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Abstract: (Aim) The COVID-19 has caused 6.26 million deaths and 522.06 mil-
lion confirmed cases till 17/May/2022. Chest computed tomography is a precise
way to help clinicians diagnose COVID-19 patients. (Method) Two datasets are
chosen for this study. The multiple-way data augmentation, including speckle
noise, random translation, scaling, salt-and-pepper noise, vertical shear, Gamma
correction, rotation, Gaussian noise, and horizontal shear, is harnessed to increase
the size of the training set. Then, the SqueezeNet (SN) with complex bypass is
used to generate SN features. Finally, the extreme learning machine (ELM) is
used to serve as the classifier due to its simplicity of usage, quick learning speed,
and great generalization performances. The number of hidden neurons in ELM is
set to 2000. Ten runs of 10-fold cross-validation are implemented to generate
impartial results. (Result) For the 296-image dataset, our SNELM model attains
a sensitivity of 96.35 ± 1.50%, a specificity of 96.08 ± 1.05%, a precision of
96.10 ± 1.00%, and an accuracy of 96.22 ± 0.94%. For the 640-image dataset,
the SNELM attains a sensitivity of 96.00 ± 1.25%, a specificity of 96.28 ±
1.16%, a precision of 96.28 ± 1.13%, and an accuracy of 96.14 ± 0.96%. (Conclu-
sion) The proposed SNELM model is successful in diagnosing COVID-19. The
performances of our model are higher than seven state-of-the-art COVID-19
recognition models.

Keywords: SqueezeNet; complex bypass; transfer learning; extreme learning
machine; COVID-19; deep learning; convolutional neural network; computed
tomography

1 Introduction

COVID-19 has caused 6.26 million deaths and 522.06 million confirmed cases till 17/May/2022. The
polymerase chain reaction (PCR) can effectively detect its existence; however, the cluster of false-positive
[1] perplexes clinicians. The chest computed tomography (CCT) [2] is another precise way to help
clinicians to diagnose COVID-19 patients. Till July/2022, three vaccines are approved for use in UK,
including Moderna, Oxford/AstraZeneca, and Pfizer/BioNTech.

In the recent few years, scholars proposed to novel artificial intelligence (AI)-based models for
COVID-19 diagnosis. For examples, El-kenawy et al. [3] proposed an innovative feature selection and
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voting (FSV) classifier Wu [4] proposed a three-segment biogeography-based optimization (3SBBO) method
for COVID-19 detection. Zhang [5] proposed a model combining a convolutional neural network (CNN)
with stochastic pooling (SP). Their method is renamed CNNSP. Chen [6] merged gray-level co-
occurrence matrix (GCM) and support vector machine (SVM) for COVID-19 classification. This method
is named GCMSVM. Wang [7] proposed a wavelet entropy and Jaya (WEJ) algorithm. Pi [8] merged
GCM with Schmitt neural network (SNN) for COVID-19 diagnosis. Their model is named GCMSNN.
Wang [9] introduced self-adaptive particle swarm optimization (SaPSO) for COVID-19 detection. Ni
et al. [10] proposed a deep learning approach (DLA) to characterize COVID-19. Wang et al. [11]
developed a weakly supervised framework. Their model was named DeCovNet. Gafoor et al. [12]
developed a deep learning model (DLM) to detect COVID-19 using chest X-ray.

Nevertheless, the above models still have room to improve in terms of their recognition performances,
i.e., the accuracy. Inspired by the model in Özyurt et al. [13], we proposed SqueezeNet-guided ELM
(SNELM), which combines traditional SqueezeNet (SN) with the extreme learning machine (ELM).
Nevertheless, our SNELM is different from [13] in two ways. First, we do not use fuzzy C-means for
super-resolution. Second, we choose the SN model with complex bypass, while [13] chooses the vanilla
SN model. Our experiments show the effectiveness of this proposed SNELM model. In all, this study has
several novel contributions:

(a) The multiple-way data augmentation (MDA) is used to increase the size of the training set.

(b) We propose the novel SNELM model to diagnose COVID-19.

