
A Lightweight Deep Autoencoder Scheme for Cyberattack Detection in the
Internet of Things

Maha Sabir1, Jawad Ahmad2,* and Daniyal Alghazzawi1

1Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, 80200,
Saudi Arabia

2School of Computing, Edinburgh Napier University, Edinburgh EH10 5DY, UK
*Corresponding Author: Jawad Ahmad. Email: J.Ahmad@napier.ac.uk

Received: 12 July 2022; Accepted: 22 September 2022

Abstract: The Internet of things (IoT) is an emerging paradigm that integrates
devices and services to collect real-time data from surroundings and process
the information at a very high speed to make a decision. Despite several advan-
tages, the resource-constrained and heterogeneous nature of IoT networks makes
them a favorite target for cybercriminals. A single successful attempt of network
intrusion can compromise the complete IoT network which can lead to unauthor-
ized access to the valuable information of consumers and industries. To overcome
the security challenges of IoT networks, this article proposes a lightweight deep
autoencoder (DAE) based cyberattack detection framework. The proposed
approach learns the normal and anomalous data patterns to identify the various
types of network intrusions. The most significant feature of the proposed techni-
que is its lower complexity which is attained by reducing the number of opera-
tions. To optimally train the proposed DAE, a range of hyperparameters was
determined through extensive experiments that ensure higher attack detection
accuracy. The efficacy of the suggested framework is evaluated via two standard
and open-source datasets. The proposed DAE achieved the accuracies of 98.86%,
and 98.26% for NSL-KDD, 99.32%, and 98.79% for the UNSW-NB15 dataset in
binary class and multi-class scenarios. The performance of the suggested attack
detection framework is also compared with several state-of-the-art intrusion detec-
tion schemes. Experimental outcomes proved the promising performance of the
proposed scheme for cyberattack detection in IoT networks.

Keywords: Autoencoder; cybersecurity; deep learning; intrusion detection; IoT

1 Introduction

The IoT is most commonly referred to as the interconnection of smart sensors and devices with the
internet. The IoT could be established with multiple types of devices, including environmental sensors to
consumer electronics or wearable devices. The IoT has been incorporated into a vast variety of
applications such as healthcare, industry, transportation, agriculture, smart buildings, etc. [1]. The
interconnection of smart devices through IoT networks allows the exchange of valuable information and

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI: 10.32604/csse.2023.034277

Article

echT PressScience

mailto:J.Ahmad@napier.ac.uk
https://www.techscience.com/journal/CSSE
http://dx.doi.org/10.32604/csse.2023.034277
https://www.techscience.com/
https://www.techscience.com/doi/10.32604/csse.2023.034277


data among themselves. However, this exchange of information could be intercepted by the attackers and
intruders, which consequently compromises the security and privacy of all devices and the complete IoT
architecture [2]. The intrusion detection system (IDS) can be useful in ensuring the security of IoT
networks. The IDS can detect several malicious activities, such as security violations and unauthorized
access to valuable information in the IoT network [3,4].

In this article, a lightweight deep autoencoder (DAE) scheme is presented for cyberattack detection in
IoT networks. The suggested technique learns the normal and malicious patterns of the data to successfully
identify the anomalous behavior of the network. One of the primary objectives for developing the suggested
DAE framework is to minimize the model’s overall complexity by reducing the number of operations. It
reduces the computational cost along with the energy consumption and makes this IDS more feasible to
be implemented in resource-constrained IoT networks. The proposed DAE-based IDS has been evaluated
in both binary-class and multi-class scenarios by using two standard and open-source datasets such as
NSL-KDD, and UNSW-NB15.

The rest of the article is organized as follows. Section 2 comprises the latest research related to the IDSs
for IoT. A detailed research methodology of the proposed framework is presented and discussed in Section 3.
Section 4 presents the implementation procedure and a detailed discussion of the obtained results. Finally,
Section 5 concludes the outcomes of this research.

2 Literature Review

This section presents an overview of some of the latest research on DL-based intrusion detection
algorithms for IoT networks. The discussed studies have been categorized according to the proposed DL
schemes, utilized datasets, and performance metrics.

