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Abstract: Increasing the coverage and capacity of cellular networks by deploying
additional base stations is one of the fundamental objectives of fifth-generation
(5G) networks. However, it leads to performance degradation and huge spectral
consumption due to the massive densification of connected devices and simulta-
neous access demand. To meet these access conditions and improve Quality of
Service, resource allocation (RA) should be carefully optimized. Traditionally,
RA problems are nonconvex optimizations, which are performed using heuristic
methods, such as genetic algorithm, particle swarm optimization, and simulated
annealing. However, the application of these approaches remains computationally
expensive and unattractive for dense cellular networks. Therefore, artificial intel-
ligence algorithms are used to improve traditional RA mechanisms. Deep learning
is a promising tool for addressing resource management problems in wireless
communication. In this study, we investigate a double deep Q-network-based
RA framework that maximizes energy efficiency (EE) and total network through-
put in unmanned aerial vehicle (UAV)-assisted terrestrial networks. Specifically,
the system is studied under the constraints of interference. However, the optimi-
zation problem is formulated as a mixed integer nonlinear program. Within this
framework, we evaluated the effect of height and the number of UAVs on EE
and throughput. Then, in accordance with the experimental results, we compare
the proposed algorithm with several artificial intelligence methods. Simulation
results indicate that the proposed approach can increase EE with a considerable
throughput.
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1 Introduction

In recent years, unmanned aerial vehicle (UAV)-assisted fifth-generation (5G) communication has
provided an attractive way to connect users with different devices and improve network capacity.
However, data traffic on cellular networks increases exponentially, Thus, resource allocation (RA) is
becoming increasingly critical [1]. Industrial spectrum bands experience increased demand for channels,
leading to a spectrum scarcity situation. In the context of 5G, mmWave is considered a potential solution
to meet this demand [2,3]. Moreover, other techniques, such as beamforming, multi-input multi-output
(MIMO), and advanced power control, are introduced as promising solutions in the design of future
networks [4]. Despite all these attempts to satisfy this demand, RA remains a priority to accommodate
users in terms of Quality of Service (QoS). RA problems are often formulated as nonconvex problems
requiring proper management [5,6]. Optimal solutions are obtained by implementing heuristic methods,
such as genetic algorithm, particle swarm optimization, and simulated annealing [7,8]. However, such
solutions end up with quasioptimal solutions and converge relatively slowly. Therefore, alternative
solutions and flexible algorithms that exploit late development in artificial intelligence are desirable to
explore. Recently, deep learning (DL) [9] has emerged as an effective tool to increase flexibility and
optimize RA in complex wireless communication networks. First, DL-based RA is flexible because the
same deep neural network (DNN) can be implemented to achieve different design objectives by
modifying the loss function [10]. Second, the computation time required by DL to obtain RA results is
lower than that of conventional algorithms [11]. Finally, DL can receive complex high-dimensional
information as input and allocate the optimal action for each input statistic in a particular condition [10].
On the basis of the above analysis, DL can be chosen as an accurate method for RA.