(c) SNELM model gives higher results than seven state-of-the-art models.

2 Dataset and Preprocessing

Two datasets (D1 and D2) are used since they can report the results more unbiasedly. The details of the
two datasets can be found in [4,5]. Table 1 displays the descriptions of D1 and D2. Suppose n1 stands for the
number of subjects, and n2 the number of CCT images. It is easy to observe that there are n2 ¼ 296 images in
D1 and n2 ¼ 640 images in D2.

A five-step preprocessing is employed. The flowchart can be seen in Fig. 1a, in which the five steps are
grayscaling, histogram stretching (HS), margin and text crop (MTC), downsampling (DS), and coloriazation.
HereU stands for the dataset at each step. HS is used to enhance the contrast. SupposeU1 ¼ u1 kð Þf g, we first
need to calculate its lower bound uL1 kð Þ and upper bound uU1 kð Þ as:

uU1 kð Þ ¼ max
x

max
y

u1 x; yjkð Þ
uL1 kð Þ ¼ min

x
min
y

u1 x; yjkð Þ ;

8<
: (1)

Table 1: Two COVID-19 datasets

Dataset n1 n2

D1 [4] 66 + 66 148 + 148

D2 [5] 142 + 142 320 + 320
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and the HSed image is defined as

u2 kð Þ ¼ u1 kð Þ � uL1 kð Þ
uU1 kð Þ � uL1 kð Þ : (2)

The grayscale range of u2 kð Þ is umin; umax½ �. Figs. 1b and 1c show the raw COVID-19 and preprocessed
images, respectively. The downsampled dataset is symbolized as U4 ¼ u4 kð Þf g with the size of each image as
a1; a2ð Þ. The final grayscale image u4 kð Þ is then stacked along channel direction to output the color image u kð Þ:
u kð Þ ¼ f channelcat u4 kð Þ; u4 kð Þ; u4 kð Þ½ �; (3)

where f channelcat denotes the catenation function along the channel direction. The size of u kð Þ is now a1 � a2 � 3.

3 Description of SNELM

3.1 Multiple-Way Data Augmentation

Table 2 itemizes the abbreviation and their meanings. Fig. 2 illustrates the schematic of MDA. Assume
the original image is u kð Þ, then the horizontally mirrored image (HMI) is defined as uHMI kð Þ as
uHMI x; yjkð Þ ¼ u a1 � x; yjkð Þ; (4)

where we do not take color channels into consideration. Then, all the b1 different data augmentation (DA)
methods gDAi ; i ¼ 1; . . . ; b1 are applied to both u kð Þ and uHMI kð Þ. Suppose each DA generates b2 new
images. Finally, the whole generated images � kð Þ are defined as:

u kð Þ7!� kð Þ ¼ f imagecon

u kð Þ uHMI kð Þ
gDA1ð Þ u kð Þ½ �|fflfflfflfflffl{zfflfflfflfflffl}

b2

gDA1ð Þ uHMI kð Þ� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

b2

� � � � � �
gDAb1ð Þ u kð Þ½ �|fflfflfflfflfflffl{zfflfflfflfflfflffl}

b2

gDAb1ð Þ uHMI kð Þ� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

b2

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;
; (5)

where f imagecon is the concatenation function along the image direction. The augmentation factor of MDA
(AFMDA) is defined as:
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Figure 1: Preprocessing
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b3 ¼ � kð Þj j
u kð Þ ¼ 2� b1 � b2 þ 2: (6)

Compared to normal individual DA methods, the MDA fuse the separate DA methods together and thus
can yield better performances [14].

Table 2: Abbreviation and meaning

Abbreviation Meaning

AFMDA Augmentation factor of MDA

CCT Chest computed tomography

CNN Convolutional neural network

CV Cross-validation

EL Expand layer

ELM Extreme learning machine

FMI Fowlkes–Mallows index

HMI Horizontally mirrored image

HS Histogram stretching

MCC Matthews correlation coefficient

MDA Multiple-way data augmentation

MSD Mean and standard deviation

MTC Margin and text crop

PCR Polymerase chain reaction

SL Squeeze layer

SN SqueezeNet

TCM Test confusion matrix

Figure 2: Schematic of MDA
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3.2 Fire Module and SqueezeNet with Complex Bypass

SqueezeNet (SN) is chosen since it can achieve a 50× reduction in model size compared to AlexNet and
maintain the same accuracy [15]. This lightweight SN can help make our final COVID-19 recognition model
fast and still have sufficient accuracy.

