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Abstract: The byte stream is widely used in malware detection due to its indepen-
dence of reverse engineering. However, existing methods based on the byte
stream implement an indiscriminate feature extraction strategy, which ignores
the byte function difference in different segments and fails to achieve targeted fea-
ture extraction for various byte semantic representation modes, resulting in byte
semantic confusion. To address this issue, an enhanced adversarial byte function
associated method for malware backdoor attack is proposed in this paper by cate-
gorizing various function bytes into three functions involving structure, code, and
data. The Minhash algorithm, grayscale mapping, and state transition probability
statistics are then used to capture byte semantics from the perspectives of text sig-
nature, spatial structure, and statistical aspects, respectively, to increase the accu-
racy of byte semantic representation. Finally, the three-channel malware feature
image is constructed based on different function byte semantics, and a convolu-
tional neural network is applied for detection. Experiments on multiple data sets
from 2018 to 2021 show that the method can effectively combine byte functions
to achieve targeted feature extraction, avoid byte semantic confusion, and
improve the accuracy of malware detection.

Keywords: Byte function; malware backdoor attack; semantic representation
model; visualization

1 Introduction

Malware is an abbreviation for malicious software, aiming at collecting sensitive information and
controlling a device without permission so that the attackers can take advantage of legitimate users
financially. The “Malware Threat Situation Report 2020” released by MalwareBytes Labs introduced that
compared with 2019, the number of malwares of global windows and Mac increased by 13% and 400%,
respectively, in 2020. The number of software programs targeting new commercial ransomware has
increased by nearly 820%. The explosive growth of malicious software has severely endangered the
property and information security of individuals, enterprises, and the country.

Much effort has been dedicated to the explosive growth of malware, among which dynamic analysis and
static analysis are the two main methods for malware classification to obtain features. The dynamic analysis
method can use the running data obtained in the virtual environment to judge the malicious nature of the
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software and effectively resist anti-detection methods such as obfuscation and encryption. However, because
some malicious behaviors are triggered only under certain conditions, the software may not be fully executed
in the monitored environment, resulting in low code coverage. Meanwhile, dynamic analysis depends on a
stable and reliable virtual environment, which consumes many resources and makes it difficult to meet actual
application scenarios with high real-time performance and limited memory.

The static analysis method aims to explore all possible execution paths in the software by analyzing the
malware source code or binary code to build the statistical characteristics and semantic representation of the
deep behavior of the sample. This kind of method directly analyses the binary data, disassembly code,
control flow diagram and other characteristics of the sample and combines the correlation algorithm to build
the detector. Compared with dynamic analysis, static analysis has higher code coverage, faster feature
extraction and a better detection effect, so it has become the focus of research in the field of malware detection.

Existing static analyses can be divided into reverse engineering-based analyses and original byte stream-
based analyses. The former depends on complex feature engineering, which is time-consuming. The original
byte stream-based analysis takes binary data as input, which is much more efficient, but it is difficult to mine
semantic information from binary data, resulting in low detection accuracy. The following explains the
characteristics and existing problems of the original byte stream-based analysis methods.

The existing visual malware detection method based on the original binary ignores the functional
differences of bytes in different segments. In this method, the code segment bytes with strong logic used
to characterize assembly instructions and machine language and the PE file header bytes reflecting file
structure information and clear semantics are regarded as data segment bytes with low internal relevance
and fuzzy semantics, which leads to byte semantic confusion in different segments and affects the
detection accuracy.

To improve the accuracy of malware detection, this paper proposes a byte-level function-associated
malware detection method, which exploits semantic representation methods of different functional bytes in
various semantic representation modes. First, by analyzing the segment attributes of the bytes, the bytes are
divided into three categories: code, structure, and data. Second, the corresponding methods, such as state
transition probability statistics, Minhash and gray value mapping, are employed to capture byte semantics
and generate three-channel malware characteristic images. Finally, it combines a convolutional neural
network (CNN) to realize malware detection. The proposed method only uses the binary information of
malware without reverse analysis and dynamic analysis, enabling its application to various systems, such as
Windows and Android. The main contributions of this paper are summarized as follows:

(1) Aiming at the problem that existing malware detection methods based on byte streams usually
perform undifferentiated feature extraction on byte data, ignoring the functional differences of
bytes within different segments, leading to byte semantic confusion and affecting the detection
accuracy, a malware detection method based on byte functions is proposed.

(2) The byte function category is determined according to the segment attributes of bytes, and a solution
for byte function division is provided.