Parra et al. [5] introduced a cloud-based DL approach for cyberattack detection in the IoT. The suggested
scheme contains an integration of two deep learning schemes, including a CNN and LSTM network. The
performance of the suggested technique was analyzed through the N-BaIoT dataset. The experimental
outcomes demonstrate that the proposed scheme efficiently detected phishing and botnet attacks with
higher accuracies. Shone et al. [6] introduced a nonsymmetric deep autoencoder (NDAE) for
unsupervised feature learning. Researchers presented a novel DL-based intrusion detection model using
stacked NDAE. The proposed model was implemented in a graphics processing unit (GPU)-enabled
TensorFlow and performance was evaluated using NSL-KDD and KDDCup99 datasets. Awotunde et al.
[7] introduced a deep feed-forward neural network (DFNN) with rule-based features selection method for
cyberattack detection in the IIoT. The proposed architecture verifies the collected information of packets.
The effectiveness of the suggested technique was analyzed using the two standard IoT security datasets.
In another work, Attota et al. [8] presented a multiple-view federated learning-based IDS (MV-FLID).
Researchers utilized the grey wolf optimization technique (GWO) for feature selection. The proposed
model is trained and evaluated by using a lightweight MQTT protocol dataset.

Qaddoura et al. [9] designed an FNN-LSTM-based hybrid IDS for IoT networks. The designed hybrid
scheme utilizes the smote oversampling method to equivalent the samples of each class and evaluates the
suggested design through the IoTID20 dataset. Hassan et al. [10] proposed a reliable cyberattack
detection scheme to improve the trustworthiness of an IIoT network. Researchers utilized an ensemble
learning technique based on the combination of a random subspace (RS) with a random tree (RT) for
cyberattack detection. The suggested scheme was tested over 15 datasets on the SCADA networks.
Experimental findings indicated the superior performance of the proposed technique over conventional
attack detection models. Li et al. [11] designed a bidirectional long and short-term memory (LSTM)
network for cyberattack detection in the IIoT. In the proposed scheme, sequence and stage feature layers
are introduced that facilitate the model to learn corresponding attack intervals from historical data. As

58 CSSE, 2023, vol.46, no.1



compared to some related works the proposed scheme demonstrated the lower false positive and false
negative rates. Despite considerable work spent on annotating IoT traffic data, the number of labeled
records remains very small, increasing the challenge of detecting assaults and intrusions. Growing IoT
networks are becoming more vulnerable to various types of cyberattacks. Luo et al. [12] introduced a
web attack detection system (WADS). Researchers proposed three DL-based models to detect the
cyberattacks separately, and an ensemble classifier has been used for the final decision obtained from the
combined results of all three DL models. The real-world and open-source security datasets have been
utilized for performance evaluation. The experimental results proved the efficacy of the proposed
framework to detect several web attacks with higher accuracy and lower false alarm rates.

Based on the aforementioned discussion, several researchers have done a great job in the development of
ML/Dl-based intrusion detection schemes for IoT. However, there is still room for improvement in the
development of a lightweight and advanced attack detection scheme that can improve attack detection
accuracy, reduce the computational cost, and be highly compatible with the resource-constrained nature of
the IoT networks. The proposed DAE presents significant advantages over existing schemes, such as
compact design, and optimal hyperparameters selection. Furthermore, it reduces the computational
complexity and energy requirements that tend to be helpful in the integration of IDS with resource-
constrained networks.

3 Research Methodology

This section presents a detailed description of the proposed scheme including utilized datasets, the deep
autoencoder (DAE) design, and the performance assessment parameters.

3.1 Datasets Description

The proposed scheme is evaluated through two publicly available IoT security datasets including NSL-
KDD, and UNSW-NB15. In the following, a short description of each dataset is presented.

3.1.1 NSL-KDD
This is one of the most commonly used datasets for the benchmarking of modern-day internet traffic.

This dataset contains 42 features per record, of which 41 features are considered input features, and the
last feature is the label to determine whether it is a normal or malicious value. Furthermore, it contains
4 different classes of cyberattacks including Probe, Remote to Local (R2L), Denial of Service (DoS), and
User to Root (U2R) [13].

3.1.2 UNSW-NB15
This is considered a new generation dataset and it was firstly published in 2015. This dataset has a total

of 49 features and a variety of normal and malicious values with the class label of a total of 257,673 samples.
It contains 164673 malicious and 93000 normal samples [14,15]. Features of this dataset are categorized into
6 groups which are named “basic”, “time”, “flow”, “content”, “additional generated”, and “labeled” features.
Further, UNSW-NB15 has 9 different classes of modern attacks which include analysis, backdoor, Dos,
exploits, fuzzers, generic, reconnaissance, shellcode, and Worms.