The fire module (FM) is the core component in the N. It contains a squeeze layer (SL), which uses only
1� 1 kernels, followed by an expand layer (EL), which contains several 1� 1 and 3� 3 kernels [16]. The
structure of FM is shown in Fig. 3. Three tunable hyperparameters need to be tuned in an FM: s1�1, e1�1,
and e3�3, which stand for the number of 1� 1 kernels in the SL, and the number of 1� 1 and 3� 3
kernels in the EL.

Compared to ordinary convolutional neural network (CNN) architectures, the SN [17] has three main
advantages: (i) replace traditional 3� 3 kernels with 1� 1 kernels. (ii) drop the number of input channels
to 3� 3 kernels using SLs. (iii) downsample late in SN, so the convolution layers have large activation
maps [18].

There are different variants of SN. Özyurt et al. [13] used vanilla SN, while our SNELM use SN with
complex bypass. Fig. 4 shows the flowchart, where we can observe not only simple bypass but also complex
bypass are added between some FMs. If the “same-number-of-channel” requirement is met, a simple bypass
is added. If that requirement is not met, a complex bypass is added. These bypasses can help improve the
recognition performances, and their designs are similar to those in ResNet.

3.3 SN-Guided ELM

The SN features after global avgpool (See Fig. 4) are used as the learnt features and passed to the
extreme learning machine (ELM) [19] that features a very fast classifier. Besides, ELM is simple to use,
has greater generalization performance, and is appropriate for several nonlinear kernel functions and
activation functions. Its structure is a single hidden-layer feedforward network shown in Fig. 5.

Let the i-th input sample be xi ¼ ðxi1; . . . ; xinÞT 2 Rn; i ¼ 1; . . . ; N . The output of an ELM with L
hidden neurons is:

Oi ¼
XL

j¼1
kjh ajxi þ bj

� �
; i ¼ 1; . . . ; N ; (7)

Squeeze

1x1 and 3x3 filtersExpand

1x1 filters

ReLU

ReLU

Figure 3: Structure of FM (s1�1 ¼ 3, e1�1 ¼ 3, e3�3 ¼ 3)
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where h stands for the activation function, aj ¼ ðaj1; aj2; . . . ; ajnÞT the input weight, bj the bias,
Oi ¼ oi1; oi2; oi3; . . . oimð ÞT the output of the model for the i-th input sample. Afterwards, the model is
trained to yield

XL
j¼1

kjh ajxi þ bj
� � ¼ yi; i ¼ 1; . . . ; N : (8)

Let us rephrase the above equation as

Mk ¼ Y ; (9)

where

M a1; . . . ; aL; b1; . . . ; bL; x1; . . . ; xNð Þ ¼
h a1x1 þ b1ð Þ � � � h aLx1 þ bLð Þ

..

. . .
. ..

.

h a1xN þ b1ð Þ � � � h aLxN þ bLð Þ

2
64

3
75
N�L

; (10)

Input CCT conv1

maxpool/2

fire2

fire3

fire4

maxpool/2

fire5

fire6

fire7

fire8

maxpool/2

fire9

conv10

global avgpool

softmaxsoftmax COVID or HC

conv1x1

conv1x1

conv1x1

conv1x1

SN Features

Figure 4: Flowchart of SN with simple bypass and complex bypass

Figure 5: Schematic of SN-guided ELM
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k ¼
kT1

..

.

kTL

2
64

3
75
L�m

; Y ¼
yT1
..
.

yTN

2
64

3
75
N�m

: (11)

It challenges the users to acquire the optimal aj, bj and kj. ELM can yield a solution quickly via the
pseudo inverse:

k ¼ M yY ; (12)

where My signifies the Moore-Penrose [20] of M . The pseudocode is shown in Algorithm 1.

