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Abstract: Recent advancements in the Internet of Things (Io), 5G networks, and
cloud computing (CC) have led to the development of Human-centric IoT (HIoT)
applications that transform human physical monitoring based on machine moni-
toring. The HIoT systems find use in several applications such as smart cities,
healthcare, transportation, etc. Besides, the HIoT system and explainable artificial
intelligence (XAI) tools can be deployed in the healthcare sector for effective
decision-making. The COVID-19 pandemic has become a global health issue that
necessitates automated and effective diagnostic tools to detect the disease at the
initial stage. This article presents a new quantum-inspired differential evolution
with explainable artificial intelligence based COVID-19 Detection and Classifica-
tion (QIDEXAI-CDC) model for HIoT systems. The QIDEXAI-CDC model aims
to identify the occurrence of COVID-19 using the XAI tools on HIoT systems.
The QIDEXAI-CDC model primarily uses bilateral filtering (BF) as a preproces-
sing tool to eradicate the noise. In addition, RetinaNet is applied for the genera-
tion of useful feature vectors from radiological images. For COVID-19 detection
and classification, quantum-inspired differential evolution (QIDE) with kernel
extreme learning machine (KELM) model is utilized. The utilization of the QIDE
algorithm helps to appropriately choose the weight and bias values of the KELM
model. In order to report the enhanced COVID-19 detection outcomes of the
QIDEXAI-CDC model, a wide range of simulations was carried out. Extensive
comparative studies reported the supremacy of the QIDEXAI-CDC model over
the recent approaches.

Keywords: Human-centric IoT; quantum computing; explainable artificial
intelligence; healthcare; COVID-19 diagnosis

1 Introduction

Several techniques have recently been developed in distinct fields, like 5G which allows ubiquitous
cloud services and wireless transmission anywhere. This technology motivates Human-centric IoT
Application (HIoT) that converts human physical monitoring depending on machine monitoring [1]. This
HIoT system is distributed geographically and has multiple concerns, including anomaly avoidance,
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Industrial IoT (IIoT) data security, delay, automation, mobility, and services cost [2]. But IIoTApplication or
method is static or fixed. This complicated dynamic problem could not be resolved using the current
approaches. Thus, space complexity is ubiquitous and dynamic uncertainty with time poses several study
problems [3]. Quantum computing has the possibility of improving the study of IIoT Applications. The
use case also considerably assists advanced Human-centric IoT Application quadruple purpose. It assists a
product’s lifecycle, from manufacturing and design to remanufacturing, utilization, and service [4]. The
IoT is no longer a trend that has been demonstrated to be a very effective technique that current digital-
based businesses use for rapidly expanding operations. The IoT offers real-time data, i.e., crucial to
making sudden decisions according to distinct effective AI approaches [5]. Fig. 1 illustrates the opinion
of Human-Centered Computing.

In the current pandemic scenario, each country, together with India, is fighting against COVID-19 and
yet seeking cost-effective and practical solutions to confront the problem that arises in various modes [6]. In
the challenging present epidemic scenario, the several diseased persons are gradually increasing worldwide,
and there is a massive requirement to utilize the well organized and adequate services provided by the IoT
technique. Moreover, IoT has been previously applied for serving the purpose in distinct fields where the
Internet of Medical Things (IoMT) or Internet of Healthcare Things (IoHT) are related to the current
problems [7]. Currently, the more popular testing method for COVID-19 diagnoses is a real-time reverse
transcription-polymerase chain reaction (RT-PCR).

Chest radiological imaging, namely X-ray and computed tomography (CT), have significant roles in
earlier diagnoses and treatment [8]. Chest X-ray image has been exposed to be beneficial in monitoring
the effect that COVID-19 causes on lung tissue. Accordingly, chest X-ray images might be utilized in the
diagnosis of COVID-19 [9,10]. In the study, several deep-learning (DL)-based models use chest X-ray
images to detect disease. Fig. 2 depicts the process of existing XAI model.

This article presents a new quantum-inspired differential evolution with explainable artificial
intelligence based COVID-19 Detection and Classification (QIDEXAI-CDC) model for HIoT systems.
The QIDEXAI-CDC model mainly uses bilateral filtering (BF) as a preprocessing tool to eradicate the
noise. Moreover, RetinaNet is applied to generate useful feature vectors from radiological images. For
COVID-19 detection and classification, a quantum-inspired differential evolution (QIDE) with kernel
extreme learning machine (KELM) model is utilized. The QIDE algorithm helps appropriately choose the

Figure 1: View of human-centered computing
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weight and bias values of the KELM model. In order to report the enhanced COVID-19 detection outcomes
of the QIDEXAI-CDC model.

