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Abstract: Gesture recognition technology enables machines to read human ges-
tures and has significant application prospects in the fields of human-computer
interaction and sign language translation. Existing researches usually use convo-
lutional neural networks to extract features directly from raw gesture data for ges-
ture recognition, but the networks are affected by much interference information
in the input data and thus fit to some unimportant features. In this paper, we pro-
posed a novel method for encoding spatio-temporal information, which can
enhance the key features required for gesture recognition, such as shape, structure,
contour, position and hand motion of gestures, thereby improving the accuracy of
gesture recognition. This encoding method can encode arbitrarily multiple frames
of gesture data into a single frame of the spatio-temporal feature map and use the
spatio-temporal feature map as the input to the neural network. This can guide the
model to fit important features while avoiding the use of complex recurrent
network structures to extract temporal features. In addition, we designed two
sub-networks and trained the model using a sub-network pre-training strategy that
trains the sub-networks first and then the entire network, so as to avoid the sub-
networks focusing too much on the information of a single category feature and
being overly influenced by each other’s features. Experimental results on two
public gesture datasets show that the proposed spatio-temporal information
encoding method achieves advanced accuracy.

Keywords: Dynamic gesture recognition; spatio-temporal information encoding;
multimodal input; pre-training; score fusion

1 Introduction

Gestures are another common form of communication besides spoken expressions, which can express
semantic information as well as convey emotions and attitudes [1]. The purpose of gesture recognition is to
recognize human gestures through computer technology, and it has applications in scenes such as emotion
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recognition, sign language translation, human-computer interaction, virtual reality, and healthcare [2–4],
especially today when the new coronavirus is rampant [5], which provides a healthy and friendly way of
contactless human-computer interaction. Gesture recognition can be divided into wearable-based methods
and computer vision-based methods, depending on the device used. Compared with the former, the latter
is less costly and more user-friendly [6].

Gesture recognition based on computer vision [7] can be further divided into static gesture recognition
and dynamic gesture recognition. Dynamic gesture recognition relies on extracting deep features from key
information such as hand shape, structure, and hand movement trajectory, which requires the method used to
extract the key information from input data first, and then further extract deep features from them for gesture
recognition. In recent years, the rise of deep learning has brought new solutions to the field of computer
vision [8,9]. In the field of dynamic gesture recognition, convolutional layers combined with recurrent
neural network structures are often used to extract spatio-temporal features of raw data for gesture
recognition [10–13]. Although these network structures can extract features from gesture data to a certain
extent, they are affected by many distracting information in the input data, such as background noise,
hand color, finger length, etc., and tend to fit to some unimportant features. Single-modal input data
contains limited features, so multi-modal fusion is often used to extract more effective features. However,
direct training of multi-modal networks can lead to excessive influence of sub-networks on each other.
We can summarize our contribution points as follows:

� A novel method for encoding spatio-temporal information is proposed, which can encode arbitrary
frames of skeletal data and depth images into skeletal spatio-temporal feature maps and depth
spatio-temporal feature maps. This method can integrate and enhance the effective features in the
input data, while reducing the amount of interference information, which in turn guides the neural
network model to fit the key features required for gesture recognition.

� A convolutional neural network with skeletal spatio-temporal feature maps and depth spatio-temporal
feature maps as dual input modalities is proposed. According to the characteristics of skeletal data and
depth images, two sub-networks are designed and the whole network based on these two sub-
networks is trained by the sub-network pre-training strategy to improve the accuracy and reliability
of gesture recognition.

� The effectiveness of the proposed method was verified on dataset SHREC’17 and dataset DHG-14/8.
Its accuracy is superior to the method using recurrent neural network structure.

The rest of this paper is organized as follows. Section 2 outlines the work related to this paper. Section
3 describes the details of the proposed method. Section 4 provides an experiment of the effectiveness of the
proposed method. Section 5 summarizes the work done in this paper and the direction of future work.

2 Related Works

This section details the data selection related to gesture recognition and research using deep learning
techniques in the feature extraction and classification stages.

