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Abstract: Deep neural networks are gaining importance and popularity in appli-
cations and services. Due to the enormous number of learnable parameters and
datasets, the training of neural networks is computationally costly. Parallel and
distributed computation-based strategies are used to accelerate this training pro-
cess. Generative Adversarial Networks (GAN) are a recent technological achieve-
ment in deep learning. These generative models are computationally expensive
because a GAN consists of two neural networks and trains on enormous datasets.
Typically, a GAN is trained on a single server. Conventional deep learning accel-
erator designs are challenged by the unique properties of GAN, like the enormous
computation stages with non-traditional convolution layers. This work addresses
the issue of distributing GANs so that they can train on datasets distributed over
many TPUs (Tensor Processing Unit). Distributed learning training accelerates the
learning process and decreases computation time. In this paper, the Generative
Adversarial Network is accelerated using the distributed multi-core TPU in dis-
tributed data-parallel synchronous model. For adequate acceleration of the
GAN network, the data parallel SGD (Stochastic Gradient Descent) model is
implemented in multi-core TPU using distributed TensorFlow with mixed preci-
sion, bfloat16, and XLA (Accelerated Linear Algebra). The study was conducted
on the MNIST dataset for varying batch sizes from 64 to 512 for 30 epochs in
distributed SGD in TPU v3 with 128 × 128 systolic array. An extensive batch
technique is implemented in bfloat16 to decrease the storage cost and speed up
floating-point computations. The accelerated learning curve for the generator
and discriminator network is obtained. The training time was reduced by 79%
by varying the batch size from 64 to 512 in multi-core TPU.

Keywords: Data parallel; distributed model; generative model; learning curve;
mixed precision

1 Introduction

Deep neural networks might answer unresolved problems by discovering connections in massive
datasets. However, such training methods are time-consuming; various parallel and distributed methods
are required to accelerate the training process. The recent success of computer vision, and deep learning,
in particular, created a new ripple in hardware accelerators. Tensor Processing Unit is a promising
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solution to the communication and computation challenge posed by data’s constant and incremental growth.
Generative adversarial networks enable the learning of deep representations without the need for significant
training data annotation. This is accomplished by obtaining backpropagation information via a competing
procedure involving two nets. Generative Adversarial Networks have facilitated a range of applications in
machine learning and natural language translation, among others, owing to its generative model’s
persuasive capacity to produce realistic examples convincingly chosen from an existing sample
distribution. Furthermore, due to its game theoretic optimization technique, GAN (Generative Adversarial
Network) delivers excellent performance on data generation-based problems and promotes privacy.

GANs need a huge training dataset to be appropriate for the required application. Data obtained at
multiple data centers remain in situ since the data quantities examined would make it challenging to
achieve scheduling requirements with data centralization. Some recent efforts [1,2] look at numerous
generators and discriminators to increase GAN convergence; nevertheless, they are not designed to
operate across datasets distributed on multiple servers. The Parameter Server model is the prevalent
model of spreading the computation of conventional neural networks: workers calculate the neural net
operations on the data share available and broadcast gradients to the central parameter server.
Nevertheless, it leads to colossal communication traffic to the central parameter server. This paper
proposes a novel method to train GAN in a distributed manner with the data distributed among TPU in
TensorFlow using mixed precision and All Reduce logic.

The main advantages of deploying GAN in TPU are that the tensor operations maximize TPU’s power
efficiently for matrix multiplications. The second benefit is derived from the data breakdown and
communication mechanisms that align with the interconnecting network architecture of TPU. All tensor
functions are isolated on individual cores, so each iteration requires a minimum transfer of image-sized
data. It is important to note that communication between TPU cores bypasses host CPUs (Central
Processing Units) and networking resources. The third benefit is TPU’s huge package memory capacity,
which effectively handles large-scale issues. The fourth benefit is that TPU is readily customizable using
software front ends like TensorFlow. In several sectors, distributed machine learning has been shown to
reduce training time and latency. For instance, a TPU-based high-speed object tracking and prediction
model has proven superior performance compared to alternative architectures and accelerators.
Furthermore, when trained for face expression identification [3] and magnetic resonance image
reconstruction [4], TPU-trained models were very efficient in computing time. In this research, we
investigate the performance of TensorFlow 2.2 in distributed training utilizing Google Collaborative
Notebooks.