3.2 The Proposed Framework

The workflow of the suggested framework is depicted in Fig. 1. The main operation consists of three
stages that include, data pre-processing, the mathematical model of the DAE, and performance
assessment parameters. In the following sub-sections, details of each stage have been described briefly.

CSSE, 2023, vol.46, no.1 59



3.2.1 Data Pre-processing
It is one of the most important stages of each ML/DL model. It transforms the data into the most

compatible form for input of any neural network. In our study, four different datasets have been utilized,
hence, different procedures have been adopted for the pre-processing of each dataset.

a) Pre-processing of NSL-KDD: In the NSL-KDD dataset, data contains some text values. Therefore, we
need to transform the nominal features into numeric values. At this stage, categorical features are
transformed into numerical features by using one-hot encoding. Since the dataset is very large and
there is a large variation between values, data normalization is also required for better
performance. We’ll use mean normalization here. It makes the values of each feature in the data
have zero-mean and unit variance. We utilized “min-max scaling” for the normalization process.
The detailed class distribution of the NSL-KDD dataset is presented in Table 1.

b) Pre-processing of UNSW-NB15: This dataset contains 10 classes and 49 features. In preprocessing
phase, we used two approaches data conversion and data normalization. In the first stage, the data
conversion technique transforms all the categorical data into numerical data. In the second stage,
the large variance of all features is reduced by using the “min-max scaling” technique. This
technique removes all the invalid samples and scales the large values in the range of zero to one.
A detailed distribution of the UNSW-NB15 dataset is presented in Table 2.

Figure 1: Block diagram of the proposed architecture

Table 1: Class distribution of the NSL-KDD dataset

Classes Total samples Training Testing

Normal 77054 53938 23116

DoS 53387 37371 16016

Probe 14077 9854 4223

R2L 3880 2716 1164

U2R 119 83 36

60 CSSE, 2023, vol.46, no.1



Table 2: Class distribution of the UNSW-NB15 dataset

Classes Total samples Training Testing

Normal 93000 65100 27900

Analysis 2677 1874 803

Backdoor 2329 1630 699

DoS 16353 11447 4906

Exploits 44525 31168 13358

Fuzzers 24246 16972 7274

Generic 58871 41210 17661

Reconnaissance 13987 9791 4196

Shellcode 1511 1058 453

Worms 174 122 52

3.2.2 Mathematical Model of the Proposed Attack Detection Scheme
The proposed attack detection scheme contains three main stages including the feature extraction stage,

feature selection stage, and classification stage. The first two stages perform the dimensionality reduction
operation that increases the computational efficiency of the model to make it highly compatible with
resource-constrained IoT devices. A DAE is used for the extraction of optimal features with mutual
information (MI) and a support vector machine (SVM) is incorporated with a gradient descent (GD)
algorithm to perform the detection process.

The basic design of the proposed DAE is shown in Fig. 2. The DAE is an unsupervised neural network
that uses a backpropagation algorithm to learn from unlabeled information. The input and output values of
DAE are the same that try to lean the hypothesis function.

hW ; b rð Þ � r (1)

The DAE contains an encoder and decoder. The main function of the encoder is to compress the
incoming information in low-dimensional representation. On the other hand, the decoder performs the
reconstruction of data from the low-dimensional representation. In the encoding process, the input vectors
are transformed into an abstract vector and the input data space’s dimensionality is also reduced.

To accurately perform the encoding and decoding operations, multiple constraints are involved in the
neural network. The selection of the hidden neurons less than the input features and some useful
representation can be discovered during reconstruction operation. As a result, if there are any correlations
among the features, the DAE will be able to discover them.

The constraint shown in Eq. (2) is applied to hidden neurons in the encoder that compresses the input
data representation and performs feature extraction. Here d̂z in Eq. (3) represents the average activation and
az rð Þ represent the activation of hidden neuron z. The neuron z is considered to be in an active or inactive
state if the activation of a neuron is 1 and 0 respectively. The variable d indicates the sparsity parameter
and is usually set near zero to ensure the inactive state of neurons most of the time.

d̂z ¼ d (2)

d̂z ¼ 1

m

Xm

y¼1
az rð Þ½ � (3)

CSSE, 2023, vol.46, no.1 61



The mean squared error (MSE) shown in Eq. (4) specifies the cost function of DAE.