(3) Our method does not rely on complicated inverse analysis and uses only raw binary data, which
makes full use of the functional information of bytes to construct byte-level functional association
features, improves the ability to characterize byte semantics, and achieves effective detection of
malware.

2 Related Work

A large number of excellent results have emerged in research related to malware detection. According to
the feature extraction method, it can be divided into dynamic detection and static detection.
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The dynamic detection method runs the sample in a safe and reliable virtual environment, monitors all
the behaviors of the sample in the actual running state, and judges the maliciousness of the software based on
the running data. [1–3] This type of method usually captures the application programming interface (API)
calls, data flow, control flow, network connection, memory usage, and file access during software
operation and combines machine learning and deep learning algorithms to achieve malware detection.
The dynamic detection method is based on the analysis of the running state data, which can effectively
resist anti-detection methods such as confusion and encryption. A problem of low code coverage when
applying dynamic detection arises, as some malicious behaviors are only triggered under specific
conditions. At the same time, dynamic analysis needs to capture operating data for a period of time for
analysis, which is costly in time, relies on a stable and reliable virtual environment, consumes large
resources, and has difficulty meeting practical application scenarios with high real-time performance and
limited memory.

The static analysis method aims to explore all possible execution paths in the sample by analyzing the
source code or binary code of the malware to construct the sample’s statistical characteristics and deep-level
behavioral semantic representation [4–6]. This type of method directly analyses the binary data [7],
disassembly code [8], control flow graph and other characteristics of the sample and constructs a detector
in combination with related algorithms. Compared with dynamic analysis, static analysis has higher code
coverage, fast feature extraction speed and better detection effect, so it has become the focus of research
in the field of malware detection [9].

Static analysis, according to the analysis object, can be separated into two types: analysis based on the
original byte stream and analysis based on reverse engineering characteristics. The original byte stream
analysis approach uses the original binary data as input, does not require reverse analysis on the sample,
and has a high detection efficiency. However, it is difficult to mine the semantic information from the
binary data, so the detection accuracy rate is low. The analysis method based on reverse engineering
features requires operations such as decompression, decryption, and disassembly of malware, extracting
features such as API, disassembly code, and control flow chart. It relies on complex feature engineering
and has low analysis efficiency, but reverse engineering features have stronger semantic representation
capabilities and therefore stronger detection capabilities.

Le et al. extracted bytecode sequences from the original binary data, used a CNN + BiLSTM network to
learn the spatial and temporal characteristics of bytecode sequences, proposed classes the balanced sampling
method reduces the interference of unbalanced data detection results and realized malware detection that does
not rely on expert experience [10]. The structure information of the PE file reflects the structural
characteristics of the software, including information such as the compilation environment and function
calls. Many scholars have researched this topic. Raff et al. used only the header information of PE files to
detect malware, which proved the important application value of PE file structure information in this
task [11].

The development of deep learning technology has brought new ideas and solutions to malware detection
tasks based on binary data. Convolutional neural networks have begun to attract the attention of malware
analysts due to their outstanding results in image processing with their powerful feature extraction
capabilities.

Nataraj et al. applied image processing technology to the field of malware detection for the first time.
They converted eight-bit binary data into grayscale pixel values and generated a specific-dimensional
malware grayscale image based on the sample size [12]. Cui et al. [13] mapped malware bytes to
grayscale values, then used convolutional neural networks to realize malware detection, and combined
them with an ant colony algorithm to alleviate the impact of unbalanced data on the detection results.
Han et al. [14] converted binary data into grayscale images, constructed an entropy map by calculating
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the entropy of each row of pixel values to capture the similarities between malware variants, and conducted
experiments on packaged software. However, with the evolution of malware variant technology, packaged
malware gradually shows the characteristics of low entropy, so the method of determining whether to
package based on software entropy is less reliable.

Based on the analysis of the aforementioned main technologies and methods, the existing raw binary-
based malware visualization detection method ignores the functional differences of bytes in different
segments and uses strong logic to characterize the bytes of assembly instructions and machine language.
The PE file header bytes that reflect the file structure information and have clear semantics are regarded
as data segment bytes with low internal relevance and ambiguous semantics, which leads to semantic
confusion of bytes in different segments and affects the detection accuracy.

Given the above problems, research and study the semantic representation methods of different functional
bytes in various semantic representation modes. The bytes are divided into three types, namely, structure, code,
and data, according to their functions. By analyzing the semantic representation modes of various types of
bytes, they are used accordingly. Methods such as state transition probability statistics, Minhash, and gray
value mapping capture byte semantics and improve the accuracy of byte semantic representation.