The main applications of accelerated GAN using TPU are cybersecurity, animation, multimedia, and
image translations in the health sector [5,6]. It could be challenging to achieve a high-quality image in
specific evaluation protocols. Poor-quality scans have the consequence of hampering attempts to produce
images of high quality. Super-resolution enhances collected pictures and can effectively reduce noise.
However, acceptance of GANs in the medical field is difficult because several tests and trials need to
address safety issues. GANs are widely used in a medical illness diagnosis. Nevertheless, generative
adversarial networks have the potential to save human lives. Drug development is another area of
healthcare where GAN may be of use. The networks may be exploited to generate molecular structures
for drugs used for disease targeting and treatment. Using the current database, researchers may teach the
generator to identify novel chemicals that might be utilized to treat new ailments. Researchers no longer
need to manually go through the entire database in search of substances that may be used to combat new
illnesses. The system discovers these molecules automatically and aids in reducing the time necessary for
medication research and development. All medical applications require timely faster results, so
accelerating GAN helps to solve the problem effectively. Hackers use adversarial attacks to enter the
systems and destroy their security levels. Hackers inject harmful data into images. This impairs the
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algorithm’s intended functionality by tricking the neural network. These result in the disclosure and
compromising of sensitive information that was not intended to be shared. It is possible to train GAN to
detect such cases of fraud. They could be used to strengthen the robustness of deep learning models.
GAN provides immense benefits to the gaming industry. GAN could also be used to generate 2-
dimensional animations. A specific database, including such anime character drawings, is used to train
the GAN. Generating emojis from individual pictures is an additional fascinating use of the GAN. The
neural network evaluates face characteristics to generate caricatured representations of persons. All these
applications require timely results and accelerated learning of the networks. In this paper, we proposed a
method to accelerate GAN in terms of performance and training time using multi-core TPU in the
distributed platform. The main challenges in the GAN design are addressed when designing the proposed
solution. The GAN structure is thoroughly analyzed before the training, and the GAN requires massive
memory storage for storing the intermediate calculation, which is effectively addressed using the TPU.
The non-convolutional operations and the varying computation structure are mitigated using the bfloat16.
The main contribution is:

� Analysis of the effect of the different batch sizes on performance and training time.

� Analysis of the effect of the different batch sizes on the loss curve, learning curve, and optimization.

� Acceleration using XLA compiler and bfloat16.

2 Background

CPUs can successfully finish the learning phase of a short neural network in a reasonable amount of time
due to the limited number of trainable parameters. Due to the frequent occurrence of multiple trainable
parameters and training data, deep neural networks require more excellent concurrent processing than the
CPU to sustain a shorter training period. As a result of the parallelization execution capabilities, (Graphic
Processing Unit) GPU-based execution arose. The fundamental advantage of the graphics accelerator-
based design is the abundance of execution units. Even though these units are less powerful than a
typical CPU core, backpropagation training of neural networks can be accomplished using only basic
operations like multiplication. The preparation of the neural network involves just simple matrix
multiplication operations; therefore, the process can be successfully parallelized using graphics processors
due to the large number of processing units in GPUs. To function well, deep neural networks need more
training data than external networks. As a result, during the training phase, the memory capacity of GPU
devices and the data transmission between CPU and GPU storage may be a barrier. One possible solution
to the transfer capacity issue is to split the training set into smaller batches. However, the appropriate
batch size is also unknown due to an imbalanced dataset leading to the overfitting of data or underfitting
of the dataset. The low computational capacity of a single GPU card could be a challenge throughout
training. GPUs may be vertically scaled to solve capacity issues. Deep neural networks can now be
trained using more GPU devices or even more nodes that use GPU cards; the most common
implementations are shown in the following sections. The operation of CNN (Convolutional Neural
Network) on the GPU and CPU is explained in detail [7].