MSE ¼ 1

m

Xm

y¼1

1

2
hW ;b r yð Þ

� �
� s yð Þ

����
����
2

(4)

L2 regulation shown in Eq. (5) is added to the cost function that prevents overfitting by decreasing the
weights W lð Þ

zy among neuron y in layer l and neuron z in layer l þ 1:

�L2Reg ¼ 1

2

XL�1

l¼1

Xn

y¼1

Xk

z¼1
W lð Þ

yz

� �2
(5)

Here L represents the total layers in a neural network. The other parameters n and k indicate the number
of neurons in layers l and l þ 1 respectively.

Additionally, a sparsity regularization is added to a cost function as shown in Eq. (6). It penalizes d̂j for
deviating from δ using the Kullback-Leibler (KL) divergence [16]. KL is an indicator of the difference
between two different distributions. This function will be zero if Eq. (2) is satisfied or can have a higher
value if d̂j diverges from δ. The minimization of this term enables the d̂j to be close to δ. Here S2
represents the hidden neurons within the encoder.

�Sparsity ¼
Xs2

z¼1
KLðd d̂j

��� ���
�Sparsity ¼

Xs2

z¼1
d log

d

d̂z
þ 1� dð Þ log 1� d

1� d̂z
(6)

Figure 2: The proposed Deep Autoencoder (DAE) for cyberattack detection

62 CSSE, 2023, vol.46, no.1



The cost function consists of the sum of L2 regularization, MSE, and a sparsity regularization term. Here
φ and # regulate the strength of L2 regularization and sparsity respectively.

nSparse W ; bð Þ ¼ MSE þ φ � �SL2Reg þ # � �Sparsity (7)

The proposed attack detection scheme performs the feature selection operation through DAE. It
facilitates obtaining the most optimal features and removing the irrelevant features to reduce the
computational complexity and increase the attack detection performance. In the proposed scheme mutual
information (MI) is incorporated with optimal feature selection.

MI is a measure of the mutual dependency among two random variables. It describes the level of
information of one random variable about another. In other words, it denotes the reduction in uncertainty
of one random variable as a result of information about another. As stated in Eq. (8), MI is related to the
concept of entropy w, which is the anticipated information content of a random variable R:

w Rð Þ ¼ �
X

i
l ry
� �

logP ry
� �

(8)

Here, l represents the probability of occurrence of an event with index y. The entropy of two random
variables R and S with values ry and rz can be defined as shown in Eq. (9)

wðR j SÞ ¼ �
X

y; z
l ry; sy
� �

log
l ry; sy
� �
l sy
� � (9)

Here ry; sy
� �

represents the joint probability distribution. Then, MI of two discrete variables R and S
can be described as

I R; Sð Þ ¼ w Rð Þ � w RjSð Þ
¼ w Rð Þ � w Rð Þ � w R; Sð Þ

¼
X

y; z
l ry; sz
� �

log
l ry; sy
� �

l ry
� �

P sy
� � (10)

Here, w R; Sð Þ indicates the joint entropy. The bigger MI value reduces the uncertainty in a variable is
lower value can increase uncertainty.

The proposed scheme classifies the data into two classes attack and normal using SVM. To perform this
operation, a linear SVM with GD is used as the optimizer. Linear SVM is a supervised ML technique that is
used to solve two-class binary classification problems. Several hyperplanes can split the classes, thus a
technique for determining the optimal one is necessary. SVM seeks the best decision boundary by
maximizing the margin between the boundary and the nearest data occurrences. Support vectors are the
nearest data occurrences that establish the greatest margin.

Providing training data of n instances r1; s1ð Þ; . . . ; rn; snð Þ, where si is the real class of input data
ry y ¼ 1; . . . ; nð Þ and either 1 or �1, the decision boundary is defined as

f ry
� � ¼ WTry þ b ¼ 0 (11)

Here, w and b represent the weight vector and bias respectively.

CSSE, 2023, vol.46, no.1 63



To prevent data instances from lying on the wrong side, the following constraints are enforced for each y:

if sy ¼ 1; wTry þ b � 1 (12)

if sy ¼ �1; wTry þ b � �1 (13)

Eqs. (12) and (13) can be combined as

sy wTry þ b
� � � 1 for all 1 � y � n (14)

SVM may address non-linearly issues by employing the kernel technique, which translates the original
information into higher dimensional space. One possible issue is that SVM may need a lengthy training
period. Despite producing high-performance outcomes, SVM training periods are frequently excessively
long in contrast to alternative classifiers. However, a linear variant of SVM was used in this work, which
shortened training time while getting equivalent results.