2 Related Works

Ozturk et al. [11] presented an approach for automated COVID-19 diagnosis with raw chest X-ray
images. The suggested method is technologically advanced for providing a precise diagnosis for the
binary classifier (No-Findings vs. COVID) and multiclass classifier (Pneumonia vs. COVID vs. No-
Findings.). The method presented a classification performance of 87.02% for multiclass cases and 98.08%
for binary classes. The DarkNet method has been used to classify the YOLO real-time object recognition
system. In [12], COVID-19 was identified by a DL, a class of artificial intelligence. The data class is
reorganized with the Fuzzy Color method as a preprocessing phase, and the image that is organized as
the original image is stacked. Next, the stacked data set was trained by the DL approaches (SqueezeNet,
MobileNetV2), and the feature set attained by the algorithms has been treated by utilizing the Social
Mimic optimization approach. Then, the useful feature is classified and combined with SVM.

In [13], a CNN method named CoroDet for automated diagnosis of COVID-19 by utilizing a CT scan
and raw chest X-ray images was presented. Corot is designed to serve as a precise diagnosis method. In [14],
a CNN method is presented by using end-to-end training. The experiments utilised a data set containing
180 COVID-19 and 200 normal (healthy) chest X-ray images. The deep feature extraction from the
ResNet50 method and SVM classification using the linear kernel function is employed. In [15], an
alternate diagnosis method for detecting COVID-19 cases with accessible resources and an innovative DL
method is developed. The presented approach is performed in four stages: preprocessing, data
augmentation, stage-I and -II deep network models. Narin et al. [16] proposed a five pretrained
convolution neural network-based method (ResNet101, ResNet50, InceptionV3, Inception-ResNetV2 and
ResNet152) for detecting coronavirus pneumonia-diseased person with chest X-ray radiographs. Through
five-fold cross-validation, they have performed three distinct binary classifiers with 4 groups (normal
(healthy), COVID-19, bacterial pneumonia, and viral pneumonia).

Figure 2: Difference between ai and xai: (a) existing model (b) xai model
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3 The Proposed QIDEXAI-CDC Model

In this study, a new QIDEXAI-CDC technique has been designed to identify the occurrence of
COVID-19 using the XAI tools on HIoT systems. The proposed QIDEXAI-CDC model incorporates
several stages of subprocesses, namely BF-based noise removal, RetinaNet-based feature extraction,
KELM-based classification, and QIDE-based parameter tuning. The QIDE algorithm is applied to
appropriately choose the weight and bias values of the KELM model, thereby enhancing the classifier
efficiency. Fig. 3 demonstrates the block diagram of the QIDEXAI-CDC technique.

3.1 Data Pre-Processing

At the primary stage, the noise in the radiological images can be discarded by using the BF technique.
Consider F denotes a multi-channel image, andW denotes a sliding window of finite size n� n. Let the pixel
inW be the Cartesian Coordinate and denoted as i ¼ i1; i2ð Þ 2 Y 2 the location of pixel Fi inW whereas Y ¼
0; 1; : : : ; n� 1f g is endowed with the common order. Based on [17], the BF replace the centralized pixel

of filtering window through a weighting average of neighboring color pixel. The weight W Fi; Fj
� �

equivalent to pixel Fj respect to Fi is the product of photometrical and spatial elements

W Fi; Fj
� � ¼ Ws Fi ; Fj

� �Wp Fi; Fj
� �

(1)

Whereas the spatial element Ws Fi ; Fj
� �

is represented as

Ws Fi;Fj

� � ¼ e
� j i�jj jj2

2
2r2S (2)

and the photometrical element Wp Fi; Fj
� �

is represented as

Wp Fi; Fj
� � ¼ e

�
DELab Fi ;Fjð Þ2

2r2p (3)

In which DELab ¼ DL�ð Þ2 þ Da�ð Þ2 þ Db�ð Þ2
h i1

2
indicates the perceptual color error from the L�a�b�

color space, and rs, rp > 0: The color vector output eFi of the filter is calculated by the standardized
weight as given below.