3 Byte-Level Function-Associated Malware Detection Method

3.1 Framework

The core idea of the byte-level function-associated malware detection method is to divide the bytes of
the malware according to the function and select the appropriate method according to different functions for
targeted feature extraction to retain the byte function information and realize the function-associated feature
construction as well as malware detection. Specifically, the principal framework of the method is shown in
Fig. 1 which includes 3 main steps.

(1)Byte function extraction preprocessing. The purpose of this step is to obtain byte attributes and classify
byte functions. First, we analyze the attributes of the segment where the bytes are located to determine
the attributes of the bytes. Then, the byte attribute is abstracted, and the byte function category is
determined according to the byte attribute. In the PE file, although the attributes of some bytes are
different, their functions are similar. For example, the function attribute of the byte in the.data
section is “contains initialization data, readable and writable”, and the attribute of the.rdata section is
“contains initialization data, readable”; however, although the latter is not writable, both are used to
store variable data. Therefore, the above type of byte attribute is abstracted as “data representation”.
Based on the above ideas, the method abstracts the byte functions in the PE file into three
categories: “structural representation”, “code representation” and “data representation”.

(2)Feature image generation. The purpose of this step is to extract specific features from bytes of different
functional types and generate malware feature images to achieve information fusion. The structure
characterization type bytes are composed of PE header bytes, and each byte has clear semantics.
Therefore, a structure characterization byte set is constructed for each input sample, and the
summary information of the set is calculated using the Minhash algorithm and arranged in gray
images; the code characterization type byte stores the binary representation of the assembly
instruction, which has a strong internal logic and high context relevance. Therefore, the code
characterization type byte is mapped to a gray value and converted to a gray image. Its sequence
information and spatial structure are retained; data representation type bytes are composed of
numerical values and strings, with low internal relevance and weak semantic information. Therefore,
statistical analysis methods are used to calculate the probability of byte state transition, generate a
state transition matrix and map it to a grayscale image. Three grayscale images are fused into a
three-channel malware feature image to achieve information fusion.
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(3) Image feature learning and classification. Based on the image data in step (2), the convolutional
neural network is used for image feature learning, and the maliciousness detection result of the
sample is output.

3.2 Byte Function Extraction Preprocessing

The PE file is mainly composed of a PE header and multiple segments. Since each part has clear
attributes and functions, the semantics of bytes are strongly related to their positions in the PE file. For
example, the machine code “B0 05” in the code segment represents the instruction “mov al, 05”. In the
data section, it indicates hexadecimal data B005, and in the header of the PE file, it indicates the file type
or compilation platform of the file. The indiscriminate processing of bytes ignores the abovementioned
byte function information and mixes the bytes of each segment, causing byte semantic confusion.
Therefore, it is necessary to extract the byte function information and design a targeted feature extraction
method. The byte function extraction module consists of two key steps: segment attribute analysis and
function type extraction.

The purpose of segment attribute analysis is to determine the byte attribute based on the segment where
the byte is located. Since the semantics of bytes are closely related to their position in the PE file, the segment
attribute of the segment where the byte is located is extracted as the attribute of the byte. The segment
attribute is 32-bit binary data, and the meanings of common bits are shown in Table 1.

Figure 1: Functional block diagram of the byte-level function-associated malware detection method

Table 1: Segment attribute meaning

Segment attribute Meaning

6 This section contains executable code. The code snippet uses “.text”

7 This section contains initialized data. “.data”

8 This section contains uninitialized data. “.bss”

16 This section contains data referenced by the global pointer (GP)

25 This section contains extended relocation information

26 This section can be discarded when needed

27 This section cannot be cached

28 This section cannot be swapped into the page file

29 This section can be shared in memory

30 This section can be executed as code

31 This section is readable (almost all set this section)

32 This section can be written
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After obtaining the byte attributes, the function category must be further analyzed from the byte
attributes. Although the attributes of some bytes in the PE file are different, their functions are very
similar. For example, the functional attributes of the bytes in the.data section are “contains initialization
data, readable and writable”, and the attributes of the.rdata section are “contains initialization data, can be
written and read”. Although the latter is not writable, both are used to store variable data, so the
abovementioned type of byte attribute is abstracted as “data representation”. In the same way, based on
the above ideas, the method abstracts the byte functions in the PE file into three categories: “structural
representation”, “code representation” and “data representation”.