The efficiency of the hardware resources depends on several factors, but the memory interface is a
restricting element. For the processing element to do computations, it must retrieve information from
memory. There are two primary concerns. The first factor is memory access latency. Memory access
requires much more clock cycles than executing a calculation on the acquired data since the processor
must wait before the data is ready for processing. The second factor is energy use. Loading from
(Dynamic Random Access Memory) DRAM consumes much more energy than reading from the chip’s
internal storage [8]. Therefore, the memory interface is the efficiency barrier. Experts in machine learning
and computer vision are resolving relatively challenging artificial intelligence issues with more enormous
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datasets, resulting in a requirement for more complexity and processing capacity. As Moore’s Law
decelerates, more computation per price per unit and power can no longer maintain their previous pace.
This disparity between the availability and requirement of processing capacity highlights the necessity for
developing practical deep-learning algorithms on domain-specific hardware for big data.

A tensor processing element is a hardware accelerator that speeds up MAC (Multiply and Accumulate)
matrix computations and is one of the most important deep learning operations, as shown in Fig. 1. For
efficient resource usage and energy saving, we need to limit the number of memory access. A solution to
this problem is the systolic array. The method continues to follow: information is read from memory, a
PE (Processing Element) performs an arbitrary function, the data is passed towards the next PE, and the
calculation output is posted back to memory after the last PE. Google’s TPUv2 produces 180 Tera
FLOPS (Floating-point operations per second) has eight cores, each with its 2-dimensional systolic array
containing 128 × 128 PEs. Google’s TPUv3 is capable of 420 Tera FLOPS. TPUv3 has twice the number
of systolic arrays per core, twice the memory capacity per core, adds high bandwidth memory, and
enhances connectivity, among many other enhancements. While training a sizeable neural net, TPU helps
to reduce the training time while maintaining accuracy. TPU can quickly do massive quantities of
addition and multiplication. The TPU loads variables into a matrix of adders and multipliers while doing
calculations. Operations involving multiplication are carried out after data loading. Following each
operation, the output is sent to the following multipliers while being added simultaneously. As a result,
the output is the total of all parameter and data multiplication results.

For a dataset with a limited number of entries and imbalanced conditions, usually, data augmentation is
used. Standard data augmentation approaches include rotation, resizing, zooming, and inverting pictures
within the dataset to expand the number of synthesized images for training operations. These strategies
improve the precision of machine learning methods and boost generalization capacities. Typically, image
classification methods apply classic data augmentation techniques to increase the efficiency of a trained
model. However, a further improvement in data can be obtained by adopting synthetic data samples
produced by a GAN, which may achieve greater variety and increased training efficiency for machine
learning categorization.

The existing GANs are mainly accelerated using the high processing system–GPU, TPU, and FPGA
(Field Programmable Gate Array) in a single node execution [9]. Nevertheless, in the case of big data, the
single node execution is not sufficient for data storage. Moreover, conventional deep learning accelerator
designs are challenged by the unique properties of GAN, like the enormous computation stages with non-
traditional convolution layers. LerGAN [10] offers several degrees of GAN acceleration for programmers.
Experiments demonstrate that LerGAN outperforms FPGA-based GAN accelerator, GPU platform, and
ReRAM-based neural network accelerator by 47.2X, 21.42X, and 7.46X, respectively. Nevertheless, the
main drawback of this work was that the loss function was not optimized. In [11], a model for GPU
parallel acceleration, which uses the potent computing power of GPU and the benefits of multi-parallel

Figure 1: Multicore TPU
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computing, drastically reduces the time required for model training, enhances the training efficiency of the
GAN framework, and achieves superior model-based efficiency.