Fi ¼
P

FJ2wW Fi; Fj
� �

FjP
FJ2wW Fi; Fj

� � (4)

TheWp weighted function reduced as perceptual color variance amongst the color vector increases, the
Ws weighted function reduces as spatial distance in the images among I and j increases. The photometric
component decreases the impact of pixel perceptually distinct concerning the one under processing while

Figure 3: Block diagram of QIDEXAI-CDC technique
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the spatial element reduces the impact of pixel-reducing blurring. In this method, the sharpness of edges is
preserved, and a perceptually similar pixel area is averaged together. The rs and rp parameters are utilized for
adjusting the impact of the photometric and the spatial elements, correspondingly. They are assumed as rough
thresholds to identify pixels similar or close to the centralized one sufficiently. Noted that if rp ! 1, the BF
approach a Gaussian filter and if rs ! 1, the filter approaches a range filter without spatial concept. In such
cases, if rp ! 1 and rs ! 1, the BF act as AMF.

3.2 RetinaNet Based Feature Extraction

Next to data preprocessing, the RetinaNet is applied to produce a collection of feature vectors. It
comprises three subnetworks, namely residual network (ResNet), feature pyramid network (FPN), and
two fully convolution networks (FCN) [18]. The detailed work of each component is given in the following.

ResNet: The major intention of the ResNet involves the concept of residual learning that enables the
actual input data to be straightway fed into the next layer. It utilizes several network layers. A few
common versions of ResNet are 50 layers, 101 layers, and 152 layers. Here, ResNet 101 model is applied
and the features derived are forwarded to the succeeding network.

FPN: It is used for effectually deriving the features of all dimensions in the image using the traditional
CNN approach. Initially, a 1-D image is fed as input to the ResNet. Followed by the succeeding layer of the
convolution network, the features of every layer are chosen by the FPN and then integrated to produce the
end feature output combination.

FCN: The class subnet in the FCN performs the classifier process. It can identify the class of radiological
images. It aims to identify the presence of COVID-19 in the radiological images and record the positions.

Focal loss: It is an extended kind of cross-entropy loss, and the binary cross-entropy is mathematically
formulated as follows:

CE p; yð Þ ¼ � log pð Þ; if y ¼ 1;
� log 1� pð Þ; otherwise;

�
(5)

where y 2 �; 1½ � indicates the ground truth class and p 2 0; 1½ � indicates the estimated possibility of the class
label
y ¼ 1.

pt ¼ p; if y ¼ 1;
1� p; otherwise;

�
(6)

CE p; yð Þ ¼ CE ptð Þ ¼ � log ptð Þ (7)

To resolve the data imbalance issue among the COVID-19 and Non-COVID 19 instances, the actual
form can be transformed.

CE ptð Þ ¼ �at log ptð Þ (8)

Among them,

at ¼ a; if y ¼ 1
l � a; otherwise

�
(9)

where a 2 0; 1½ � indicates the weight factor. For resolving the issue of complicated samples, the focus
variable C is applied to attain the end form of the focal loss:
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FL ptð Þ ¼ �atð1� ptÞc log ptð Þ (10)

3.3 Image Classification Using the KELM model

The generated features from the previous step are fed into the KELM model to detect and classify
COVID-19. In recent times, the ELM learning approach using better generalization efficiency and fast
learning speed was receiving considerable interest from a researcher [19]. In ELM, the first parameter of
hidden state does not have to be tuned and most of the non-linear piecewise continuous function is
utilized as the hidden neuron. Thus, for N arbitrary sample xi; tið Þjxi 2 Rn; ti 2 Rm; i ¼ 1; . . . ; Nf g; the
output function in ELM using L hidden neuron is

fL xð Þ ¼
XL

i¼1
bihi xð Þ ¼ h xð Þb (11)

Whereas b ¼ b1; b2; bL½ � denotes the vector of output weights among the hidden state of L neuron and
output neurons and h xð Þ ¼ h1 xð Þ; h2 xð Þ; � � � ; hL xð Þ½ � represent the output vector of hidden state regarding
the input x, that maps data from input space to the ELM feature space [19]. For improving the generalization
performance and minimizing the training error of neural network, the output weights and training error must
be minimalized simultaneously, as follows

Minimalize : kHb� Tk; kbk (12)

The least-square solution of Eq. (12) depends on KKT condition as follows

b ¼ HT 1

C
þ HHT

� ��1

T (13)