The structure characterization type byte specifically refers to the head byte of the PE file, which is used
to characterize the software structure, external reference information and compilation environment. It has a
fixed structure, and its characteristic is that each byte has clear semantics. The code characterization type byte
refers to the byte used to store the software running code. Its attribute characteristic is that the 6th or 31st bit is
1, indicating that this type of byte contains executable code and can be executed as code, which is common in
code segment.text and user-defined segments. This type of byte is the binary embodiment of the assembly
code, and the internal logic is strong. Data characterization type byte refers to the byte used to store
various types of data, such as numeric value and character string. Its segment attribute feature is that the
7th or 8th bit is 1, and initialized and uninitialized data are regarded as data characterization. Class byte,
common in.data section.rdata section, etc. Since each type of data is stored in binary form, it is difficult
to distinguish within the data segment, and the data are independent of each other, so the internal
relevance of data segment bytes is low and the semantics are ambiguous.

After determining the functional category of all bytes, the same type of bytes is spliced according to the
sequence in the file to obtain a structure characterization byte sequence, a code characterization byte
sequence, and a data characterization byte sequence. After the above process, the functional attributes of
each byte can be abstracted for subsequent targeted analysis. Refer to Table 2 attributes and function
categories corresponding to each part of the data in the PE file.

Table 2: PE file segment attribute characteristics

Section name Functional attributes

.text Code snippet

.data Static variable, global variable data block

.rdata Read-only data block

.idata Import table

.edata Export table

.rsrc Resource section, icon, menu, bitmap

.bss Uninitialized data

.crt Used to support data added during C++ runtime

.tls Various data and variables initialized by the thread

.reloc Base relocation

.sdata Global pointer register data

.pdata Exception table

.didat Delayed loading of data
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3.3 Feature Image Generation

The feature image generation module aims to extract specific features from bytes of different functional
types and generate malware feature images to achieve information fusion. To describe the image generation
process more clearly, input sample I, the structure characterization type byte is marked as SStruct, the code
characterization type byte is marked as SCode, and the data characterization type byte is marked as SData.

For the structure characterization byte SStruct, because of its clear semantics, it is possible to directly
compare the similarity between different structural characterization byte sequences. To preserve the
completeness of the features in the sequence to the greatest extent, the Minhash algorithm calculator is
selected to hash the signature. Minhash, also known as minimum hash, is a locally sensitive hash
algorithm that can achieve data dimensionality reduction while preserving the similarity between sets to
achieve rapid comparison of the similarity of complex sets. The Minhash algorithm was proposed by
Andrei Broder in 1997. It was first applied to repeated page search tasks in search engines and later
applied to large-scale clustering problems, such as document clustering tasks [15].

The Minhash algorithm uses the Jaccard similarity coefficient to measure the similarity of sets. For set A
and set B, the Jaccard coefficient is defined as the ratio of the number of elements in the intersection of A and
B to the number of elements in the union of A and B. The mathematical expression is

J A; Bð Þ ¼ A\Bj j
A[Bj j (1)

The Jaccard coefficient is between 0 and 1. When A\B is an empty set, the Jaccard coefficient is 0,
indicating that there are no common elements in the two sets A and B. When the two sets A and B are
completely consistent, that is, A\B ¼ A[B, the Jaccard coefficient is 1. Therefore, the larger the
Jaccard coefficient is, the higher the similarity between the two sets. When the amount of data in the set
is large, the calculation amount of the intersection and union is large, and the similarity calculation
efficiency is low. The Minhash algorithm aims to quickly estimate the Jaccard coefficient J A; Bð Þ of A
and B in the case of avoiding intersection and union operations. The idea is to calculate the Jaccard
coefficient using the probability that the minimum hash value is equal.

Assuming that h kð Þ is a hash function, for any x, h xð Þ is an integer. After all the elements in set S are
mapped by the hash function, the elements in set S are in a completely random arrangement state. At this
time, the smallest hash value in S is expressed as hmin Sð Þ. Ideally, the hash function h xð Þ has good
uniformity, and there is no hash collision problem in the element mapping process. For sets A and B, if
and only if the element has the smallest hash value in A[B when it is also in A\B, hmin Að Þ ¼ hmin Bð Þ.
Therefore, under a completely random arrangement, the probability that hmin Að Þ and hmin Bð Þ are equal is
exactly the same as J A; Bð Þ,
Pr hmin Að Þ ¼ hmin Bð Þ½ � ¼ J A; Bð Þ (2)