3 Distributed Deep Learning

Current Deep learning models are readily scalable and able to grow the model size and process
enormous volumes of datasets, which operate well on parallel and distributed infrastructures. CNN is
widely used in many forecasting applications which need timely results [12,13]. Distributed deep learning
algorithms are well explained in [14], which discusses the infrastructure used for distributed deep
learning systems and the problems and ways for data-parallel training for parallel DL (Deep Learning)
training methods. Extra scheduler difficulties are created to map the distributed DL system component.
The examination of data management issues and techniques in distributed DL systems is covered
adequately in [14]. In the data parallelism of deep learning, a copy of the model is distributed over many
devices. Training data is distributed across all available instruments to execute synchronously or
asynchronously. Moving from only one learning to shared memory systems of data parallelism works
well with MapReduce, which makes it simple to schedule parallel activities onto numerous processors.
Model parallelism and data parallelism are the two most used parallelization strategies that allow many
computers to learn together a single model. Model parallelism divides the collection parameter values and
distributes them to all processors. However, the reliance on a variety of neurons and imbalanced
parameter sizes in deep models make model parallelism challenging to expand operations. In contrast,
data parallelism, on the other hand, spreads the computational work by delivering distinct data samples to
separate processors that share the same model parameters.

Synchronous distributed training is a typical approach to spreading neural network models’ training
phase with data parallelism. In synchronous training, a root aggregate node fans out requests to numerous
leaf nodes that operate in parallel across different data slices and submit their findings to the root node to
combine. The delay of the leaf nodes considerably influences the effectiveness of this design, and when
growing the number of variables and data sets, it may drastically increase the training period.

In Stochastic gradient descent, given a dataset D and denotes the θ model parameter, the objective is to
minimize the loss function l(x, y), where x indicates the sample input and y the output using Eq. (1).

L hð Þ ¼ 1

D
:
X

x;yð Þ2D l x; yð Þhð ÞÞ (1)

In SGD, the loss function is updated by updating the θ using the gradient calculation method. The
learning rate (γ) is used to prevent both underfitting and overfitting and is calculated using Eq. (2).

htþ1 ¼ ht � ct : G
t (2)

In distributed synchronous Stochastic Gradient, a master aggregator node splits the entire into groups
and sends requests to worker computer nodes to independently calculate the gradient for each batch. The
master aggregator node combines the gradients and gives them back to the worker nodes to update the
model’s variables once all machines have returned their results. The master node iterates through this
procedure for a specified number of iterations or following a conversion requirement, as shown in Fig. 2.
The Sync SGD technique is susceptible to stragglers and excessive latency since it is meant to wait till all
workers deliver the loss function. Mitigation of stragglers is crucial in maintaining the model
performance [15].
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4 Method

Google Colab notebooks are used as coding platforms for the TPU since the TPU can currently only be
utilized inside a Colab notebook. The MNIST dataset of handwritten digits, which contains a training dataset
of sixty thousand instances and a testing dataset of ten thousand instances, is used in this study. TensorFlow is
constructed using Python 3 to produce distributed Deep Learning models, timeout periods, maximum VM
lifespan, GPU kinds accessible, and other aspects. In this model, an Intel Xeon processor (2.3 GHz) with
12.6 GB random access memory serves as the central processor, while a TPU v2 with 12.6 GB RAM
(Random Access Memory) serves as the TPU. In Tensor Flow, the data is loaded using the prefetch
function in which the next element is fetched when the current one is processed. The XLA compiler is
used for acceleration.

4.1 GAN

The central concept of the study is to train a generator network in an adversarial environment, in which a
discriminator network evaluates the produced samples. In recent years, generative adversarial networks have
emerged as the new semi-supervised learning method [16]. The generator network creates an instance, while
the discriminator network determines if it is authentic or not. Original samples are also delivered to the
discriminator. The structure of the objective functions is given in Eq. (3).

minimizeG maximizeD; Ex � pdata logD xð Þ½ � þ Ez � p zð Þ log 1� D G zð Þð Þð Þ½ � (3)

where: input data is represented by x∼pdata, z denotes random noise supplied as input, and G(z) is the
generator-created images. The important fact to notice will be that the generator does not directly access
essential information; instead, it merely communicates with the discriminator. As a result, through
training, the generator gains knowledge from its mistakes and enhances its ability to provide real data.

