internet bandwidth. Netflix is an excellent example of building a cloud-native microservice application that
can handle substantial scalability challenges. Since Netflix is committed to open-source technologies, they
have provided many of its components that can be customized and reused by any developer worldwide.
In our research, we extensively use the Netflix components for our experiments.

Netflix Zuul is the gateway for all the requests coming from Netflix clients. It is a JVM-based router that
serves as a server-side load balancer. It provides a single entry to the system for every client browser, mobile
app or similar and takes care of dynamic routing and monitoring of requests to the backend services of
Netflix. Zuul makes use of another Netflix component called Ribbon as a load balancer. The round-robin
algorithm is defaulted here to select the services on the backend.

Eureka Server is another component by Netflix which consists of all the information about every
available client-service application and functions as a telephone directory for the microservices. Eureka
Server, also called Discovery Server, registers all Microservice instances with it to serve the client
applications as and when requested. Netflix Zuul is connected to the Eureka server to find suitable
microservice instances for service calls.

6.2 Implementation Details

A sample microservices application for e-commerce has been developed to test the proposed approach
using the spring boot framework. In this sample application, the standard service requirements of an



1226 CSSE, 2023, vol.46, no.1

e-commerce application such as user management, inventory management, cart management, transaction,
verification of order, cancellation of the order, shipping and other functionalities are implemented in the
form of independent services.

The implementation of our proposed approach also considers DevOps which is defined as a set of
methods to organize software development in order to integrate deployment and operations.
Microservices and DevOps are associated with each other and they depends upon cloud and virtualization
techniques. Collectively, we try to address the challenges of cloud-native applications such as scaling,
continuous develivery, continuous integration, automation and effective resource utilization [14].

The services have been developed using spring boot, and the communication among them is enabled by
REST API. Netflix provides its JVM-based router Zuul as an open-source server-side load balancer which is
used in our experiments. Zuul users a variety of filters that can be easily configured.

The package com provides the load balancer-related interfaces and classes. Netflix. Load balancer,
which is a part of Netflix open source. Load Balancer is the interface which declares the standard
methods required to be implemented for building our load balancing mechanism. Base Load Balancer is
the class with a set of methods that can be overridden as given here. setRule() method plays the role of
defining our custom strategy for load balancing.

public void setRule (IRule rule) {

If (rule ! = null) {

This.rule = rule;// our custom rule instance

} else {

This.rule = new RoundRobinRule(); //default
}

If (this.rule.getLoadBa;amcer() ! = this) {
This.rule.setLoadBalancer(this);

}

Public interface IRule declares the rule for the load balancer. Some known implementing classes are
Abstract Load Balancer Rule, Availability Filtering Rule, Client Config Enabled Round Robin Rule, etc.
Our proposed rule can be a part of new implementation class and can be quickly sent as a reference
variable to the method setRule (IRule rule). The primary aspect of the algorithm would be choosing the
server, which has a structure as given here.

public Servuer chooseServer(Object key) {
If (counter = = null) {

Counter = createCounter();

h

Counter.increment();

If (rule = = null){

Ruturn null;

}



CSSE, 2023, vol.46, no.1 1227

Else{

Try{

Return rule.choose(key);

} catch (Exception e) {
Logger.warn(“LoadBalancer [} {]:/

Error choosing server for key {}”, name, key, e);

Retuen null;

}
i

We deployed the developed microservices on give nodes in the Google cloud platform. The
microservices instances were made to run in Docker containers under the clusters. Three service chains
were implemented and deployed to test the service chain-oriented load balancing. Each has multiple
interactive and non-interactive workloads.

In the netflix environment, when a client request arrives, the Ribbon functions as a client side load
balancer. It makes use of the Eureka Server to get a list of components that provide the service. Then the
corresponding service instances are accessed via the corrsponding address with the help of load balancing
algorithm. The Ribbon load balancer utilizes techniques like polling, randomization and other methods to
ensure the load balancing [15]. At present, it is one of the most efficient load balancing techniques
existing and the proposed method is compared against this method.

7 Results and Discussion

Our experiments evaluated both interactive workloads as well as non-interactive workloads. Interactive
workloads must invoke a chain of service requests deployed in multiple nodes. Without our proposed
algorithm, the default load-balancing scheme experience more latency, and the throughput was inadequate
for commercial enterprise applications. In our chosen application, e-commerce, adding a product to the
cart is a non-interactive workload with no difference in throughput. On the other hand, if the request is
for the purchase of an item, then it needs to be completed by invoking multiple services. We can see
significant differences in the results, as illustrated here.