1.1 Related Works

As an emerging technology, DL has been used in several research studies to improve RA for terrestrial
networks. For instance, the authors in [12] investigated the deep reinforcement learning (DRL)-based time
division duplex configuration to allocate radio resources dynamically in an online manner and with high
mobility. In [1], Lee et al. proposed deep power control based on a convolutional neural network to
maximize spectral efficiency (SE) and energy efficiency (EE). In this study, a comparison between the
DL model and a conventional weighted minimum mean square error was realized. In the same context,
[13] performed a max-min and max-prod power allocation in downlink massive MIMO. To maximize
EE, a deep artificial neural network scheme was applied in [14], where interference and system
propagation channels were considered. Deep Q-learning (DQL)-based RA has also attracted much
attention in recent literature. In [15], the authors studied the RA problem to enhance EE. The proposed
method formulated a combined optimization problem, considering EE and QoS. More recently, a
supervised DL approach in 5G multitier networks was adopted in [16] to solve the joint RA and remote–
radio–head association. For this model, efficient subchannel and power allocation were used to generate
training data. According to the decentralized RA mechanism, the authors in [17] developed a novel
decentralized DL for vehicle-to-vehicle communications. The main objective was to determine the
optimal sub-band and power level for transmission without requiring or waiting for global information.
The authors used a DRL-based power control to investigate the problem of spectrum sharing in a
cognitive radio system. The aim of this framework is that the secondary user shares the common
spectrum with the primary user. Instead of unsupervised learning, the authors in [18] introduced
supervised learning to maximize the throughput of device-to-device with maximum power constraint. The
authors in [19] presented a comprehensive approach and considered DRL to maximize the total network
throughput. However, this work did not include EE for optimization. Majority of the learning algorithms
introduced above do not incorporate constraints directly into the training cost functions. Nowadays,
literatures focus on RA in UAV-assisted cellular networks based on artificial intelligence. In reference
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[20], authors proposed a multiagent reinforcement learning framework to study the dynamic RA of multiple
UAVs. The objective of this investigation was to maximize long-term rewards. However, the work did not
consider UAV height. In [21], the authors used deep Q-network to solve the RA for UAV-assisted ultradense
networks. To maximize system EE, a link selection strategy was proposed to allow users to select the optimal
communication links. The authors did not consider the influence of SE on EE. In addition, the authors in [22]
studied the RA problem of UAV-assisted wireless-powered Internet of Things systems, aiming to allocate
optimal energy resources for wireless power transfer. In [23], the authors thoroughly investigated deep Q-
network (DQN), invoking the difference of convex-based optimization method for multicooperative UAV-
assisted wireless networks. This work assumed beamforming technique to serve users simultaneously in
the same spectrum and maximize the sum user achievable rate. However, the work was not focused on
EE. Another DQN work in [24] was presented to study the low utilization rate of resources. A novel
DQN-based method was introduced to address the complex problem. The authors in [25] analyzed RA
for bandwidth, throughput, and power consumption in different scenarios for multi-UAV-assisted IoT
networks. On the basis of machine learning, authors considered DRL to address the joint RA problem.
Although the proposed approach remained efficient, it did not consider ground network, EE and total
throughput. In the present study, we aim to optimize EE and total throughput in UAV-assisted terrestrial
networks subject to the constraints on transmission power and UAV height. Our main efforts are to apply
a double deep Q-network (DDQN) that obtains optimal rewards better than DQN [26].

1.2 Contribution

Existing research on RA in UAV-assisted 5G networks focuses on single objective optimization and
considers the DQN algorithm to generate data. Following the previous analysis, we investigate the RA
problem in UAV-assisted cellular networks that maximize EE and total network throughput. Especially,
DDQN is proposed to address intelligent RA. The main contributions of this study are listed below.

(1) We formulate EE and total throughput in mmWave scenario while ensuring the minimum QoS
requirements for all users according to the environment. However, the optimization problem is
formulated as a mixed integer nonlinear program. Multiple constraints, such as the path loss
model, number of users, channel gains, beamforming, and signal-to-interference-plus-noise ratio
(SINR) issues, are used to describe the environment.

(2) We investigate a multiagent DDQN algorithm to optimize EE and total throughput. We assume that
each user equipment (UE) behaves as an agent and performs optimization decisions on
environmental information.

(3) We compare the performance of the proposed algorithm, QL, and the DQN approaches already
proposed in terms of RA.

The remainder of this paper is organized as follows: An overview for DRL is presented in Section 2, and
the system model is introduced in Section 3. Then, the DDQN algorithm is discussed in Section 4, followed
by simulation and results in Section 5. Lastly, conclusions and perspectives are drawn in Section 6.

2 Overview of DRL

DRL is a prominent case of machine learning and thus a class of artificial intelligence. It allows agents to
identify the ideal performance based on its own experience, rather than depending on a supervisor [27]. In
this approach, a neural network is used as an agent that learns by interacting with the environment and solves
the process by determining an optimal action. Compared with the standard ML, namely supervised and
unsupervised learning [28], DRL does not depend on data acquisition. Thus, sequential decision making
occurs, and the next input is based on the decision of the learner or system. Moreover, in DRL, the
Markov decision process (MDP) is formalized as a mathematical approach to modeling and decision-
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making situations. The reinforcement learning process operates as follows [29]: the agent begins in a specific
state within its environment s0 2 S by obtaining an initial observation w0 2 � and takes an action at 2 A at
each time step t. As illustrated in Fig. 1, the DRL can be categorized into three algorithms, such as value-
based, policy gradient, and model-based methods. In value-based DRL, the agent uses the learned value
function to evaluate s; að Þ pairs and generate a policy [30]. DQL is a much more popular and efficient
algorithm in this category. By contrast, a policy-based algorithm is intuitive, where algorithms learn a
policy p. Learning a policy to act in an environment is sensible; thus, a policy function p considers a
state s as input to generate an action a � p sð Þ.