In which H denotes the hidden state output matrix, C indicates the regulation coefficient, and T denotes
the expected output matrix of instance. Next, the output function of ELM can be formulated as follow

f xð Þ ¼ h xð ÞHT 1

C
þ HHT

� ��1

T (14)

Once the feature mapping h ?ð Þ is not known and the kernel matrix of ELM depends on Mercer condition
is described by:

M ¼ HHT : mij ¼ h xið Þh xj
� � ¼ k xi; xj

� �
(15)

Therefore, the output function f xð Þ of the KELM is formulated by

f xð Þ ¼ k x; x1ð Þ; � � � ; k x; xNð Þ½ � 1

C
þM

� ��1

T (16)

Whereas M ¼ HHT and k x; yð Þ indicates the kernel function of hidden neuron of SLFN. There are
several kernel functions fulfilling the Mercer condition presented from the current study including
polynomial kernel, linear kernel, exponential kernel, and Gaussian kernel. Here, we employ three
standard kernel functions for performance and simulation study and the selected kernel function is given by.

(1) Gaussian kernel:

k x; yð Þ ¼ exp �akx� ykð Þ (17)
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(2) hyperbolic tangent (sigmoid) kernel:

k x; yð Þ ¼ tanh bxTyþ c
� �

(18)

(3) wavelet kernel:

k x; yð Þ ¼ cos d
kx� yk

e

� �
exp �kx� yk2

f

 !
(19)

Whereas tangent kernel function is a standard global nuclear function and Gaussian kernel function is a
standard local kernel function, correspondingly [8]. Additionally, the complicated wavelet kernel function is
utilized to test the efficiency of the algorithm.

3.4 Parameter Tuning Using QIDE Algorithm

At the final stage, the weight and bias values of the KELM model can be effectually adjusted by the use
of QIDE algorithm. The QIDE algorithm is derived from the concepts of quantum computing into the DE. It
makes use of quantum features for enhancing the outcomes of the DE. Here, the Q-bits can be employed as
fundamental units. It performs encoding and quantum chromosomes will produce quantum population.
Based on the modification of the quantum population, the optimum solution of the objective function can
be defined [20]. The development of quantum population involves the succeeding features.

At QC, the data will be stored and analyzed in the Q-bit way. It can be defined in Eq. (20):

wi ¼ aj j0i þ bj1i (20)

where aj2þ�� ��bj2 ¼ 1, a and b represents the likelihood amplitude of qubit as 0 and 1 correspondingly, jaj2
and jbj2 represents the likelihood of qubit as 0 and 1, correspondingly.

The individual of length m is defined in Eq. (10).

xi ¼ a1
b1

a2
b2

���� ���� . . .. . .
am
bm

���� ����� 	
¼ cos hi;1

� �
sin hi;1
� ����� ���� cos hi;2

� �
sin hi;2
� ����� ���� ^^ cos hi;m

� �
sin hi;m
� ����� ����� �

(21)

hij ¼ p rand (22)

For computing the objective function of the QIDE algorithm, it is essential to undergo mapping of the
quantum chromosome to solution space �QDE ¼ a; b½ �. The solution space conversion can take place using
Eq. (23).

qi;j ¼ b� að Þqi;j þ bþ að Þ
2

¼
b� að Þ cos hi;j

� �þ bþ að Þ
b� að Þ sin hi;j

� �þ bþ að Þ
� 	

2
(23)

Quantum chromosome indicates a superposition of a pair of chromosomes. If the quantum string gets
noticed, then the chromosome gets collapsed from quantum to unique states. The end state of the
chromosome can be produced by the linear superposition of the likelihood amplitude of every qubit. The
quantum observation can be mathematically defined using Eq. (24):

qi;j ¼ cos hi;j
� �

; if cos ðhi;jÞ2 < rand
sin hi;j
� �

; else

�
(24)

A major principle of QC is to create the ground state which comprises the superposition state interferes
via the quantum gate and convert the related phase amongst quanta. It enables the model to balance among

CSSE, 2023, vol.46, no.1 215



global as well as local searching processes, and thereby convergence rate gets improved. At the QIDE,
with respect to Q-bit, the evolution procedure comprises quantum mutation, crossover, and selection
operations [20].