In practical applications, it is difficult for the hash function h(x) to have good uniformity, and it is
difficult to avoid hash collisions in the case of large amounts of data. Therefore, the probability of
hmin Að Þ and hmin Bð Þ is equal to approximate J A; Bð Þ There is a certain deviation. To minimize the
deviation, the Minhash algorithm uses multiple hash functions, and the minimum hash value of multiple
hash results is averaged as the final result. Suppose k hash functions are selected,

h1 xð Þ; h2 xð Þ; h3 xð Þ; � � � ; hk xð Þ; (3)
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Then, for sets A and B, the minimum hash value calculation result is

hmin Að Þ ¼ hmin;1 Að Þ; hmin;2 Að Þ; hmin;3 Að Þ; � � � ; hmin;k Að Þ� �
; (4)

hmin Bð Þ ¼ hmin;1 Bð Þ; hmin;2 Bð Þ; hmin;3 Bð Þ; � � � ; hmin;k Bð Þ� �
; (5)

After Minhash calculation, the Jaccard coefficients of sets A and B are calculated as follows:

J A; Bð Þ ¼ J hmin Að Þ; hmin Bð Þð Þ ¼ hmin Að Þ \ hmin Bð Þ
hmin Að Þ [ hmin Bð Þ : (6)

Under normal circumstances, the more hash functions that are selected, the more accurately the Minhash
algorithm estimates the Jaccard coefficient.

In the Minhash signature calculation process, a total of 256 * 256 = 65536 different hash functions are
set through the random seed, and the hash calculation process is shown in formula (7) each time. In the
formula, mod is a large number to reduce hash collisions and improve the quality of signatures. mod is
set to 4294967311 during the experiment.

hashi ¼ hi xð Þ ¼ ci;1 � xþ ci;2
� �

%mod; (7)

After 65536 hash operations, the signature Shash of SStruct is obtained, and the expression is

Shash ¼ Minhash SStructð Þ ¼ hash1; hash2; hash3; . . . ; hashnf g; n ¼ 65536: (8)

The signature Shash contains 65536 hash results. To make full use of the feature extraction capabilities of
image processing technology, the 65536 results are modulo 256 and mapped to grayscale values and
arranged into a 256 * 256 grayscale image IMGStruct.

Regarding the code characterization byte SCode, due to its strong internal logic and high context
relevance, the method of reference [13] arranges the code characterization byte in sequence into a fixed-
width grayscale image to preserve the code and characterizes the spatial structure information and context
information of the class byte. The corresponding relationship between the sample size and image width is
shown in Table 3.

Since the convolutional neural network has the limitation of a fixed input dimension, it is necessary to
perform dimension normalization processing on the grayscale image of the code characterization byte. After
statistical analysis, the median sample size was 80 KB. According to the mapping relationship in Table 3, the

Table 3: Correspondence between sample size and image width

Sample size Image width

<10 kB 32

10 kB∼30 kB 64

30 kB∼60 kB 128

60 kB∼100 kB 256

100 kB∼200 kB 384

200 kB∼500 kB 512

500 kB∼1000 kB 768

>1000 kB 1024
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image is uniformly scaled to 256 * 256, and the code characterization byte grayscale image IMGCode is
obtained. The image scaling method adopts the bilinear difference method, which can effectively reduce
the loss of image information in the normalization process. The code representation class byte grayscale
image generation process is formalized as

IMGCode ¼ Bilinear Interpolation ðreshapeðSCode; �1; widthÞ; 256; 256Þ: (9)

For the data characterization byte SData, due to its low internal relevance and weak semantic information,
a statistical analysis method is selected. Regarding the data characterization type byte as a byte stream, it can
be expressed as a random process shown in formula (10).

Bytei; i 2 0; 1; . . . ; N � 1f g: (10)

In the formula, N represents the number of data characterization class bytes. Since most of the malware
is generated by variants on the basis of existing malware, these malware also have great similarities in terms
of byte distribution. Assuming that the probability of occurrence of the byte Bytei is only related to the byte
Bytei�1, the random variable byte Bytei is a Markov chain, and the calculation formula is

P Byteiþ1jByte0; . . . ; Byteið Þ ¼ P Byteiþ1jByteið Þ: (11)

Since the value of each byte is in the range of 0–255, there are 256 possible states of byte Bytei,
Bytei 2 0; 1; . . . ; 255f g. Counting the transition probability of each state of the byte, the Markov state
transition matrix can be obtained. Assuming that Pm;n represents the probability that the next byte of byte
m is n, then P m; nð Þ can be calculated according to formula (12).

Pm;n ¼ P njmð Þ ¼ f m; nð ÞP255
n¼0 f m; nð Þ : (12)

In the formula, f m; nð Þ represents the frequency at which the next byte of byte m is n. Considering that a
state transition may occur between all bytes, a state transition probability matrix M is constructed.

M ¼
P0;0 P0;1 . . . P0;255

P1;0 P1;1 . . . P1;255

..

.