2.1 Q-Learning

As a popular branch of machine learning, Q-learning is based on the main concept of the action value
function qp s; að Þ for policy p. It uses the Bellman equation to learn and calculate the optimum values of the
Q-function in an iterative way [30], which is expressed as

Q st; atð Þ  Q st; atð Þ þ at rtþ1 þ c max
atþ1Q stþ1; atþ1ð Þ � Q st; atð Þ

h i
(1)

where at is the step-size parameter that defines the extent to which the new data contribute to the existing Q
value, c is the MDP discounter factor, rtþ1 is the numerical reward for the agent after the execution of the
action, and stþ1 indicates that the environment changes to a new state, with transition probability
pðs0; r s; aÞj , as illustrated in Fig. 2. However, the Q-learning algorithm could be applied only to RA
problems with low dimensionality in state and action, resulting in an evolutionary limitation [31].
Moreover, this application is only used when the state and action spaces are discrete (e.g., channel
access) [32].

2.2 Deep Q-Network

As stated above, the Q-learning algorithm faces difficulties in obtaining the optimal policy when the
action and state spaces become exceptionally large [33]. This constraint is often observed in the RA
approaches of cellular networks. To solve this problem, the DQN algorithm, which connects the
traditional Q-learning algorithm to a convolutional neural network, was proposed [34]. The main
difference with the Q-learning algorithm is the replacement of the table with the function approximator
called DNN; this process attempts to approximate the Q values. Approximators have two types: a linear
function and a nonlinear function [35]. However, in a nonlinear DNN, the new Q function is defined as
Q st; atjxð Þ � Q� s; að Þ, where x represents the weights of the neural network. At each time t, action at
is taken in accordance with the e-greedy policy, and the transition tuple (st; at; rt; stþ1Þ is stored mainly
in a replay memory denoted by D. During the training process, a minibatch is sampled randomly from

Figure 1: DRL algorithms
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experience D to optimize the mean squared error. Thus, the target Q-network is used to improve the stability
of DQN, whose x is regularly adjusted to follow those of the principal Q-network. On the basis of the
Bellman equation, the optimal state-action function is given by [35]

Q� st; atð Þ ¼ Es0t ½r þ cmaxa0t
Q� s0t; a

0
t

� ����st; at�: (2)

To train the DQN, iterative updating of the weight x is used, thus minimizing the mean squared error of
the Bellman equation. Mathematically, the loss function at each iteration is given by

L xtð Þ ¼ Est ;at ;rt ;stþ12D rt st; atð Þ þ cmaxatþ1Q stþ1; atð Þ
���x0 � Q st; atð Þjx

h i2
(3)

3 System Model and Problem Formulation

In the proposed model, we consider the downlink communication of a UAV-assisted cellular network
comprising a set of small base stations (SBSs) denoted as S ¼ SBS1; SBS2; . . . ; SBSMf g and a set of
UAVs which is defined as U ¼ UAV1; UAV2; . . . ; UAVuf g. UAVs are placed at a particular altitude
H , and Hmin � H � Hmax is assumed to be constant for all UAVs. Each cell contains an mm-wave band
and some user N distributed randomly in a dense area. We assume that a particular user is assigned to a
single base station that provides the strongest signal. In this work, MBS and UEs are assumed to be
equipped with omnidirectional antennas, i.e., antennas with unit gain, and every UAV are equipped with
directional antennas [36]. Moreover, each UE associated with UAVs are assigned with orthogonal
resource blocks RBs (an RB consists of 12 subcarriers, with a total bandwidth of 180 kHz in the
frequency domain and one time slot 0.5 ms in the time domain), whereas UEs associated with SBSs share
the remaining RBs [37]. The transmission power allocated by UAVs and SBSs are denoted by PUAV,
PSBS respectively. Furthermore, the link between BS = UAVs [ SBSs and users can have two conditions,
i.e., line-of-sight (LoS) or non-line-of-sight (NLoS) link. As illustrated in Fig. 3, interference powers
from adjacent base stations are considered. Table 1 summarizes the notations that were used in this article.