Step 1. Quantum mutation operation

At the QIDE, the mutation mechanism of the DE is appropriate. With respect to Q-bit, the DE=rand=1
scheme is considered as an instance, as given below.

hti ¼ htr1 þ F rand htr2 � htr3
� �

(25)

Step 2. Quantum crossover operation

For ensuring population diversity, the new individuals are produced with a specific possibility among the
test vectors and parent individuals.

ht
0
i;j ¼

ht
0
i;j; if rand < CR or j ¼ rand

hti;jnew; else

(
(26)

Step 3. Quantum selection operation

For choosing the optimum individual for the succeeding round, the fitness value of the objective
function for every test vector is passed via greedy strategy. The quantum selection function can be
defined using Eq. (27).

uki ¼
hti; if f xti

� �
< f xt

0
i

� �
ht

0
i;j; else

(
(27)

The QIDE approach derives a fitness function to obtain enhanced classification efficiency. It describes a
positive integer to characterize the good performance of the candidate solution. Here, the minimization of the
classification error rate is regarded as the fitness function. The worse solution achieves an increased error rate
and the optimum solution has a minimal error rate.

fitness xið Þ ¼ Classifier Error Rate xið Þ ¼ number of misclassified instances

Total number of instances
�100 (28)

4 Experimental Validation

The performance validation of the QIDEXAI-CDC model is performed using the benchmark COVID-
19 database from Kaggle repository (available at https://www.kaggle.com/tawsifurrahman/covid19-
radiography-database). The dataset holds 3616 COVID images, 6012 Lung Opacity images,
10192 Normal images, and 1312 Viral Pneumonia images. In this work, 3500 images under each class
are taken. A few sample images are illustrated in Fig. 4.

Fig. 5 reports the confusion matrices produced by the QIDEXAI-CDC model on the classification of
distinct training/testing data. The figure depicted that the QIDEXAI-CDC model has accomplished
maximum COVID-19 detection outcomes. For instance, with training/testing data of 90:10%, the
QIDEXAI-CDC model has recognized 346 instances into COVID and 347 instances into Non-COVID.
Besides, with training/testing data of 60:40%, the QIDEXAI-CDC method has recognized 1335 instances
into COVID and 1357 instances into Non-COVID.
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Figure 4: Sample images

Figure 5: Confusion matrix of QIDEXAI-CDC technique distinct training/testing data
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Table 1 exhibits the overall classifier results of the QIDEXAI-CDC model on COVID-19 detection and
classification under different training/testing data. Fig. 6 demonstrates the classification outcome of the
QIDEXAI-CDC model on various sizes of training/testing data. The figure reported that the QIDEXAI-
CDC model has obtained effectual outcomes on all training/testing data. For instance, with training/
testing data of 90:10%, the QIDEXAI-CDC model has resulted to sensy of 98.86%, specy of 99.14%, and
precn of 99.14%. Moreover, with training/testing data of 80:20%, the QIDEXAI-CDC technique has
resulted to sensy of 96.43%, specy of 97.86%, and precn of 97.83%. Furthermore, with training/testing
data of 60:40%, the QIDEXAI-CDC approach has resulted to sensy of 95.36%, specy of 96.93%, and
precn of 96.88%.

Fig. 7 portrays the classification outcome of the QIDEXAI-CDC technique on various sizes of training/
testing data. The figure exposed that the QIDEXAI-CDC method has reached effectual outcome on all
training/testing data. For instance, with training/testing data of 90:10%, the QIDEXAI-CDC methodology
has resulted to accy of 99% and Fscore of 99%. Also, with training/testing data of 80:20%, the QIDEXAI-
CDC approach has resulted to accy of 97.14% and Fscore of 97.12%. At last, with training/testing data of
60:40%, the QIDEXAI-CDC method has resulted to accy of 96.14% and Fscore of 96.11%.

Table 1: Result analysis of QIDEXAI-CDC technique under different training/testing data

Measures Sensitivity Specificity Precision Accuracy F-score

Training/Testing (90:10) 98.86 99.14 99.14 99.00 99.00

Training/Testing (80:20) 96.43 97.86 97.83 97.14 97.12

Training/Testing (60:40) 95.36 96.93 96.88 96.14 96.11

Average 96.88 97.98 97.95 97.43 97.41

Figure 6: Result analysis of QIDEXAI-CDC technique under different training/testing data
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Fig. 8 illustrates the ROC analysis of the QIDEXAI-CDC methodology on the test dataset. The figure
exposed that the QIDEXAI-CDC approach has reached increased outcomes with a higher ROC of 97.9295.