Figure 2: Synchronous SGD model for GAN
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The networks compete against one another in a zero-sum game, so their objectives are adversarial. When the
generator is adequately trained, it can produce fake data that closely resembles actual data and trick the
discriminator into accepting the created data as genuine.

In GAN [17] the discriminator is initially updated using the SGD in the first k steps during training.
During this phase, the parameters and weights of the generator network remain fixed. Then when the
noise is supplied, the generator starts producing the fake image. If n, noise elements are supplied, n fake
images are generated {G(zi),…, G(zn)}. After that discriminator is fed with both real and fake images as
input, and the max function is done using Eq. (4).

maxDV Dð Þ ¼ 1

n

Xn

i¼1
½logD xi

� �þ logð1� DðGðzi ÞÞÞ� (4)

Again, the generator is trained using random noise and generates fake images, and the generator network
is updated to minimize the generator loss using Eq. (5).

minGV Gð Þ ¼ 1

n

Xn

i¼1
½logð1� DðGðziÞÞÞ� (5)

Deep convolutional generative adversarial nets [18] are a family of CNNs with particular architectural
limitations and are a good option for unsupervised learning. Stride convolutions are used instead of spatial
pooling functions in a convolutional network, allowing the network to train with its horizontal down-
sampling. Fig. 3 illustrates how DCGAN deletes ultimately linked layers above the convolutional feature. A
workable compromise was directly connecting the discriminator’s input and output to the highest fully
convolutional. Simple matrix multiplication makes up the first layer of the GAN, which uses a random noise
distribution as input. The last convolution layer is reduced before being passed to the discriminator’s single
sigmoid production. By normalizing the input to each unit such that its mean and variance are both zero,
batch normalization stabilizes learning. This helps resolve training problems brought on by poor initialization
and enhances gradient mobility in deeper models. Since it stopped the generator from collapsing all samples
into a single point, a typical failure situation was observed in GANs. However, model instability was seen
when the batch norm was applied to all layers. To avoid this, the batch norm procedure was left out of the
generator output and discriminator input layers. When creating dependable Deep Convolutional GANs,
Replace In the discriminator, stride convolutions are used in place of the pooling layers. Batch normalization
for the discriminator and generator reduces the number of ultimately connected hidden layers for structures
that are deeper in depth. Use Leaky ReLU activation for all discriminator layers and ReLU activation in the
generator. The GAN design and model parameters are given in Table 1 and are executed in Collab in
distributed TensorFlow platform for 30 epochs using SGD with batch sizes 64 to 512.

4.2 Distributed TensorFlow

Dataflow graphs are used by TensorFlow to describe computation and functions that change that state.
The vertices of a dataflow graph are translated across a cluster of many computers and various processing
units inside a single system. The entire data set is often distributed among several nodes in distributed
architectures; however, the learned parameters were ultimately merged at a central node. However, the
central node for any centralized approach must have ample storage and processing power. Furthermore,
central node failure may occur with centralized solutions. Therefore, only nodes close to one another are
allowed to interact while all nodes’ processing and data are dispersed. These are two standard methods
for parallelizing training data using TensorFlow [19]. In sync training, gradients are accumulated at each
stage as all workers train concurrently across various data input slices. Async training involves
asynchronously updating variables while having all workers train on input data. Most frequently, all
reduce and async architecture with parameter servers are used to offer sync training. The model is
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duplicated throughout all eight cores and may be maintained in sync with all reduce techniques. Eight TPU
cores are used to create the Distributed GAN using synchronous distributed stochastic gradient descent, often
referred to as distributed synchronous SGD. The gradients of each node are combined to enhance their
models. The synchronous phase ensures that all the nodes’ models are consistent throughout training. The
reduce operation on the gradients between all nodes and the individual updating of the parameters on
each node can be used to complete the aggregation phase.