Figure 2: Q-learning algorithm for UAV-assisted SBS
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Table 1: Summary of symbols and notations

Symbol Definition

x Weights of the neural network

st; at; rt State, action, and reward, respectively

S, U Set of SBS and UAV

Hmin, Hmax Minimum and maximum altitude of UAV

N Number of users

PUAV ; PSBS Power transmission of UAV and SBS

hBS;k;n Channel gain from BS to user k on different subcarriers n

RBS;k;n Throughput of user k on the nth subcarrier

PLoS;UAV ; PLoS; SBS Blockage probability in LoS condition

b Blockage parameter

ctUAV , c
t
SBS SINR of UAV and SBS, respectively

Gt
UAV , G

t
SBS Directional beamforming gain

r2 Additive white gaussian noise

atLoS; a
t
NLoS Path-loss exponent for LoS and NLoS

dtLoS; d
t
NLoS Additional losses

EE, SE Energy efficiency and spectral efficiency, respectively

cthUAV , c
th
SBS SINR threshold for UAV and SBS

RQos
BS;k;n Data rate requirement

rjt Reward function

Figure 3: DQN architecture for UAV-assisted SBS
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3.1 Fading and Achievable Data Rate

The channel between the base station and UE can be fixed or time varying. Fading is defined as the
fluctuation in received signal strength with respect to time, and it occurs due to several factors, including
transmitter and receiver movement, propagation environment, and atmospheric condition. Similar to [38],
we model the channel in a way that it can capture small-scale and large-scale fading. At each time slot t,
the small-scale fading between UAVs, SBSs, and UEs is considered frequency-selective fading, whose
objective is to obtain a delay spread greater than the symbol period. By contrast, the channel in every
subcarrier is supposed to be flat fading. This combination means that the channel gains can remain
unchanged. All UEs periodically transmit their channel quality information to the related BS. In addition,
let hBS;k;n designate the channel gain from BS to user k on different subcarriers n. A binary variable u is
introduced to define the association mode. If UE is associated with the UAV/SBS according to LoS link,
then u ¼ 0; otherwise u ¼ 1. We apply the following assumption in formulation. The mm-wave signal
is affected by various factors, such as buildings in urban areas, making the link susceptible to effect
blockage. Thus, the downlink achievable throughput (data rate) of user k on the nth subcarrier can be
given by the following equation as

RBS;k;n ¼ Plink;UAVRUAV ;k;n þPlink;SBSRSBS;k;n (4)

RBS;k;n ¼ u�PLoS;UAV

� ��� ��BUAV log2 1þ SINRUAV ;k;n

� �þ u� PLoS; SBS

� ��� ��BSBSlog2 1þ SINRSBS;k;n

� �
(5)

where PLoS;UAV , PLoS; SBS are the blockage probabilities when the link between the UAV/SBS and UE is LoS;
they are expressed as [39,40]

PLoS;UAV zð Þ ¼ 1

1þ bþ exp �c 180

p
tan�1

H

z

� �
� b

� �� � (6)

where b and c are constants that depend on the network environment, and z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � H2
p

is the Euclidean
distance between the typical UE and UAV (see Fig. 4).

PLoS;SBS ¼ 1� ebd (7)

where b is the blockage parameter that defines the average size of obstacles. Here, d corresponds to the
distance between SBS and UE.

Figure 4: UAV-assisted terrestrial network (SBS)
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3.2 SINR and Path Loss Model

Adding additional gain to the system remains necessary due to the propagation losses that occur at mm-
wave frequencies. One of the main solutions proposed by several research for future wireless networks is
beamforming [41]. The fundamental principle of beamforming is to control the direction of a wavefront
toward the UE. According to [42], UAV and SBS serve UE through beamforming technology. In this
manner, the SINR of UE from UAV at time slot t can be written as

ctUAV ¼
Pt
UAVh

t
UAV ;k;nG

t
UAVPL

t
UAV

ISBS þ IUAV 0 þ r2
(8)

where Gt
UAV represents the directional beamforming gain for the desired link, and r2 refers to additive

white Gaussian noise. ISBS and IUAV 0 represent the interference from the adjacent SBS and UAV,
respectively, and are expressed as

ISBS ¼ Pt
SBSh

t
SBS;k;nG

t
SBS (9)

IUAV 0 ¼ Pt
UAV 0h

t
UAV 0;k;nG

t
UAV 0 (10)

Without loss of generality, different properties are displayed in terms of propagation. For air-to-ground
communication, the path loss of LoS and NLoS links at time slot t can be experienced depending on
additional path losses in LoS and NLoS links ut