Algorithm 1: ELM

Input SN features xi; yi½ �.
Step A Initialize values of input weight aj and the bias bj randomly.

Step B Compute the output matrix M using Eq. (10).

Step C Compute the output weight k using the pseudo inverse in (12).

Output The trained ELM model.

3.4 Cross-Validation and Evaluation

T runs of I-fold cross-validation (CV) are carried out. Assume the test confusion matrix (TCM,
symbolized as �) over t-th run and i-th fold is:

� t; ið Þ ¼ h11 t; ið Þ h12 t; ið Þ
h21 t; ið Þ h22 t; ið Þ

� �
; (13)

where i ¼ 1; . . . ; I stands for the fold index, and t ¼ 1; . . . ; T the run index. The h11; h12; h21; h22ð Þ
signify true positive, false negative, false positive, and true negative, respectively. At i-th trial, the i-th
fold is employed as test, and the left folds 1; . . . ; i� 1; iþ 1; . . . ; If g altogether are employed as
training, as shown in Fig. 6, here one I-fold CV consists of I trials.

� t; ið Þ is gauged based on the i-th fold, which is the test set. We afterward take their summation across
altogether I trials, as shown in Fig. 6. The TCM at t-th run � tð Þ is attained as

Figure 6: Schematic of one run of I-fold CV
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� tð Þ ¼
XI

i¼1
� t; ið Þ: (14)

At t-th run, seven indicators~j tð Þ based on the TCM are calculated and concatenated in a whole as � tð Þ:
� tð Þ7!~j tð Þ ¼ jm tð Þ; m ¼ 1; . . . ; 7f g; (15)

where the first four indicators mean: k1 sensitivity, j2 specificity, j3 precision, and j4 accuracy as:

k1 tð Þ ¼ h11 tð Þ
h11 tð Þ þ h12 tð Þ

k2 tð Þ ¼ h22 tð Þ
h22 tð Þ þ h21 tð Þ

k3 tð Þ ¼ h11 tð Þ
h11 tð Þ þ h21 tð Þ

k4 tð Þ ¼ h11 tð Þ þ h22 tð Þ
h11 tð Þ þ h12 tð Þ þ h21 tð Þ þ h22 tð Þ

8>>>>>>>>>><
>>>>>>>>>>:

: (16)

j5 is F1 score:

k5 tð Þ ¼ 2� j3 tð Þ � j1 tð Þ
j3 tð Þ þ j1 tð Þ ¼

2� h11 tð Þ
2� h11 tð Þ þ h12 tð Þ þ h21 tð Þ ; (17)

j6 is Matthews correlation coefficient (MCC), which is a more reliable statistical rate that produces a
high score only if the prediction obtained good results in all of the four entries in the TCM [21].

k6 tð Þ ¼ h11 tð Þ � h22 tð Þ � h21 tð Þ � h12 tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h11 tð Þ þ h21 tð Þ½ � � h11 tð Þ þ h12 tð Þ½ � � h22 tð Þ þ h21 tð Þ½ � � h22 tð Þ þ h12 tð Þ½ �p ; (18)

and j7 is the Fowlkes–Mallows index (FMI).

k7 tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h11 tð Þ
h11 tð Þ þ h21 tð Þ �

h11 tð Þ
h11 tð Þ þ h21 tð Þ

s
(19)

There are two indicators j4 and j6 using all the four basic measures h11; h12; h21; h22ð Þ. This study
finally chooses j6 as the most important indicator due to its larger range (�1 � j6 � þ1) than that of j4
(0 � j4 � 1).