SVM optimizes using hinge loss as its loss function. The hinge loss can be defined with an output
sy ¼ �1 as

max 0; 1� yf ry
� �� �

(15)

c r; s; f ry
� �� � ¼ 1� syf ry

� �
(16)

c r; s; f ry
� �� � ¼ 0; sy f ry

� � � 1
1� syf ry

� �
; otherwise

�
(17)

The objective function e wð Þ presented in Eq. (18) is made up of two terms: the regularization term and
the loss term. Due to the convexity of the hinge loss function, ML convex optimizers can be employed. The
goal function should be minimized for optimization:

Minimize e wð Þ ¼ φ
2
kw2k þ 1

n

Xn

y¼1
max 0; 1� syf ry

� �� �
(18)

GD uses repeated stages to update parameters in the gradient’s direction. GD requires derivatives
concerning b and w. However, because the hinge loss is not differentiable, the following sub-gradient
should be utilized for w and f ry

� �
:

@

@W
max 0; 1� syf ry

� �� � ¼ 0; sy f ry
� � � 1

�syf ry
� �

otherwise

�
(19)

3.2.3 Performance Evaluation Metrics
To analyze the proposed DAE, several performance assessment metrics are defined. All of these

parameters are described in the following.

a) Accuracy: It is the most commonly used performance indicator that presents a ratio of accurately
predicted observations to the total number of observations.

Accuracy ¼ Tpos þ Tneg
Tpos þ Fpos þ Fneg þ Tneg

64 CSSE, 2023, vol.46, no.1



b) Precision: It is defined as the proportion of accurately anticipated positive observations to total
expected positive observations.

Precision ¼ Tpos
Tpos þ Fpos

c) Recall: It is the proportion of accurately predicted positive observations to all positive observations in
the class.

Recall ¼ Tpos
Tpos þ Fneg

d) F1 Score: Averaging precision and recall yields this score. As a result, this score takes into
consideration both false positives and false negatives. While F1 is not as intuitive as accuracy, it is
sometimes more useful, especially when the class distribution is uneven.

F1� Score ¼ 2	 Precision	 Recall

Precisionþ Recall

4 Implementation and Performance Analysis

This study explores the proposed framework’s implementation details and evaluates the effectiveness of
the proposed DAE through extensive experimentation.

4.1 Simulation Platform

The simulations and performance analysis of the suggested DAE are performed on a Dell Precision
7550 Data Science computer. This workstation contains an Intel Xeon W-10855M processor and 32 GB
DDR4 2933 MHz ECC Memory. An NVIDIA Quadro RTX 5000 w/16 GB graphic card ensures the
smooth operations of DAE. The main algorithm of the proposed DAE is written in “Anaconda
Navigator” using Python script.

4.2 Selection of Hyperparameters

In all experiments, the main structure of the DAE is fixed. By conducting extensive experiments, we
selected the optimal hyperparameters of the proposed model to ensure the best performance for all the
datasets. The utilized hyperparameters are learning rate, batch size, no of epochs, and latent space. All the
selected hyperparameters are depicted in Table 3.

Table 3: Utilized hyperparameters for training and performance evaluation

Hyperparameters Datasets

NSL-KDD UNSW-NB15

Learning rate 0.001, 0.01, 0.10 0.005, 0.075, 0.150

Batch size 32, 64, 128 64, 128, 256

No of epochs 100 100

Latent space 12 14

CSSE, 2023, vol.46, no.1 65



4.2.1 Learning Rate
This parameter defines how much the model should change in response to the expected error when the

model weights are updated. The selection of learning rate is tricky since a number that is too little may result
in a protracted training process that becomes stuck, while a value that is too large may result in learning an
inefficient set of weights too rapidly or in an unstable training process.

4.2.2 Batch Size
The parameter demonstrates how many samples must be processed before the internal model parameters

are updated.

4.2.3 No of Epochs
This parameter indicates how many times the learning algorithm will traverse the training dataset. Each

epoch is an opportunity for each sample in the training dataset to change the internal model parameters.

4.2.4 Latent Space
Latent space is a compressed data format in which related data points are relatively close together. Latent

space may be used to discover features of the data and to develop simpler representations of data for analysis.

4.3 Performance Analysis

All datasets have been split into the training and testing datasets with 70/30 percent respectively. The
detailed distribution of all the datasets is already presented in Tables 1 and 2. In the following, we discuss
the performance of the DAE for each dataset.