LoS; ut
NLoS and path loss exponents atLoS , a

t
NLoS as

PLtUAV ¼ ut
LoS R2 þ H2ð ÞatLoS=2 for LoS link

ut
NLoS R2 þ H2ð ÞatNLoS=2 for NLoS link

(
(11)

Similarly, we define the SINR when UE is associated with SBS. In this case, we adopt the standard
power-law path loss model with the mean dtLoS , d

t
NLoS for LoS and NLoS, respectively. Hence, the path

loss model can be given as

PLtSBS ¼ dtLoSd
�atLoS for LoS link

dtNLoSd
�atNLoS for NLoS link

�
(12)

The SINR additional loss at the typical UE when it is connected to SBS is given by (13), where
IUAV ¼ Pt

UAVh
t
UAV ;k;nG

t
SBS and ISBS0 ¼ Pt

SBS0h
t
SBS0;k;nG

t
SBS0 are the interferences from UAV and SBS,

respectively.

ctSBS ¼
Pt
SBSh

t
SBS;k;nG

t
SBSPL

t
SBS

IUAV þ ISBS0 þ r2
(13)

3.3 Spectral Efficiency and Energy Efficiency

SE and EE are the key metrics to evaluate any wireless communication system. SE is defined as the
efficiency capability of a given channel bandwidth. In other words, it represents the transmission rate per
unit of bandwidth and is measured in bits per second per hertz. The EE metric is used to evaluate the
total energy consumption for a network. It is defined as a ratio of the total transferred bits to the total
power consumption. Nevertheless, EE and SE have a fundamental relationship. Let PC be the power
consumed in the circuit of the transmitter; then, EE can be given by

EEi2 UAV ;SBSf g ¼
SEi2 UAV ;SBSf g

Pi þ PC
(14)
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where Pi is the transmit power i 2 UAV ; SBSf g, which ranges 0,Pi � Pmax; the achievable SEi2 UAV ;SBSf g
of transmitter can be computed as

For UAV

SEUAV ¼ log2 1þ Pt
UAVh

t
UAV ;k;nG

t
UAVPL

t
UAV

ISBS þ IUAV 0 þ BUAV r2

� �
(15)

For SBS

SESBS ¼ log2 1þ Pt
SBSh

t
SBS;k;nG

t
SBSPL

t
SBS

IUAV þ ISBS0 þ BSBS r2

� �
(16)

3.4 Objective Formulation

The proper performance of EE approaches is of paramount importance in UAV-assisted terrestrial
networks because it is directly related to the choice of objectives and constraints for relevant optimization
problems. In this work, we aim to optimize two specific objectives for RA, namely, the maximization of
EE and throughput. From the SE perspective, the EE maximization problem can be formulated as

max
X
k2N

EEt (17)

s.t. C1: 0,Pi � Pmax 8 i 2 UAV ; SBSf g; 8 UAV 2 U ; 8 SBS 2 S
C2: Hmin � H � Hmax 8 UAV 2 U

C3: EEt
UAV � EEt

SBS 8 UAV 2 U ; 8 SBS 2 S
C4: RBS;k;n � RQos

BS;k;n

C5: ctUAV � cthUAV 8 UAV 2 U

C6: ctSBS � cthSBS 8 SBS 2 S
C7: n 2 0; 1f g 8 UAV 2 U ; 8 SBS 2 S
Constraint C1 means that the transmit power PUAV and PSBS must be in the interval 0; Pmax½ �. It specifies

the upper limit of the power transmission. Constraint C2 indicates that the UAV should be positioned
between a minimum and maximum height. At higher heights, the distance between the UAV and UE
increases, resulting in considerable path loss. By contrast, when the UAV is located at a certain minimum
height, the NLoS conditions are recorded and may affect EE; hence, this constraint must be studied. The
constraint in C3 guarantees that the EE of UAV must be greater than that of SBS. In C4, RBS;k;n

defines the maximum downlink achievable data rate, whereas RQos
BS;k;n accounts for the data rate

requirement. Constraints C5 and C6 specify that the SINR of the UE should be higher than a certain
threshold; the SINR threshold differs from each tier (UAV, SBS). Lastly, the last constraint ensures that
the UE is connected with a single BS. In a subsequent section, we will present our second objective,
which is to maximize the total network throughput. The overall throughput RBS;k;n is defined as the sum
of the data rates that are provided perfectly to all UE. Mathematically, the maximization problem can be
computed as

max
X
k2N

Rt
BS;k;n (18)

s.t. C1: 0,Pi � Pmax 8 i 2 UAV ; SBSf g; 8 UAV 2 U ; 8 SBS 2 S
C2: Hmin � H � Hmax 8 UAV 2 U