P255;0

..

.

P255;1

. .
. ..

.

� � � P255;255

2
6664

3
7775: (13)

According to the matrix M, the Markov image IMGData is generated. Each state transition probability
Pm;n in the matrix M corresponds to a pixel in the image, so the image size is 256 * 256. Through the
above method, the statistical characteristics of data characterization type bytes can be effectively retained.

Thus far, all the bytes of each input sample are divided into three parts according to the function
category, and a specific algorithm is selected for targeted feature extraction according to the
characteristics of each part, which realizes the construction of functionally related features and arranges
the features into grayscale images. Obtain the structure characterization byte image IMGStruct, the code
characterization byte image IMGCode, and the data characterization byte image IMGData. Combining the
viewpoint of information fusion, the method fuses three grayscale images corresponding to the R, G, and
B channels into three-channel feature images to make full use of the feature extraction results of various
types of bytes. The image fusion process can be expressed as formula (14).

IMG ¼ IMGStruct � IMGCode � IMGData: (14)
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3.4 Image Feature Learning and Classification

After the abovementioned visualization operation, each input sample is converted into a three-channel
feature image. The network uses the ReLU function as the activation function to enhance the nonlinear
expression ability of the network. When designing the experiment, considering that there are certain
differences in the feature attributes of various types of bytes, the network structure complexity required
for the fastest convergence is different, so three different convolutional neural networks are initially
designed. During the experiment, it was found that although the IMGCode feature space is large and the
required network structure is more complicated, the other two images can converge quickly with a simple
network structure, but compared to the three channels separately processing and merging the results, the
model convergence effect is better after image fusion, so the image fusion method is adopted, and a
convolutional neural network is used for feature extraction to realize malware detection.

4 Experiments and Analysis

4.1 Experimental Environment and Conditions

The hardware and software environment used in the experiment is shown in Table 4.

4.2 Evaluation Method

The experiment uses the standard statistical indicators of machine learning, accuracy, recall, precision,
and F1-score to accurately evaluate the performance of the classification model to more fully reflect the
effectiveness of the method sex and reliability. The calculation method of each evaluation index is shown
in Table 5.

Among them, TP is the number of samples that are correctly classified as malware; TN is the number of
samples that are correctly classified as benign software; FP is the number of samples that misclassify benign
software as malware; FN is the number of samples that misclassify malware as benign software Quantity.

Table 4: Software and hardware resources used in the experiment

Item Configuration

Dell desktop PC Intel(R) Core(TM) i7-6700 CPU@3.40 GHz, RAM 8G, Windows10 system

Main software and
development kits

python3.7, scikit-learn0.22

Table 5: Experimental evaluation index calculation method

Index Calculation method

Precision TP

TP þ FP
Recall TP

TP þ FN
F1-Score 2 � Precious � Recall

Preciousþ Recall
Acc TP þ TN

TP þ TN þ FP þ FN
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4.3 Ablation Test Experiment

4.3.1 Purpose and Data Source
The ablation test experiment aims to explore the contribution of each part of the information in the

sample to the judgment of maliciousness and verify the effectiveness and feasibility of the three
functional correlation feature extraction methods.

Table 6 shows the data sets applied in the experiments. The experimental data contain two data sets,
MalShare and AntiBIT. MalShare is a public data set that contains tens of thousands of the latest malware
data and its tags. To ensure the advancement of the experimental data, the experiment selected all
samples from 2019 to early 2021 in the MalShare data set, which contained 3909 malware and
4276 benign software. The data set of malicious samples actually captured by the industry from 2018 to
2020 provided by Antiy Labs provided by AntiBIT includes 12,280 benign samples and 17,608 malware
from 78 families.

4.3.2 Experimental Procedure
To verify the effectiveness of different feature extraction methods for the three bytes, the following 4 sets

of ablation test experiments are designed.

(1) To verify whether the Minhash algorithm method can target the clear semantic characteristics of the
structure characterization byte sequence, the main characteristics of the sequence are retained to
compare the sequence similarity, and the Minhash algorithm is used to calculate the hash
signature of the structure characterization byte sequence to construct gray degree images to
realize malware detection.

(2) To prove whether grayscale mapping can effectively retain the spatial structure information and
context-related information of the internal strong logic and context correlation characteristics of
the code characterization byte, the grayscale mapping code characterization byte is converted to
grayscale. Image and test accuracy.

(3) To prove whether the state transition probability statistics method can effectively reflect the
statistical characteristics of the data characterization byte sequence and the statistical data
characterize the state transition of the class byte, construct the state transition probability graph
and test the accuracy of malware detection.