Figure 3: Proposed generative adversarial network

Table 1: Network topology

Generator network Discriminator network

Layers Size Layers Size

InputLayer (-, 100) Input layer (-, 28, 28, 1)

Dense (-, 12544) Conv2D (-, 14, 14, 64)

Batch normalization (-, 12544) Leaky ReLU (-, 14, 14, 64)

LeakyReLU (-, 12544) Dropout (-, 14, 14, 64)

Reshape (-, 7, 7, 256) Conv2D (-, 7, 7, 128)

conv2d_transpose (-, 7, 7, 128) Leaky ReLU (-, 7, 7, 128)

conv2d_transpose (-, 7, 7, 128) Dropout (-, 7, 7, 128)

LeakyReLU (-, 7, 7, 128) Flatten (-, 6272)

conv2d_transpose (-, 14, 14, 64) Dense (-, 6272)
(Continued)
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4.3 Mixed Precision

Mixed precision refers to a strategy in which 16 bit and 32 bit precision floating point values are utilized
to represent variables to decrease memory requirements and accelerate training. It is based on the notion that
modern hardware accelerators, such as GPUs and TPUs, can do calculations more quickly in 16 bit, as shown
in Fig. 4. Utilizing bfloat16 inside systolic arrays expedites multiplications computations on TPUs.

In the Multiplications Unit (MXU) of Cloud TPU v2 and Cloud TPU v3, bfloat16, a 128 × 128 systolic
array, is the primary data type. Two MXUs are present in the TPUv3 chip, and numerous TPU chips are
current per the Cloud TPU system. These MXUs together provide the bulk of the system’s FLOPS. (A
TPU may accomplish FP32 multiplications by iterating the MXU many times.) Multiplications are done
in bfloat16 notation inside the MXU, whereas accumulations are handled with FP32 precision.

In backpropagation, in particular, gradients may get so tiny that an underflow event is initiated. When
using loss scaling, the loss is scaled by a significant amount. This drastically reduces the possibility of an
underflow occurs. After the gradients have been calculated, the result is reduced by the same scaling
factor to yield the true, unscaled gradients. Cloud TPUs can train models with more profound, broader, or
more significant inputs when bfloat16 is used more extensively. Moreover, since bigger models often
result in more precision, this enhances the final quality of the items that rely on them.

5 Results

The training time and learning rate are used to determine the effectiveness and precision of both models.
In addition, the impact of batch size on the training time and learning and optimization curve is analyzed.

5.1 Effect of the Different Batch Sizes on Performance and Training Time

The main advantage of extensive batch-size training is that it cuts overall training time. SGD can
distribute all workloads for each iteration over several processors by using large packet sizes. Including a

Table 1 (continued)

Generator network Discriminator network

Layers Size Layers Size

Batch normalization (-, 14, 14, 64) - -

LeakyReLU (-, 14, 14, 64) - -

conv2d_transpose (-, 28, 28, 1) - -

Optimizer Adam(1e-4) Optimizer Adam(1e-4)

Loss Binary cross entropy Loss Binary cross entropy

Figure 4: Floating point formats-bfloat16 and float16
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processor in a method can load additional data into each phase, increasing the batch size for synchronous
SGD. The number of SGD iterations should theoretically decrease linearly by fixing the overall set of
data access and increasing the batch size directly proportional to the number of processors. The total time
is reduced linearly due to the constant time expense of each repetition. For every iteration, we must
increase the number of processors in the algorithm and load more data, corresponding to increasing the
batch size in synchronous SGD. Assume that the total number of data accesses is fixed and that the batch
size increases directly proportional to the number of processors. In that instance, the overall time would
drop linearly with the number of processors. At the same time, the frequency of SGD iterations would
decrease, and the time expense of each iteration would remain constant.