The previous process is for one run of I-fold CV. The experiment runs the I -fold CV T runs. After all
runs, the mean and standard deviation (MSD) of all seven indicators~j ¼ jm m ¼ 1; . . . ; 7ð Þf g are gauged
over T runs.

l jmð Þ ¼ 1

T
�
XT

t¼1
jm tð Þ

r smð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T � 1
�
XT

t¼1
jm tð Þ � l jmð Þj j2

r
8><
>: ; m ¼ 1; . . . ; 7; (20)

where l signifies the mean value and r the standard deviation. The values of MSD are recorded in the format
of l� r.
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4 Experiments, Results, and Discussions

4.1 Hyperparameter Setting

The hyperparameters are listed in Table 3. The minimum and maximum gray values of HSed images are
0; 255ð Þ. The size of the downsampled image is 227� 227. We have in total b1 ¼ 9 different DA methods
on both raw image and HMI. Every DA produces b2 ¼ 30 images. The AFMDA is b3 ¼ 542. Activation
function in ELM is chosen the sigmoid function. The number of hidden neurons in ELM is set to
L ¼ 2000. We run ten runs of 10-fold CV to report the robust results.

4.2 Results of MDA

The MDA result of Fig. 1c is shown in Fig. 7, in which we can observe the nine DA results, i.e., speckle
noise, random translation, scaling, salt-and-pepper noise, vertical shear, Gamma correction, rotation,
Gaussian noise, and horizontal shear. Due to the space limit, the nine DA outcomes on HMI are not
displayed. Fig. 7 indicates that the MDA can increase the diversity of the training set.

Meanwhile, the AFMDAvalue b3 ¼ 542 makes the training burden of our model 542 times as much as
that of the model without MDA. Nevertheless, in the test stage, there is no need to apply MDA to the test
images, so our model is the same quick as the model without MDA.

4.3 Results of Proposed SNELM Model

Table 4 displays the ten runs of 10-fold CV, where t = 1, 2, ..., 10 means the run index. For the dataset
D1, SNELM attains a sensitivity of 96.35 ± 1.50%, a specificity of 96.08 ± 1.05%, a precision of 96.10 ±
1.00%, an accuracy of 96.22 ± 0.94%, an F1 score of 96.22 ± 0.95%, an MCC of 92.45 ± 1.87%, and an
FMI of 96.22 ± 0.95%. For the dataset D2, SNELM attains a sensitivity of 96.00 ± 1.25%, a specificity of
96.28 ± 1.16%, a precision of 96.28 ± 1.13%, an accuracy of 96.14 ± 0.96%, an F1 score of 96.13 ±
0.96%, an MCC of 92.29 ± 1.91%, and an FMI of 96.14 ± 0.96%.

4.4 Confusion Matrix and ROC Curve

After combining the ten runs altogether, we can draw the overall TCMs and the ROC curves of the two
datasets. The top row of Fig. 8 displays the TCM of two datasets. The bottom row of Fig. 8 displays their
corresponding ROC curves. The AUC values of D1 and D2 are 0.9767 and 0.9776, respectively.

Table 3: Hyperparameter setting

Parameter Value

umin; umaxð Þ (0, 255)

a1; a2ð Þ 227; 227ð Þ
b1 9

b2 30

b3 542

h sigmoid

L 2000

I 10

T 10

CSSE, 2023, vol.46, no.1 21



(a) Speckle Noise

(b) Random Translation

(c) Scaling

(d) Salt-and-Pepper Noise

(e) Vertical Shear

(f) Gamma Correction

(g) Rotation

(h) Gaussian Noise

(i) Horizontal Shear

Figure 7: Result of MDA
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Table 4: Results of ten-run 10-fold CV of the proposed SNELM model