Fig. 6 indicates the request latency of a service chain without our proposed approach compared with the
algorithm. In the case of longer service chains, the proposed algorithm significantly differs in latency. Fig. 7
indicates the request latency of requests for a leaf request. In the case of leaf requests, the proposed algorithm
has no significant difference compared to the existing algorithm. However, we can easily infer that, in
modern-day applications, the proportion of leaf requests is negligible compared to the complex service
chains shown in Fig. 8. We performed multiple experiments separately with different time estimations.
The results from conducted experiments demonstrate that the proposed algorithm can effectively
minimize the delay in composing the response, especially during chained-service requests. Fig. 9
illustrates the changes in load balancing factors with various k factors. While the k factor (the
representation of request type and average queue length across different physical machines) increases, the
load balance degree tends to decrease. The results of existing approach is primarily from the unmodified
version of Netflix load balancer which is available for experimentation. The setRule() method is modified
in our proposed approach to obtain the results of our algorithm. The results are compared with the default
implementation of the method. It will be considered in the proposed algorithm to estimate the queue
waiting time and to direct the request to the optimal service instance located in a physical machine. The



1228 CSSE, 2023, vol.46, no.1

arrival rate of requests plays a significant role in the performance of our proposed approach. The experiments
were repeated with various request arrival rates. When the number of requests per second increases, the
response time optimization appears to be at par with the conventional load balancing due to the
algorithm’s machine learning component. Beyond a certain point, the proposed approach exhibits only a
marginal difference shown in Fig. 10. However, this can be easily overcome when the system is in use
for a prolonged period and gets adequate learning. This load balancing is very critical in any cloud-native
application deployment scenarios and datacenter managements. Exponentially increasing traffic and
abrupt changes in the service requests are the major challenges in cloud application providers. When
loads become concentrated on few specific services, the entire application faces downtime due to the
operational abnormalities [16]. The effectiveness of our proposed approach can be found to be very
effective in several modern applications.

Moreover, the higher request rate we experimented with had limitations in the system resources due to
the limited capacity of the environment. Compared with the real time application environments, the results
obtained are auspicious for most enterprise applications. Hence, in every given scenario, our proposed
approach is the best method to optimize the load balancing. Particularly we considered scenarios like.

Latency
Lo @ Proposed Approach |
O Existing Load balancing
& -
12
£
S
g v
s
8
) '
o
5 15 25 35
API Requests
Figure 6: Latency in service chains
© -
(2
£
3
=
IS}
©
4 ~ -
o -

5 10 15 20 25 30 35

AP| Requests

Figure 7: Latency in leaf requests



CSSE, 2023, vol.46, no.1

1229

Non interactive work loads

60
g b1\
; 40
? 30
o 2
L

10

0

0 2 4 6 8 10 12
API Request
— Default latency = — Optimized latency

Figure 8: Latency in non-interactive workloads

Testing various 'k’ factors

20
15
10

———
0 0.2 04 06 08 1
k - factor

—&—data across pm —8— | oad balance degree

Figure 9: The load balance degree with various ‘k’ factors

®  Reguiar Approach
~ 7] * Proposed Approach

™ L
-~ .
e .
o« 1 .
.-
-'. .
.-.--
. B
LA ..
< /
£ ]
8 4 .
& - .
ey .
] -
@ . -
4 i3
e 4 . .
/ -
/7
.
‘ .
.
/ -
w1 e
n
5 10 15 20

8 Conclusion

Figure 10: Request arrival rate and response time

This paper proposed an efficient approach to ensure optimum latency for cloud-native microservices

applications. The selection

of service instances in different machines needs to be done with a carefully

designed load balancing approach to reduce the latency. This paper addresses this problem and proposes



1230 CSSE, 2023, vol.46, no.1

an algorithm to dynamically evaluate the server capacity and the nature of requests in the queues. Though
several load balancing algorithms are available for cloud applications, our solution has a machine
learning component to analyse the previous requests to optimize the solution. Also, it specifically
addresses the longer service chains in microservices applications, which have not been considered so far.
Our solution has been implemented using Netflix open-source software components, and we have
conducted experiments to test our approach with different scenarios. The experiments’ results have shown
that the proposed approach has balanced the load among multiple microservice chains to reduce the
latency and phenomenally improve the end-user experience.