4.3.1 Performance Evaluation with NSL-KDD
The simulations for the NSL-KDD dataset have been conducted with a range of learning rates of 0.001,

0.01, and 0.10 on 32, 64, and 128 batch sizes. The latent space is fixed as 12 and all the simulations are
executed for 100 epochs. The efficiency of the suggested DAE is evaluated for both binary class and
multi-class scenarios using the NSL-KDD dataset.

a) Binary-class Performance Assessment: In the first batch of the experiments, the effectiveness of the
suggested scheme was evaluated for the NSL-KDD dataset in a binary class scenario. Experiments
were conducted by using three learning rates 0.001, 0.01, and 0.10 and batch sizes 32, 64, and
128. Performance scores of the proposed DAE for batch size 32 are presented in bar graphs in
Fig. 3. The suggested scheme attained the highest accuracy of 98.86% at a learning rate of 0.001.
In the second stage, all experiments were repeated for batch size 64 using the same learning rates.
Performance scores of the proposed DAE for batch size 64 are presented in bar graphs in Fig. 4.
The suggested DAE attained the highest accuracy of 98.68% at the learning rate of 0.002. In the
third stage, all experiments were repeated for batch size 128 using the same learning rates.
Performance scores of the proposed DAE for batch size 128 are presented in bar graphs in Fig. 5.
The suggested scheme attained the highest accuracy of 98.51% at a learning rate of 0.001.

b) Multiclass Performance Evaluation: In the second batch of experiments, the effectiveness of the
suggested scheme is evaluated for the NSL-KDD dataset in the multiclass classification scenario.
Experiments are conducted by using three learning rates 0.001, 0.01, and 0.10 and batch sizes 32,
64, and 128. As previously explained for the binary class experiments, at the first stage a batch
size of 32 was selected. Performance scores of the suggested DAE for the batch size of 32 are
presented in bar graphs in Fig. 6. The suggested scheme attained the highest accuracy of 98.14%,
at a learning rate of 0.001. In the second stage, all experiments were repeated for the batch size of
64 using the same learning rates. Performance scores of DAE for batch size 64 are presented in
bar graphs of Fig. 7. The suggested DAE attained an accuracy of 98.08% at the learning rate of

66 CSSE, 2023, vol.46, no.1



0.001. In the third stage, all experiments were repeated for a batch size of 128 using the same learning
rates. Performance scores of the suggested technique for batch size 128 are presented in bar graphs in
Fig. 8. The suggested scheme attained the highest accuracy of 98.26% at a learning rate of 0.001.

Figure 3: Binary class evaluation with NSL-KDD for batch size 32

Figure 4: Binary class evaluation with NSL-KDD for batch size 64

Figure 5: Binary class evaluation with NSL-KDD for batch size 64

CSSE, 2023, vol.46, no.1 67



4.3.2 Performance Evaluation with UNSW-NB15
The simulations for the UNSW-NB15 dataset have been conducted with a range of learning rates of

0.005, 0.075, and 0.150 on 64, 128, and 256 batch sizes. The latent space is fixed as 14 and all the
simulations are executed for 100 epochs. The effectiveness of the suggested scheme is analyzed in both
binary class and multi-class scenarios using the UNSW-NB15 dataset.

a) Binary-class Performance Assessment: In the third batch of experiments, the performance of the
suggested scheme is analyzed for the UNSW-NB15 dataset in the binary class scenario.
Experiments were conducted by using three learning rates 0.005, 0.075, and 0.150, and batch
sizes 64, 128, and 256. In the first stage of experiments, the performance of the proposed DAE

Figure 6: Multiclass evaluation with NSL-KDD for batch size 32

Figure 7: Multiclass evaluation with NSL-KDD for batch size 64

Figure 8: Multiclass evaluation with NSL-KDD for batch size 128

68 CSSE, 2023, vol.46, no.1



was evaluated for batch size 64. Performance scores for batch size 64 are presented in bar graphs in
Fig. 9. The suggested scheme attained the highest accuracy of 99.07%, at a learning rate of 0.075. In
the second stage, all the experiments were repeated for batch size 128 using the same learning rates.
Performance scores of DAE for batch size 128 are presented in bar graphs in Fig. 10. The suggested
scheme attained the highest accuracy of 99.32% at the learning rate of 0.075. In the third stage, all the
experiments were repeated for batch size 256 using the same learning rates. Performance scores of
DAE for batch size 256 are presented in bar graphs in Fig. 11. The suggested scheme attained the
highest accuracy of 99.21% at the learning rate of 0.075.