CSSE, 2023, vol.46, no.1 81



C3: ctUAV � cthUAV 8 UAV 2 U

C4: RBS;k;n � Rmin
BS;k;n 8 UAV 2 U ; 8 SBS 2 S

C5: PLoS;SBS ,PLoS;UAV 8 UAV 2 U ; 8 SBS 2 S
The constraint in C4 indicates the minimum required data rate for QoS. Here, constraint C5 means that

the LoS probability of the SBS must be less than that of the UAV.

4 Double Deep Q-Network Algorithm

In this section, we present a DRL algorithm-based EE and throughput RA framework to address the
network problems of (17) and (18). The task of the DRL agent is to learn an optimal policy from state to
action, thus maximizing the utility function. We formulate the optimization problem as a fully observable
Markov decision process. Similar to literature, we consider a tuple (st; at; rt; stþ1Þ. Based on the
transition probability pðstþ1jst; atÞ, the current network state st learns a new state according to the action
at selected by the agent at time slot t. A DDQN is applied to achieve an optimal solution. However, we
assume that UAV and SBS act as an agent that continuously interacts with the environment to optimize
the policy. First, the agent j observes the state sjt and decides to take an action ajt in accordance with the
optimal policy. Then, at each time policy, the agent receives reward rjt conditioned by the action and
moves to the next state sjtþ1. This procedure concerns the DQN algorithm with a single agent. The major
inconvenience of this algorithm lies in the confusion of the selection or evaluation of actions, leading to
overestimation of action values and unstable training. To solve this overestimation, Hasselt et al.
proposed a DDQN architecture, where the max function estimators is decomposed into action selection
and evaluation, as illustrated in Fig. 5. The fundamental concept of the algorithm is to change the target
network YDQN

t ¼ rtþ1 þ cmaxa Q stþ1; at x
0
t

��� �
as

Figure 5: DDQN architecture
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YDDQN
t ¼ rtþ1 þ cQ stþ1;

argmax
a� Q stþ1; a� xtjð Þ; x0t

� �
(19)

At each time t, the weighted parameters xt of the online network is used to evaluate the greedy policy,
whereas the weighted parameter x

0
t estimates the policy value. For improved performance evaluation, the

target network for DDQN can use any parameters from the previous iteration t � 1ð Þ. Therefore, a
periodic update of the target network settings is applied with copies of the online network.

4.1 State and Observation

The state describes a specific configuration of the environment. At time slot t, UAVs and SBSs act as
agents and define the observation space Ot

j. The observation of each BS ¼ UAV [ SBS includes the SINR
measurement from the UAV and SBS to UE, the height of UAVs H , and spectral efficiency. We define the
global state as

sjt ¼ O1
t ; O2

t ; . . .OBS
t

� �
(20)

where OBS
t represents the set of observation and can be expressed as

Oj
t ¼ SINRj

t; H
j
t ; SE

j
t

� �
(21)

4.2 Action

In our problem, each agent must choose an appropriate base station (i.e., UAV or SBS), power
transmission, UAV height, and LoS/NLoS link probability. At time step t, the action of UAV/SBS can be
expressed as

ajt ¼ bjtP
j
t; H

j
t ; Pj

t

� �
(22)

where bjt 2 0; 1; . . .bf g is the selected BS; Pj
t ¼ 0; 1; . . .Pmaxf g is the power transmission requirement,

which indicates how much power should be assigned to UE; Hj
t ¼ 0; 1; . . .Hmaxf g is the UAV elevation.

4.3 Reward

Reinforcement learning is based on the reward function, stating that the agent (UAVand SBS) is guided
toward an optimal policy. As mentioned above, we model this problem as a fully observable MDP to
maximize EE and throughput. Therefore, the reward of j can be computed as

rjt ¼ w1rEE þ w2rThroughput (23)

where rEE ¼
PMþu

i¼1 EEt and rThroughput ¼
PMþu

i¼1 RBS;k;n. w1 and w2 are the weights for each objective,
respectively. The pseudo code for DDQN is outlined in Algorithm 1.

Algorithm 1: DDQN for Energy efficiency and Throughput.

Initialization:

Initialize parameters: Learning rate, e-greedy, memory buffer D, online network with random weight x,
target network as a copy of online network with weight x0.