Dataset t j1 j2 j3 j4 j5 j6 j7

D1 1 97.30 94.59 94.74 95.95 96.00 91.93 96.01

2 94.59 96.62 96.55 95.61 95.56 91.23 95.57

3 97.97 95.95 96.03 96.96 96.99 93.94 96.99

4 97.30 94.59 94.74 95.95 96.00 91.93 96.01

5 94.59 96.62 96.55 95.61 95.56 91.23 95.57

6 95.95 95.95 95.95 95.95 95.95 91.89 95.95

7 93.92 95.27 95.21 94.59 94.56 89.20 94.56

8 96.62 96.62 96.62 96.62 96.62 93.24 96.62

9 97.30 96.62 96.64 96.96 96.97 93.92 96.97

10 97.97 97.97 97.97 97.97 97.97 95.95 97.97

MSD 96.35 ± 1.50 96.08 ± 1.05 96.10 ± 1.00 96.22 ± 0.94 96.22 ± 0.95 92.45 ± 1.87 96.22 ± 0.95

D2 1 94.38 96.56 96.49 95.47 95.42 90.96 95.42

2 97.50 97.50 97.50 97.50 97.50 95.00 97.50

3 95.62 95.62 95.62 95.62 95.62 91.25 95.62

4 96.25 95.00 95.06 95.62 95.65 91.26 95.65

5 97.19 97.19 97.19 97.19 97.19 94.38 97.19

6 97.50 98.12 98.11 97.81 97.81 95.63 97.81

7 96.88 94.69 94.80 95.78 95.83 91.58 95.83

8 95.62 95.00 95.03 95.31 95.33 90.63 95.33

9 94.69 96.56 96.50 95.62 95.58 91.27 95.59

10 94.38 96.56 96.49 95.47 95.42 90.96 95.42

MSD 96.00 ± 1.25 96.28 ± 1.16 96.28 ± 1.13 96.14 ± 0.96 96.13 ± 0.96 92.29 ± 1.91 96.14 ± 0.96

D1 D2

TCM

ROC

Figure 8: TCMs and ROC curves of two datasets
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4.5 Comparison with State-of-the-Art Models

The SNELM model is compared with seven state-of-the-art COVID-19 recognition models over two
datasets. The comparison models consist of FSV [3], 3SBBO [4], CNNSP [5], GCMSVM [6], WEJ [7],
GCMSNN [8], SaPSO [9], DLA [10], DeCovNet [11], and DLM [12]. Particularly, CNNSP [5], DLA
[10], DeCovNet [11], and DLM [12] are deep learning models. The results on two datasets are itemized
in Table 5. As we can observe, the proposed SNELM outperforms other state-of-the-art models in
both datasets.

Error bar (EB) can assist in observing the differences in the model’s performances. Fig. 9 displays the
EB of different models over two datasets. It shows that the performance of this proposed SNELM model is
higher than those of seven state-of-the-art models. The reason of the success of SNELM model may lie in
three points: (i) MDA helps increase the size of training set significantly. (ii) The SN with complex
bypass helps extract efficient features. (iii) ELM serves as an effective classifier.

Table 5: Comparison of the proposed SNELM with SOTA models (Unit: %)

Dataset Model j1 j2 j3 j4 j5 j6 j7

D1 FSV [3] 90.61 ± 1.64 90.27 ± 1.86 90.33 ± 1.62 90.44 ± 1.19 90.46 ± 1.17 80.90 ± 2.37 90.46 ± 1.17

3SBBO [4] 86.40 ± 3.00 85.81 ± 3.14 86.14 ± 3.03 86.12 ± 2.75 86.16 ± 2.77 72.42 ± 5.55 86.15 ± 2.76

CNNSP [5] 94.19 ± 1.63 93.72 ± 1.06 93.75 ± 0.97 93.95 ± 0.96 93.96 ± 0.99 87.92 ± 1.92 93.97 ± 0.98

GCMSVM [6] 72.03 ± 2.94 78.04 ± 1.72 76.66 ± 1.07 75.03 ± 1.12 74.24 ± 1.57 50.20 ± 2.17 74.29 ± 1.53

WEJ [7] 73.31 ± 2.26 78.11 ± 1.92 77.03 ± 1.35 75.71 ± 1.04 75.10 ± 1.23 51.51 ± 2.07 75.14 ± 1.22

GCMSNN [8] 74.80 ± 2.11 77.64 ± 2.05 77.02 ± 1.34 76.22 ± 0.83 75.86 ± 1.00 52.49 ± 1.64 75.89 ± 0.98

SaPSO [9] 85.14 ± 2.74 86.76 ± 1.75 86.57 ± 1.36 85.95 ± 1.14 85.82 ± 1.30 71.95 ± 2.26 85.83 ± 1.30