(4) To prove that the image fusion method can make full use of the functional categories of the
information of each part of the byte to realize the feature extraction and construction of
functional associations, the above three feature images are combined and tested.

The above 4 methods are used for experimental analysis on 2 data sets, and 8 sets of experimental results
are obtained. See Table 7 for details of the experimental parameter settings.

Table 6: MalShare and AntiBIT data sets

Sample type Attributes MalShare AntiBIT

Malicious sample Quantity 3909 17608

Years 2020–2021 2018–2020

Benign sample Quantity 4276 12280

Years 2019–2021 2018–2019
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The experiment uses the 5-fold cross-validation method to test the effect, and the average value of each
index in the 5-fold crossover process is used as the final experimental result. At the same time, the L2 regular
term is added to the experiment to enhance the generalization ability of the model. In terms of experimental
data division, considering that the number of unknown malware in actual network scenarios is much larger
than known, 40% of the data are divided into the training set, 10% of the data are used as the verification set,
and 50% of the data are used as the test set.

4.3.3 Results and Analysis
The 8 experimental results obtained by the 4 ablation test methods on the 2 data sets are shown in

Table 8.

(1) The three feature extraction methods can effectively construct functional correlation features
according to functional categories and improve the detection effect. The three feature extraction
methods reached an accuracy rate of more than 81% on the MalShare data set and 85% on the
AntiBIT data set, indicating that Minhash, gray value mapping and state transition probability
statistics can effectively realize targeted feature extraction on structure bytes, code bytes and data
bytes and construct the malware feature image related to the function. At the same time, the
experimental effect of the three-channel feature image fusion is increased by up to 10%
compared to the single-channel effect by 5%. This increase proves that the image fusion method
can make full use of the functional categories of the information of each part of the byte to
improve the malware detection effect.

(2) There are significant differences in the contribution of bytes of different functional categories to the
detection results and detection capabilities. The structure byte has the highest contribution. It
performs well on both data sets, while the code byte and data byte contribute less. In addition, the
code byte has a high recall rate on both data sets, indicating that the use of the code byte for
detection has a low rate of false negatives, and it has a strong ability to detect unknown malware.
Many studies in recent years only use code snippets for malware analysis. These research results
show that the data in the code segment can better characterize the behavior of the software.
Analysis from the perspective of software behavior can explore the potential behavior patterns of
malware and help discover unknown malware. This conclusion is consistent with the experimental
results of this chapter. In addition, although the data byte has a higher accuracy rate, the precision
(accuracy rate) is significantly lower than other methods, indicating that the use of the data
characterization type byte for detection has a higher false positive rate. Through the analysis of
the output convolution kernel parameters, it is found that there are more empty bytes and 0xCC
bytes in the benign software, which causes the model to focus on the state transition of these two
bytes when judging the benign software, and these two bytes appear. The reason is that the
default filling value of stack initialization has nothing to do with whether the software is
malicious, so some malware is misclassified as benign.

Table 7: Ablation test experiment parameter setting

Setting item Attributes

Optimization Adam

Learning rate 0.0008

Epoch 100

Batch size 32

L2 regularization coefficient 0.01
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4.4 Comparative Analysis Experiment

4.4.1 Purpose and Data Source
The comparative analysis experiment verifies the effectiveness of the proposed method by comparing

two other advanced malware detection methods. The data source used in the experiment is the same as
the ablation test experiment; see Section 4.2.1 for details.

4.4.2 Experimental Procedure
The comparative analysis experiment refers to the advanced GDMC algorithm in 2020 [1] and the

excellent DMDL algorithm in 2018 [13]. The network structure used in each method is reproduced with
reference to the description in the comparative literature. The network structure used in the work of this
chapter is explained in detail in Section 3.3.4. GDMC uses a VGG-16 network structure, and DMDL
uses a seven-layer neural network. The structure is shown in Fig. 2.

The comparative experiment uses the 5-fold cross-validation method to obtain the experimental results.
The training parameters of each convolutional neural network are the same as those of the ablation test
experiment.