Learning:

for iteration 1; 2; . . .L

s1: Initialize the first state from sjt ¼ O1
t ; O2

t ; . . .OBS
t

� �
.

for episode 1, E do

(Continued)
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Agent (UAV and SBS) select an action ajt according to e-greedy.

Obtain the immediate reward rjt, and observe next state stþ1.

Obtain optimal EE and throughput.

Store transition (stj; a
t
j; rt; s

tþ1
j Þ in D.

for agent j ¼ 1 to M þ u do

UAV and SBS randomly sample minibatch (stj; a
t
j; rt; s

tþ1
j Þ into D.

Calculate the target Q-value YDDQN
t in Eq. (19)

Train main network

L xð Þ ¼ E YDDQN
t � Q stj; a

t
j xj

	 
	 
2
� �

Apply gradient descent as

YDDQN
t � Q stj; a

t
j x tð Þj

	 
	 

Update target network as

x0 tð Þ ¼ sx tð Þ þ 1� sð Þx0 tð Þ
end for

end for

end for

5 Simulation Results

This section discusses the simulation and results for EE and throughput in the downlink UAV-assisted
terrestrial network comprising eight SBSs with a radius of 500 m and five UAVs deployed randomly in the
area. The cell contains 20 randomly distributed users and uses mm-wave bands. We assume that the
maximum power transmission for SBS is Pmax; SBS ¼ 23 dBm, and different values of maximum
Pmax; UAV is shown in simulation. The path loss exponent in the LoS and NLoS links for the UAV and
SBS have the values aUAVLoS ¼ 3, aUAVNLoS ¼ 3; 5, aSBSLoS ¼ 2, and aSBSNLoS ¼ 4. In addition, the power consumed
in the circuit of the transmitter Pc ¼ 40 dBm. The added white Gaussian noise r2 ¼ �114 dBm. In the
DDQN algorithm, the DNN of each agent is a four-layer fully connected neural network with two hidden
layers of 64 and 32 neurons. Other simulation and DDQN parameters are listed in Table 2. The
simulation is realized using MATLAB (R2017a) running on a Dell PC (2.8 Ghz @ Intel Core i7-7600U,
16 GB). In our simulation, we consider w1 ¼ 0:6 and w2 ¼ 0:4.

Algorithm 1 (Continued)

Table 2: Simulation parameters

Parameter Value

Mini batch 64

Learning rate 0.01

c 0.9

Replay memory D capacity 2000

e-greedy 0.05
(Continued)
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5.1 Energy Efficiency Analysis

In this subsection, we show some results of EE, which are obtained using DDNQ. For improved
performance validation, we compare our proposed algorithm with the DQN and QL architectures.
Moreover, the effect of UE demand, number of UAVs, and beamforming on maximum power Pmax; UAV

are discussed. In the simulation evaluation, the parameter values in Table 2 are used, unless otherwise
specified. First, we evaluate the effect of UE demand on the EE for different algorithms in Fig. 6. A
common observation in Fig. 6 is that increasing UE demand can lead to increased EE; however, from
60 Mbps, EE converges less quickly.

This result is obtained because when UE demand increases considerably (60 Mbps. Þ, all algorithms
(DDQN, DQN, and QL) aim to maximize network throughput, which requires high transmission power,
causing reduced EE. Another comment from Fig. 6 is that the DDQN algorithm can outperform DQN
and QL. This outcome is achieved because the agent selects a more appropriate Q value to estimate the
action. This perfection is mainly due to the two separate estimators applied in DDQN. In other terms,
the use of the opposite estimator is cost effective for obtaining unbiased Q-values. A proposed solution to
the EE problem when UE demand increases is to add base stations. The increase in the number of UAVs
has a remarkable effect on EE, as illustrated in Fig. 7. As the number of UAVs increases, EE improves
because the number of users covered in UAV LoS increases.

Table 2 (continued)

Parameter Value

Antenna gain 9 dBi

Subchannel band 75 kHz

SBS bandwidth 30 MHz

UAV bandwidth 45 MHz

Figure 6: EE as a function of UE demand for different algorithms
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Moreover, Fig. 7 demonstrates that the DDQN algorithm outperforms DQN and QL by 13.3% on EE
because traditional RL algorithms use a one-actor network to train multiple agents; thus, conflicts
between agents are recorded. Next, EE is plotted as a function of the number of UE for different UAV
height (Hmax constraint), as shown in Fig. 8. Moreover, an increase in the number of UE results in EE
degradation because of the increase in energy consumption. Fig. 8 also shows that UAV height can affect
EE. Therefore, EE increases as Hmax increases because the increase in UAV height results in additional
UEs in the LoS link condition, leading to an increase in the total number of bits transmitted.