Large batch sizes resulted in reduced training time and increased machine usage. However, no method
allows us to employ unlimited-sized batches efficiently. For considerable batch training, it is necessary to
maintain an accuracy rate with smaller batches while maintaining the same epochs. Furthermore, utilizing
a big batch size may decrease communications volumes with fewer iterations, resulting in more incredible
scaling performance than small batch size. Communication is sometimes the most significant impediment
to the effective scalability of the program over several TPUs. The different batch sizes implemented using
the novel GAN network in distributed TPU showed an increase in training time as the batch sizes
increased, as shown in Figs. 5 and 6.

Figure 5: Training time vs. batch size

Figure 6: Epoch-wise training time
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5.2 Effect of the Different Batch Sizes on Loss Curve, Learning Curve, and Optimization

Discriminator loss quantifies how successfully the discriminator can identify between actual and
fraudulent pictures. It evaluates the discriminator’s recommendations on genuine photos to an array of 1 s
and false images to an array of 0. Generative Loss: The loss of the generator measures how well it could
fool the discriminator. The discriminator will intuitively identify the bogus pictures as genuine if the
generator operates correctly (or 1). The generator loss and discriminator loss for the varying batch sizes
are shown in Fig. 7.

Histogram loss curves of the generator and discriminator are shown in Fig. 8. The histogram loss curve’s
loss concertation on each epoch for all batch sizes is demonstrated. The batch size 64 and 128 represent the
base histogram distribution for which the trend lines are shown using batches 128 and 256.

The discriminator offers essential data that can be used to adjust the generator and its parameters. The
discriminator typically converges first before the generator has had a reasonable training period. This issue
typically causes GANs to experience mode breakdown and failure in convergence [20]. This circumstance
may result in poor learning. The learning rate typically regulates how quickly parameters update throughout
the training phase. The update pace will be significantly slower whenever the learning rate is so low.

Figure 7: Generator and discriminator loss curve

Figure 8: Histogram generator and discriminator loss curve
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On the other hand, oscillations in the process will occur, leading the variables to stay close to the ideal
value. The learning rates for each iteration is shown for all batch size in Fig. 9. It can infer that there is a dip in
the learning rate at iteration 7 and iteration 24 for batch size 512, and finally, there is a sudden rise in the
learning rate, and the peak is attained. The LR represents the learning rate for each batch size.

The loss Optimization curve for batch sizes 64, 128, and 256, 512 is shown in Fig. 10. The loss is
optimized in batch sizes 256 and 512—so better optimization as batch size increases. The loss value does
not direct the generator towards identifying the local minimum if the discriminator’s loss value is near
zero. This impacts both the accuracy and the range of the result obtained. The abrupt rise in the learning
rate at the start of each cycle encourages the model to investigate more domains and broadens the range
of outcomes.

The SGD algorithm is used for optimization, the generator network tries to minimize the loss curve, and
the discriminator network maximizes the loss. From Fig. 11, the generator loss is minimized, and the radius is
minimum for batch size 512, clearly showing it has the minimum loss. As the iteration increases, the loss is
reduced; further, it is reduced with an increase in batch size. The loss is less for smaller batch sizes in the

Figure 9: Learning rate vs. iteration curve

Figure 10: Loss optimization
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discriminator and increases with batch size. This show that the discriminator network is trained efficiently
using TPU in large batch size.

5.3 With XLA Compiler and Bfloat16

TPU software stack supports automated format conversion: data is transformed effortlessly between
floating point 32 and bfloat16 using the XLA compiler, which can enhance model performance by
extending the usage of bfloat16. XLA converts the TensorFlow graph into a series of compute kernels
tailored to the specified model. TensorFlow graph performs three kernels in the absence of XLA:
including one addition, one multiplication, and another for reduction. XLA combines these three kernels
into a single kernel, eliminating the need to store intermediate data during calculation. Both memory
usage and training time are reduced using XLA. Mixed precision training provides a considerable
increase in computing performance by carrying out these activities in the half-precision style. Using
numerical forms with less accuracy than 32-bit floating-point has various advantages. First, they demand
less memory, allowing more extensive neural networks to be trained and deployed. The second benefit is
that they use less memory bandwidth, accelerating data transfer activities. Thirdly, arithmetic operations
execute much quicker with lower precision, particularly on the tensor core for this precision. It does this
by detecting the phases that need complete accuracy and employing a 32-bit floating point solely for
those steps, while a 16-bit floating point is used everywhere else. Utilizes Tensor Cores to accelerate
math-intensive processes such as linear and convolution layers. Memory-limited operations are
accelerated by accessing half as many bytes as with single-precision. Reduces the memory needs for
training models, allowing for bigger models or mini-batch sizes. After enabling XLA, the models run
around 1.15 times quicker than before, as shown in Fig. 12.