2.1 Data for Gesture Recognition

To be able to improve the accuracy of gesture recognition, we need to select appropriate data as input in
the data collection stage [14]. Wearable devices-based gesture recognition will use various types of sensors to
capture human motion signals. For example, [6] used the metacarpophalangeal (MCP) and proximal
interphalangeal (PIP) joint angles of five fingers captured by a soft sensor-based embedded data glove as
the input to the model. [15] developed a wearable surface electromyography (EMG) biosensing system
with adaptive learning capability based on screen-printed conformal electrode arrays and implemented a
neuro-inspired algorithm for real-time gesture classification. In [16], the starting point is to ensure the
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reliability and validity of the myoelectric sign recognition system by using linear discriminant analysis
(LDA) and extreme learning machine (ELM) to reduce the redundant information of the surface EMG
signal. Although wearable device-based methods can achieve good accuracy, they are not user-friendly
due to affecting human motion.

Vision-based gesture recognition uses cameras to capture data, which allows users to express gestures
more freely without being limited in movement by hardware, wiring, etc. [17] proposed a gesture feature
extraction and recognition method based on image processing, which takes the original gesture image as the
input of the model, and filters the noise in the image by denoising, binarizing, expanding and eroding it.
Thereby, the gesture features are obtained. [18] constructed an automatic Arabic sign language recognition
framework using RGB hand images and body skeletal data as inputs. [19] used Kinect cameras to capture
both RGB and depth images, extracted the two sets of features separately using multiple networks and
finally combined the two obtained features for classification. [20] also used the Kinect cameras to acquire
the human skeleton, based on which an algorithm for the analysis and extraction of key points of the hand
skeleton was proposed for gesture recognition. It is evident from the previous discussion that RGB images,
skeletal data and depth images are commonly used data types for gesture recognition, while skeletal data
and depth images have less background noise compared to RGB images.

2.2 Feature Extraction

In recent years, deep learning has made outstanding achievements in computer field, which has greatly
promoted the development of computer vision field [21,22] has proposed a recurrent neural network structure
that can simultaneously capture the spatial coherence among joints and the temporal evolution among
skeletons, and can accurately predict human motion [23] uses deep convolution neural network to
recognize people’s emotions, so that people can objectively understand their real-time emotional state.
More and more researchers choose to use deep learning as a technical direction for gesture recognition.
[24] applied a transfer learning strategy to the convolutional neural network AlexNet to achieve faster
feature learning for gesture recognition and used the Artificial bee colony optimization algorithm to
optimize the hyperparameters. [25] proposed the first network with joint-aware features for both gesture
recognition and 3D hand pose estimation, which can recognize and estimate both gestures and 3D hand
pose using joint-aware features. In [26], to avoid manual segmentation of hand images with background
noise, convolutional neural network based on a deep parallel structure is proposed, which can perform
gesture recognition on images containing various confusing backgrounds. However, using neural network
to process raw data directly, it is easy to fit unimportant features.

2.3 Multi-Mode Fusion

It was found that multimodal inputs tend to significantly improve the accuracy of gesture recognition
[10,27] proposed an adaptive fusion method with multimodal weights considering the correlation between
multimodalities. [28] decoupled hand gestures into two features, hand posture change and hand motion.
And correspondingly, an end-to-end dual-stream network was proposed to model these two hand features,
and finally performed gesture recognition by aggregating these two features. [29] proposed an end-to-end
network, in which two pre-trained networks are fused using a score fusion technique. [30] proposed a
multimodal input model for isolated sign language recognition. First, four categories of spatial features
were obtained from each of RGB images and depth images, and the extracted features were used as the
input of the convolutional neural network, which fused eight categories of spatial features. Then,
temporal features were extracted by long short-term memory(LSTM). Finally, classification is performed
to obtain accuracy comparable to state-of-the-art models. Unfortunately, they are all trained directly on
the whole network model, ignoring the influence of the sub-networks on each other, which results in the
sub-networks not fully extracting the features of individual modalities.
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3 Proposed Method

In this section, the proposed method and model are described in detail. At the feature level, this paper
proposes a spatio-temporal information encoding method that enhances the features required for gesture
recognition in skeletal data and depth images; at the model level, a dual-stream input model consisting of
two sub-networks with different structures to serve different input types is designed; at the training strategy
level, a sub-network pre-training strategy is applied. Specific details are presented in each subsection below.