4.4.3 Results and Analysis
The experimental results of the three methods on the two data sets are shown in Table 9.

In addition, DMDL and GDMC both adopt indiscriminate byte feature extraction strategies. To visually
show the impact of the indiscriminate feature extraction strategy on the detection results, accuracy is used as
the evaluation index here, and only part of the ablation experiments is listed. The results of targeted feature

Table 8: Ablation test results

Data set Method Accuracy Recall Precision F1

MalShare Structure class + Minhash 85.14% 86.51% 85.22% 0.8737

MalShare Code class + grayscale mapping 83.15% 90.11% 83.96% 0.8606

MalShare Data type + state transfer 81.64% 81.98% 80.77% 0.8231

MalShare Three-channel fusion 90.54% 92.47% 92.08% 0.9116

AntiBIT Structure class + Minhash 90.59% 91.48% 91.21% 0.9194

AntiBIT Code class + grayscale mapping 85.10% 90.74% 85.26% 0.8921

AntiBIT Data type + state transfer 88.22% 89.34% 84.52% 0.8911

AntiBIT Three-channel fusion 94.09% 95.63% 95.02% 0.9544

Convolutional 
layer:8*4*4

Pooling layer:
2*2

Convolutional 
layer:16*2*2

Pooling layer:
2*2

Fully connected 
layer:80*1

Figure 2: DMDL network structure diagram
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extraction of the data are compared and analyzed with the indistinguishable feature extraction results of
DMDL and GDMC, as shown in Table 10.

5 Discussion

The detection effect of the malware detection method with byte-level function correlation is better than
that of the comparison algorithm. From the experimental results in Table 9, it can be seen that the detection
accuracy rate of this method on the two data sets exceeds 90%, the accuracy rate, recall rate and F1 value are
kept in good synchronization with the accuracy rate, and the false positive rate is relatively high. The
detection ability is significantly improved compared to the comparison algorithm, which proves the
effectiveness of the method. The method does not rely on reverse analysis, only starts from binary raw
data, makes full use of byte functions for targeted feature extraction, and has good performance on
malicious sample data sets in the past two years, which has strong practical value.

Undifferentiated feature extraction will confuse byte semantics and affect detection accuracy. From the
experimental results in Table 10, it can be observed that compared to DMDL and GDMC, which perform
indifferent feature processing on all bytes, methods 1–3 and 6–8 perform better feature extraction for
partial bytes. The accuracy rate indicates that the indistinguishable feature extraction will confuse the byte
semantics, and the byte function has a significant contribution to the malware detection task, which
proves the rationality of the method.

Table 9: Comparative analysis of experimental results

Method Data set Accuracy Recall Precision F1

DMDL(2018) MalShare 82.98% 83.15% 82.48% 0.8302

GDMC(2020) MalShare 83.94% 83.99% 83.66% 0.8211

This paper works MalShare 90.54% 92.04% 90.68% 0.9277

DMDL(2018) AntiBIT 82.41% 83.91% 82.15% 0.8294

GDMC(2020) AntiBIT 90.19% 90.65% 90.03% 0.9117

This paper works AntiBIT 94.09% 95.74% 93.84% 0.9508

Table 10: Feature extraction and comparative analysis of experimental results

Numbering Method Database Accuracy

1 Structure Characterization + Minhash MalShare 85.14%

2 Code representation + grayscale mapping MalShare 83.15%

3 Data representation + state transition MalShare 81.64%

4 DMDL(2018) MalShare 82.98%

5 GDMC(2020) MalShare 83.94%

6 Structure Characterization + Minhash AntiBIT 90.59%

7 Code representation + grayscale mapping AntiBIT 85.10%

8 Data representation + state transition AntiBIT 88.22%

9 DMDL(2018) AntiBIT 82.41%

10 GDMC(2020) AntiBIT 90.19%
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6 Conclusions

In the MalShare and AntiBIT malware data sets from 2018 to 2020, the detection accuracy of the method
reached 90.54% and 94.09%, respectively. In the ablation test experiment, using any functional category byte
alone for detection has achieved good results, and the detection effect is further improved when the three
functional category bytes are fused. Compared with the excellent DMDL and GDMC algorithms, the
byte-level function correlation method has achieved better detection results. Therefore, this method can
effectively use the functional information of bytes to enhance the characterization ability of byte
semantics, avoid byte semantic confusion, and improve the accuracy of malware detection.

However, the malware detection method proposed in the paper is a static analysis method, which has a
strong dependence on source code and binary code and cannot effectively analyze malware variants such as
encryption, polymorphism, and metamorphosis. Some advanced malware will deliberately hide malicious
behaviors through technical means such as dynamic encryption and decryption, component concealment
and contraction, and command dynamic obfuscation, thereby avoiding analysis methods based on static
characteristics. Dynamic analysis reduces the dependence on source code and binary code by monitoring
software network communication, process operation, file reading, and writing behavior characteristics in a
controllable environment. Therefore, the dynamic analysis method is not affected by the above evasion
methods. Our future work is to build a software analysis system with dynamic and static characteristics to
further enhance the system’s ability to deal with malware.
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