5.4 Comparison with Other State-of-the-Art Models

The proposed model is compared with the current state-of-the-art models-execution of GAN in CPU,
GPU, and TPU (without parallel data distribution). In the proposed model, the acceleration is achieved
using the distributed data-parallel implementation of GAN using multi-core TPU. The comparison is
shown in Fig. 13. The proposed model has the best training time acceleration compared to the existing

Figure 11: Descent path in minimizing loss in generator and maximizing loss in discriminator
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HPC-based acceleration platforms CPU, GPU, and TPU. The GPU is faster compared to the CPU due to the
high storage and processing capacity of the GPU. On the other hand, the TPU (serial execution) is slower
than GPU because of the network structure and the layers. Few layers in the novel GAN model are
executed in CPU rather than in TPU, and this causes the swapping between TPU and CPU, which causes
the additional delay. In the proposed model, the execution is split among multi-core TPU, which
effectively utilizes the TPU cores and makes the model faster. The proposed model is 56.20% faster than
a CPU, 19.7% faster than GPU, and 24.6% faster than serial TPU execution for batch size 32.

The significant limitations of the existing model are the costly TPUs, lack of multi-TPU nodes, and the
switching between the TPU and CPU for the different layer’s execution in the generator and discriminator
networks. The dense layer, convolutional layers in the generator, and discriminator are executed in TPU.
The other layers reshape, pooling, dropout, up sampling, and flatten performed in CPU in both
discriminator and generator. This causes switching between CPU and TPU when the GAN model is
trained in TPU. This weakness can be removed using muti TPU in Cloud and designing the GAN by
reducing the number of switching operations between CPU and GPU.

6 Conclusion

Data is big enough to be centrally stored in a single location for processing. Moreover, in applications
like the medical sector, the data itself is distributed. In such cases, the GAN must be employed in the
distributed domain to obtain the results. The distributed GAN is further accelerated using TPU in this
paper. While distributing a model input is restricted, TPUs conduct computations very quickly. To

Figure 13: Performance analysis of proposed model

Figure 12: Performance analysis of XLA compiler
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prevent the TPU from becoming idle, it is essential to guarantee that a continual stream of data is put into it.
This depends on how your dataset is loaded and preprocessed. Our research shows that bfloat16 is preferable
to float16 since most deep-learning algorithms do not need a high degree of precision to achieve the desired
operational efficiency. The hyperparameter is mainly the weight factor and is stored in a 32-bit single-
precision format to prevent loss of precision or even divergence. The SGD algorithm is used for
optimization, the generator network tries to minimize the loss curve, and the discriminator network
maximizes the loss. The paper shows the accelerated learning curve and efficient maximization and
minimization of the loss function in SGD. The training time was reduced by 79% by varying the batch
size from 64 to 512 in multi-core TPU. The proposed model is 56.20% faster than a CPU, 19.7% faster
than GPU, and 24.6% faster than serial TPU execution for batch size 32. After enabling XLA, the models
run around 1.15 times quicker than before. Theoretically, splitting the calculation among T worker
computers should enhance performance by xT. However, in practice, the performance enhancement is
hardly ever xT. Recent studies have identified Stragglers and High Latency as the primary underlying
cause of productivity loss. The Sync SGD technique is susceptible to stragglers and excessive latency
since it is meant to wait till all workers deliver the loss function. In future work, the straggler impact on
parallel data distribution must be mitigated to obtain better accuracy and efficient communication.
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