DLA [10] 91.82 ± 1.25 79.86 ± 1.38 82.03 ± 0.93 85.84 ± 0.65 86.64 ± 0.61 72.23 ± 1.30 86.78 ± 0.62

DeCovNet [11] 90.07 ± 2.63 90.81 ± 1.47 90.76 ± 1.32 90.44 ± 1.39 90.39 ± 1.49 80.92 ± 2.75 90.40 ± 1.48

DLM [12] 87.23 ± 2.19 88.65 ± 1.52 88.51 ± 1.27 87.94 ± 1.03 87.84 ± 1.11 75.92 ± 2.06 87.86 ± 1.11

SNELM (Ours) 96.35 ± 1.50 96.08 ± 1.05 96.10 ± 1.00 96.22 ± 0.94 96.22 ± 0.95 92.45 ± 1.87 96.22 ± 0.95

D2 FSV [3] 90.25 ± 1.27 90.03 ± 0.80 90.06 ± 0.72 90.14 ± 0.70 90.15 ± 0.73 80.29 ± 1.41 90.15 ± 0.74

3SBBO [4] 85.94 ± 1.68 84.75 ± 2.42 84.96 ± 2.16 85.34 ± 1.81 85.44 ± 1.74 70.71 ± 3.61 85.44 ± 1.73

CNNSP [5] 94.44 ± 0.73 93.63 ± 1.60 93.70 ± 1.47 94.03 ± 0.80 94.06 ± 0.76 88.08 ± 1.59 94.05 ± 0.75

GCMSVM [6] 72.38 ± 2.68 77.38 ± 1.96 76.22 ± 1.21 74.88 ± 0.86 74.21 ± 1.25 49.85 ± 1.70 74.25 ± 1.21

WEJ [7] 74.06 ± 2.96 78.06 ± 1.81 77.17 ± 1.17 76.06 ± 1.18 75.55 ± 1.58 52.21 ± 2.28 75.58 ± 1.54

GCMSNN [8] 74.66 ± 1.87 78.00 ± 1.29 77.24 ± 1.15 76.33 ± 1.18 75.92 ± 1.31 52.70 ± 2.34 75.93 ± 1.30

SaPSO [9] 85.31 ± 1.94 86.09 ± 1.43 86.01 ± 1.10 85.70 ± 0.76 85.64 ± 0.87 71.44 ± 1.49 85.65 ± 0.86

DLA [10] 93.28 ± 1.14 78.66 ± 2.51 81.41 ± 1.76 85.97 ± 1.29 86.93 ± 1.10 72.74 ± 2.41 87.14 ± 1.06

DeCovNet [11] 90.03 ± 1.22 90.34 ± 1.25 90.33 ± 1.07 90.19 ± 0.68 90.17 ± 0.69 80.39 ± 1.35 90.18 ± 0.68

DLM [12] 87.37 ± 1.51 88.12 ± 1.94 88.06 ± 1.75 87.75 ± 1.31 87.71 ± 1.29 75.52 ± 2.62 87.71 ± 1.29

SNELM (Ours) 96.00 ± 1.25 96.28 ± 1.16 96.28 ± 1.13 96.14 ± 0.96 96.13 ± 0.96 92.29 ± 1.91 96.14 ± 0.96

Note: Bold means the best. CNNSP [5], DLA [10], DeCovNet [11], and DLM [12] are deep learning models.
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5 Conclusions

This study proposes an innovative SNELM model for COVID-19 detection. The MDA is used to
increase the size of the training set. The SN with complex bypass is employed to generate SN features.
ELM is used as the classifier. This proposed SNELM model can produce higher results than seven state-
of-the-art models.

There are three deficiencies of the proposed SNELMmodel: (i) Strict clinical validation is not tested. (ii)
The SNELM model is a black box. (iii) Other chest-related infectious diseases are not considered.

In our future studies, our team first shall distribute the proposed SNELM model to the online cloud
computing environment (such as Microsoft Azure or Amazon Web Services). Second, we intend to
incorporate Gram-CAM into this model to make it explainable. Third, chest-related infectious diseases,
such as tuberculosis or pneumonia, will be added to our task.
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