Fig. 9 offers the accuracy and loss graph analysis of the QIDEXAI-CDC technique under three training/
testing datasets. The results outperformed that the accuracy value tends to increase and loss value tends to
decrease with an increase in epoch count. It can be also observed that the training loss is low and
validation accuracy is high under three training/testing datasets.

Figure 7: Accy and Fscore analysis of QIDEXAI-CDC technique under different training/testing data

Figure 8: ROC analysis of QIDEXAI-CDC technique
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Table 2 demonstrates the comparative analysis of QIDEXAI-CDC technique interms of various
measures with recent methods. Fig. 10 demonstrates a comparative sensy and specy analysis of the
QIDEXAI-CDC technique with existing approaches [21]. The figure portrayed that the Inception v3 and
NFNET models have obtained least performance with the minimal values of sensy and specy. Likewise,
the VGG16 and ResNet101 techniques have reached slightly enhanced values of sensy and specy. Next,
the Modified MobileNetv2 and MobileNetv2 systems have showcased reasonable values of sensy and

Figure 9: Accuracy and loss analysis of QIDEXAI-CDC technique under different training/testing data
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specy. Eventually, the QIDEXAI-CDC algorithm has outperformed the other methods with the higher sensy
and specy of 98.86% and 99.14%.

Fig. 11 provides a comparative precn and Fscore analysis of the QIDEXAI-CDC algorithm with existing
techniques [21]. The figure revealed that the Inception v3 and NFNET techniques have reached least
performance with the lower values of precn and Fscore. In addition, the VGG16 and
ResNet101 techniques have gained slightly enhanced values of precn and Fscore. Similarly, the Modified
MobileNetv2 and MobileNetv2 techniques have illustrated reasonable values of precn and Fscore. Finally,
the QIDEXAI-CDC model has outperformed the other methods with the increased precn and Fscore of
99.14% and 99%.

Table 2: Comparative analysis of QIDEXAI-CDC technique with recent approaches

Methods Sensitivity Specificity Precision Accuracy F-score

QIDEXAI-CDC 98.86 99.14 99.14 99.00 99.00

Modified MobileNetV2 98.54 97.14 97.25 98.95 97.33

MobileNetV2 97.76 96.24 96.91 97.53 96.45

VGG16 95.42 93.68 94.05 95.41 94.19

ResNet101 96.07 93.33 93.78 95.73 94.94

InceptionV3 95.37 92.80 92.66 94.02 93.51

NFNET 94.58 93.05 94.47 94.74 94.36

Figure 10: Sensy and Specy analysis of QIDEXAI-CDC technique with recent algorithms
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Fig. 12 offers a comparative accuy analysis of the QIDEXAI-CDC model with existing techniques [21].
The figure shows that the Inception v3 and NFNET models have obtained least performance with the
minimal values of accuy. In line with, the VGG16 and ResNet101 models have reached slightly enhanced
values of accuy. Followed by, the Modified MobileNetv2 and MobileNetv2 models have showcased
reasonable values of accuy. However, the QIDEXAI-CDC model has outperformed the other methods
with the maximum accuy of 94.71%.

Figure 11: Precn and Fscore analysis of QIDEXAI-CDC technique with recent algorithms

Figure 12: Accy analysis of QIDEXAI-CDC technique with recent algorithms
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From the above results and discussion, it is evident that the QIDEXAI-CDC model has the ability to
outperform the other methods on COVID-19 detection and classification.

5 Conclusion

In this study, a new QIDEXAI-CDC technique has been designed to identify the occurrence of
COVID-19 using the XAI tools on HIoT systems. The proposed QIDEXAI-CDC model incorporates
several stages of subprocesses namely BF based noise removal, RetinaNet based feature extraction,
KELM based classification, and QIDE based parameter tuning. The QIDE algorithm is applied to
appropriately choose the weight and bias values of the KELM model, thereby enhancing the classifier
efficiency. Extensive comparative studies reported the supremacy of the QIDEXAI-CDC model over the
recent approaches. Therefore, the QIDEXAI-CDC model has been utilized as a protocol tool to detect and
classify COVID-19 in the HIoT system. In the future, the QIDEXAI-CDC model can be tested using
large scale benchmark datasets.
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