As the number of UE increases, the power assigned to UE declines. Therefore, the increase in height
compensates this shortcoming. Fig. 9 shows EE vs. the maximum power of UAV Pmax; UAV with and
without beamforming. A common observation in Fig. 9 is that EE decreases by extending the maximum
transmission power of the UAV due to the increased energy consumption by users. In addition, when the
power of UAVs increases, the links between UAVs and UEs are in NLoS condition, thus reducing EE.
This analysis is conducted with and without beamforming. As illustrated in Fig. 9, applied beamforming
improves EE in each algorithm (DDQN and DQN) because beamforming provides additional gains and
can overcome mm-wave blockage constraints.

Figure 7: EE as a function of number of UAVs for different algorithms

Figure 8: EE as a function of number of users for different Hmax constraints
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5.2 Throughput Analysis

To validate the accuracy of our approach, we analyze the total throughput (second objective) according
to the number of UAVs deployed, UAV height HMax, and beamforming. Considering the first scenario,
Fig. 10 depicts the total throughput as a function of the number of UAVs. As the number of UAVs
increases, the total throughput is enhanced. Thus, DDQN outperforms DQN and QL. However, this effect
is mainly due to the increase in LoS links. The same figure also shows that the total throughput reaches a
congestion level at a particular number of UAVs due to the rise in interference between UAVs.

Fig. 11 illustrates the variation of throughput vs. UAV height in different AI algorithms. According to
Fig. 11, throughput increases with maximization of altitude HMax because at low altitude, the propagation
condition is in NLoS, and interference between tiers is observed. By contrast, when the UAV height
increases, the LoS condition occurs, resulting in reduced loss. Moreover, saturation is experienced from
an altitude of 130 m because as UAV height increases, the distance between the UAV and UE increases,
leading to signal attenuation.

Figure 9: EE vs. maximum UAV power transmission with and without beamforming

Figure 10: Throughput as a function of number of UAVs with different algorithms
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Fig. 12 shows the variation of the throughput vs. maximum UAV power. As expected, the total
throughput increases as PMax; UAV increases. Fig. 12 also reveals that DDQN achieves a maximum
throughput of 582.7 Mbps with a maximum power of PMax; UAV ¼ 35 dBm. By contrast, DQN achieves a
maximum throughput of 269,234 Mbps at the same PMax; UAV . Again, the proposed DDQN algorithm
outperforms DQN. Finally, we plot the throughput as a function of blockage parameter b for SBS when
UAVs are assumed to be located at HMax ¼ 120 m, as shown in Fig. 13. When b increases, the total
throughput of the network decreases. Therefore, with the increase in obstacle density, more UEs are
served by NLoS conditions. In addition, Fig. 13 shows that the proposed DDQN scheme converges to
highly satisfactory solutions compared with the other approaches because it handles interference perfectly.

Figure 12: Throughput as a function of UAV power with beamforming

Figure 11: Throughput analysis as a function of UAV height
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6 Conclusion

In this study, we proposed a DDQN scheme for RA optimization in UAV-assisted terrestrial networks.
The problem is formulated as EE and throughput maximization. Initially, we provided a general overview of
deep reinforcement architectures. Then, we presented the network architecture where the base stations use
the beamforming technique during transmission. The proposed EE and throughput were assessed under
the number of UAVs, beamforming, maximum UAV power transmission, and blockage parameter. The
algorithm accuracy of the obtained EE and throughput was demonstrated by a comparison with deep
Q-network and Q-learning. Our results indicate that EE can be affected by the number of UAVs to be
deployed in the coverage area, as well as the maximum altitude variation (constraint). Moreover, the use
of beamforming can be cost effective in improving EE. Our investigation also revealed other useful
conclusions. For throughput analysis, the blockage parameter has a dominant influence on the throughput,
and an optimal value can be selected. In terms of convergences, our DDQN consistently outperforms
DQN and QL. In future work, other issues can be explored and investigated. For instance, UAV mobility
can be considered, and an optimal mobility model can be selected to maximize throughput. Interference
coordination may also be introduced between tiers.
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