b) Multiclass Performance Evaluation: In the fourth batch of experiments, the effectiveness of the
suggested scheme is evaluated for the UNSW-NB15 dataset in a multiclass classification scenario.
Experiments are conducted by using three learning rates 0.005, 0.075, and 0.150, and batch sizes
64, 128, and 256. As previously implemented for the binary class classification, at the first stage a
batch size of 64 was selected. Performance scores of the proposed DAE for batch size 64 are
presented in bar graphs in Fig. 12. The suggested scheme attained the highest accuracy of
98.82%, at a learning rate of 0.005. In the second stage, all the experiments were repeated for
batch size 128 using the same learning rates. Performance scores of DAE for batch size 128 are
presented in bar graphs in Fig. 13. The suggested DAE attained the highest accuracy of 98.79% at
the learning rate of 0.005. In the third stage, all experiments were repeated for batch size
256 using the same learning rates. Performance scores of DAE for batch size 256 are presented in
bar graphs in Fig. 14. The suggested scheme attained the highest accuracy of 98.66% at a learning
rate of 0.005.

Figure 9: Binary class evaluation with UNSW-NB15 for batch size 64

Figure 10: Binary class evaluation with UNSW-NB15 for batch size 128

CSSE, 2023, vol.46, no.1 69



Figure 11: Binary class evaluation with UNSW-NB15 for batch size 256

Figure 12: Multiclass evaluation with UNSW-NB15 for batch size 32

Figure 13: Multiclass evaluation with UNSW-NB15 for batch size 64

Figure 14: Multiclass evaluation with UNSW-NB15 for batch size 128

70 CSSE, 2023, vol.46, no.1



4.3.3 Performance Comparison with the State-of-the-art
To further investigate the efficiency and robustness of the proposed scheme, the performance is also

compared to the related works. A brief performance comparison is presented in Table 4. This comparison
is organized based on the utilized DL algorithm, datasets, hyperparameter selection, and attack detection
accuracy. Most of the researchers utilized time-intensive deep learning algorithms which are not suitable
for deployment in resource-constrained IoT networks. Second, only a few studies focused on the selection
of suitable hyperparameters for the optimal training of their schemes. Third, most of the studies presented
their evaluation for binary class scenarios and multiclass evaluation is missing. The performance of the
proposed scheme is analyzed in both binary and multiclass scenarios and it attained higher attack
detection accuracies as compared to the several state-of-the-art IDSs.

5 Conclusion

This article proposed a novel DAE-based framework for cyberattack detection in IoT networks. The
most significant feature of the proposed design is its lower computational complexity which makes it
resource efficient cybersecurity framework for IoT networks. To achieve the optimum performance of the
DAE, a range of suitable hyperparameters were determined to train the neural network. These parameters
include learning rate, batch size latent space, and no of epochs. Extensive experiments are conducted to
analyze the efficacy of the suggested scheme using two standard security datasets including NSL-KDD,
and UNSW-NB15. The performance was evaluated through several assessment parameters such as
accuracy, precision, recall, and F1 score in both binary class and multiclass scenarios. Experimental
results proved that the suggested scheme attained higher attack detection accuracy and other scores for
both datasets. A single board computing platform can be incorporated as a hardware accelerator to
improve the speed and performance of proposed attack detection for future endeavors.

Table 4: Performance comparison with the state-of-the-art IDSs

Reference Proposed
scheme

Utilized dataset Hyperparameters
slection

Accuracy

Binary class Multiclass

[5] LSTM N_BaIoT No 97.74% Not
evaluated

[6] NDAE KDD Cup ‘99 and
NSL-KDD

No Not evaluated 97.85%,
80.58

[7] DFFNN NSL-KDD, UNSW-
NB15

Yes 99.0%, 98.90% 93.64%,
91.22%

[8] MV-FLID MQTT dataset No 98.0% Not
evaluated

[9] SLFN IoTID20 No 86.20% Not
evaluated

[10] RSRT SCADA dataset Yes 96.78% Not
evaluated

[11] B-MLSTM CTU-13, gas-water,
AWID

No 95.01%, 93.41%
97.58%

Not
evaluated

Proposed
scheme

DAE NSL-KDD, UNSW-
NB15

Yes 98.96%, 99.32% 98.26%,
98.82%

CSSE, 2023, vol.46, no.1 71



Funding Statement: The Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU),
Jeddah, Saudi Arabia has funded this project, under Grant No. (IFPDP-279-22).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] K. P. Dharshini, D. Gopalakrishnan, C. K. Shankar and R. Ramya, “A survey on IoT applications in smart cities,”

Immersive Technology in Smart Cities, pp. 179–204, 2022.