Acknowledgement: We would like to thank the supervisors and the anonymous referees for their kind help
in this research.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] A. Samanta, Y. Li and F. Esposito, “Battle of microservices: Towards latency-optimal heuristic scheduling for
edge computing,” in Proc. 2019 IEEE Conf. on Network Softwarization (NetSoft), Paris, France, pp. 223-227,
2019.
[2] M. Autili, A. Perucci and L. De Lauretis, “A hybrid approach to microservices load balancing,’
Microservices, Springer, Cham, pp. 249-269, 2020.

bl

in Proc.

[3] D. Bhamare, R. Jain, M. Samaka and A. Erbad, “A survey on service function chaining,” Journal of Network and
Computer Applications, vol. 75, pp. 138155, 2016.

[4] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta et al., “Multi-objective scheduling of micro-services for
optimal service function chains,” in Proc. IEEE Int. Conf. on Communications, Paris, France, pp. 1-6, 2017.

[5] F. Wan, X. Wu and Q. Zhang, “Chain-oriented load balancing in microservice system,” in Proc. 2020 World Conf-
on Computing and Communication Technologies (WCCCT), Warsaw, Poland, pp. 10-14, 2020.

[6] C. Guerrero, I. Lera and C. Juiz, “Resource optimization of container orchestration: A case study in multi-cloud
microservices-based applications,” The Journal of Supercomputing, vol. 74, no. 7, pp. 29562983, 2018.

[7]1 H. Zhu, H. Wang and I. Bayley, “Formal analysis of load balancing in microservices with scenario calculus,” in
Proc. 2018 IEEE 11th Int. Conf- on Cloud Computing (CLOUD), San Francisco, CA, USA, pp. 908-911, 2018.

[8] J. Rahman and P. Lama, “Predicting the end-to-end tail latency of containerized microservices in the cloud,” in
Proc. 2019 IEEE Int. Conf. on Cloud Engineering (IC2E), Prague, Czech Republic, pp. 200-210, 2019.

[9] Y. Liang and Y. Lan, “Tclbm: A task chain-based load balancing algorithm for microservices,” Tsinghua Science
and Technology, vol. 26, no. 3, pp. 251-258, 2020.

[10] R. Brondolin and M. D. Santambrogio, “PRESTO: A latency-aware power-capping orchestrator for cloud-native
microservices,” in Proc. 2020 IEEE Int. Conf. on Autonomic Computing and Self-Organizing Systems (ACSOS),
Washington, DC, USA, pp. 11-20, 2020.

[11] M. Rahman, S. Igbal and J. Gao, “Load balancer as a service in cloud computing,” in Proc. 2014 IEEE 8th Int.
Symp. on Service Oriented System Engineering, Oxford, UK, pp. 204-211, 2014.

[12] X.Rui, J. Wy, J. Zhao and M. S. Khamesinia, “Load balancing in the internet of things using fuzzy logic and shark
smell optimization algorithm,” Circuit World, vol. 47, no. 4, pp. 335-344, 2020.

[13] T. Gupta and A. Dwivedi, “Data storage & load balancing in cloud computing using container clustering,”
International Journal of Engineering Sciences & Research Rechnology, vol. 6, no. 9, pp. 656-666, 2017.

[14] M. S. Hamzehloui, S. Sahibuddin and A. Ashabi, “A study on the most prominent areas of research in
microservices,” International Journal of Machine Learning and Computing, vol. 9, no. 2, pp. 242-247, 2019.



CSSE, 2023, vol.46, no.1 1231

[15] H. Wang, Y. Wang, G. Liang, Y. Gao, W. Gao ef al.,, “Research on load balancing technology for microservice
architecture,” in Proc. 2nd Int. Conf. on Computer Science, Communication and Network Security, Sanya,
China, pp. 08002, 2021.

[16] J. B. Lee, T. H. Yoo, E. H. Lee, B. H. Hwang, S. W. Ahn ef al., “High-performance software load balancer for
cloud-native architecture,” IEEE Access, vol. 9, pp. 123704—123716, 2021.



	Latency Minimization Using an Adaptive Load Balancing Technique in Microservices Applications
	Introduction
	Related Research
	Microservices Service Chains
	The System Analysis
	Proposed Approach for Optimal Latency
	Experimental Set-Up and Implementation Details
	Results and Discussion
	Conclusion
	flink9
	References