[2] S. Latif, Z. Huma, S. S. Jamal, F. Ahmed, J. Ahmad et al., “Intrusion detection framework for the internet of things
using a dense random neural network,” IEEE Transactions on Industrial Informatics, vol. 18, no. 9, pp. 6435–
6444, 2022.

[3] A. Churcher, R. Ullah, J. Ahmad, S. U. Rehman, F. Masood et al., “An experimental analysis of attack
classification using machine learning in IoT networks,” Sensors, vol. 21, no. 2, pp. 446–478, 2021.

[4] S. M. Tahsien, H. Karimipour and P. Spachos, “Machine learning based solutions for security of internet of things
(IoT): A survey,” Journal of Network and Computer Applications, vol. 161, pp. 102630–102651, 2020.

[5] G. D. L. T. Parra, P. Rad, K. K. R. Choo and N. Beebe, “Detecting internet of things attacks using distributed deep
learning,” Journal of Network and Computer Applications, vol. 163, pp. 102662–102675, 2020.

[6] N. Shone, T. N. Ngoc, V. D. Phai and Q. Shi, “A deep learning approach to network intrusion detection,” IEEE
Transactions on Emerging Topics in Computational Intelligence, vol. 2, no. 1, pp. 41–50, 2018.

[7] J. B. Awotunde, C. Chakraborty and A. E. Adeniyi, “Intrusion detection in industrial internet of things network-
based on deep learning model with rule-based feature selection,” Wireless Communications and Mobile
Computing, 2021.

[8] D. C. Attota, V. Mothukuri, R. M. Parizi and S. Pouriyeh, “An ensemble multi-view federated learning intrusion
detection for iot,” IEEE Access, vol. 9, pp. 117734–117745, 2021.

[9] R. Qaddoura, M. Al-Zoubi, H. Faris and I. Almomani, “A multi-layer classification approach for intrusion
detection in iot networks based on deep learning,” Sensors, vol. 21, no. 9, pp. 2987–3008, 2021.

[10] M. M. Hassan, A. Gumaei, S. Huda and A. Almogren, “Increasing the trustworthiness in the industrial IoT
networks through a reliable cyberattack detection model,” IEEE Transactions on Industrial Informatics, vol.
16, no. 9, pp. 6154–6162, 2020.

[11] X. Li, M. Xu, P. Vijayakumar, N. Kumar and X. Liu, “Detection of low-frequency and multi-stage attacks in
industrial internet of things,” IEEE Transactions on Vehicular Technology, vol. 69, no. 8, pp. 8820–8831, 2020.

[12] C. Luo, Z. Tan, G. Min, J. Gan, W. Shi et al., “A novel web attack detection system for internet of things via
ensemble classification,” IEEE Transactions on Industrial Informatics, vol. 17, no. 8, pp. 5810–5818, 2020.

[13] T. Su, H. Sun, J. Zhu, S. Wang and Y. Li, “BAT: Deep learning methods on network intrusion detection using
NSL-KDD dataset,” IEEE Access, vol. 8, pp. 29575–29585, 2020.

[14] V. Kumar, D. Sinha, A. K. Das, S. C. Pandey and R. T. Goswami, “An integrated rule based intrusion detection
system: Analysis on UNSW-NB15 data set and the real time online dataset,” Cluster Computing, vol. 23, pp.
1397–1418, 2020.

[15] J. Ahmad, S. A. Shah, S. Latif, F. Ahmed, Z. Zou et al., “DRaNN_PSO: A deep random neural network with
particle swarm optimization for intrusion detection in the industrial internet of things,” Journal of King Saud
University-Computer and Information Sciences, 2022.

[16] S. J. Lee, P. D. Yoo, A. T. Asyhari, Y. Jhi, L. Chermak et al., “IMPACT: Impersonation attack detection via edge
computing using deep autoencoder and feature abstraction,” IEEE Access, vol. 8, pp. 65520–65529, 2020.

72 CSSE, 2023, vol.46, no.1


	A Lightweight Deep Autoencoder Scheme for Cyberattack Detection in the Internet of Things
	Introduction
	Literature Review
	Research Methodology
	Implementation and Performance Analysis
	Conclusion
	References