3.1 Overall Framework

As shown in Fig. 1, our proposed framework consists of four main components, which are the depth
spatio-temporal feature map, skeletal spatio-temporal feature map, depth sub-network and skeletal sub-
network. The first two of them are used as inputs of the latter two respectively, and the latter two are
used to extract the features in the first two. Finally, the two sub-networks use score fusion and input into
softmax function to obtain gesture recognition results.
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Figure 1: The overall structure of the model. The model is composed of depth subnet (left) and skeletal
subnet (right). Their inputs are depth spatio-temporal feature map and skeletal spatio-temporal feature
map respectively. The channel in the figure represents the number of output channels of convolution
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3.2 Spatiotemporal Feature Map

Studies have shown that the shape, structure, contour, and motion trajectory of the hand are crucial
features to distinguish different gestures, where the motion trajectory is mainly reflected in the spatial
position of the hand at each frame. Using 2D convolution directly in neural networks to process raw
gesture data is easy to fit to unimportant features, and it is difficult to process information in the temporal
dimension. The spatio-temporal information encoding method proposed in this paper aims to enhance the
aforementioned hand features in dynamic gestures and map them to a single-frame three-channel 2D
spatio-temporal feature map. Thus, 2D convolutional layers can be fitted to the key features for gesture
recognition, while avoiding the use of complex recurrent neural networks to extract temporal features.

3.2.1 Skeletal Spatiotemporal Feature Map
Skeletal data can clearly represent the spatial position of each joint of the hand in each frame, and there is

not so much background noise that affects the recognition accuracy as in RGB images. We construct a
skeletal spatio-temporal feature map by parsing and mapping 2D hand skeletal key point information and
fusing skeletal, temporal and shape features in skeletal data.

The 2D hand skeletal key points record the 2D coordinates of multiple key points of the hand in 2D
space, where n is used to denote the number of frames of skeletal data. For the sake of description, the
connections of skeletal key points in the skeletal channel are referred as skeletal connections and the
connections of the skeletal key points in the shape channel are referred as shape connections.

First, connect the key points of the bones according to the connection method of the hand bones. While
connecting the hand key points into lines, each skeletal connection is assigned a different value using Eq. (1),
thereby distinguishing different bones. By this method the skeletal channel is obtained for each frame.

Fs
o ¼ oþ 1ð Þ=s � 150þ 50 (1)

where Fso denotes the value of the No. o skeletal connection and s denotes the total number of skeletal
connections.

The shape channel mainly presents the shape of the hand in each frame, which connects the fingertips of
each finger and wrist joints to form a closed geometry. Similarly, the shape channel for each frame is
constructed by assigning different values to each shape connection using Eq. (2).

Fh
o ¼ oþ 1ð Þ=h � 150þ 50 (2)

where Fho denotes the value of the No. o shape connection and s denotes the total number of skeletal
connections.

Finally, the temporal channel of frame i is constructed by taking i=n as the temporal weight and
multiplying this value by 255 as the value of all skeletal connections and shape connections in that frame.

Finally, the skeletal channel, temporal channel and shape channel of each frame are superimposed in
time order. Taking frame i of the skeletal channel as an example. Firstly, frame i is binarized with
240 thresholds to get the mask of skeletal channel of frame i. The superimposed result of the previous
frame is bitwise summed with mask, and frame i is bitwise summed with inverse of mask. Then Pixel-by-
pixel summation of the two results is performed to obtain the superposition result of the current frame.
This operation is repeated for frames 1 to n to obtain the superimposed skeletal channel, and for frame 1,
the superimposed result of the previous frame is set as a single-channel image with each pixel value of
255. The three single-channel images obtained from the final superposition calculation are stacked to
form the skeletal spatio-temporal feature map, as in Fig. 2.
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3.2.2 Depth Spatiotemporal Feature Map
Depth images can well describe the area and shape of body parts, but does not specify the location of

each part. Combining depth images with skeletal data can effectively improve the recognition accuracy of the
model. We also enhance the location of different regions in the depth image so that the neural network can
effectively detect the information of different regions. Based on depth information, temporal information and
contour information, we further propose a deep spatio-temporal feature map.

The depth image itself is a single-channel image, and the contour extraction of the depth image is
performed using the Canny algorithm [31], which can extract the image contour well by Gaussian
filtering, normalization, calculation of gradient magnitude and direction, non-extreme suppression, and
double-threshold judgment operations. We use the extracted contours as the contour channel for each frame.

Since the depth image itself has a small value, we multiply each pixel of the depth image by 100 to
enhance the distinction between different regions and use it as a depth channel. Like the temporal channel
of the skeletal spatio-temporal feature map, i=n is used as the temporal weight of the time channel in
frame i. The difference is that the depth image is binarized here, and i=n� 255 is assigned to the human
body region in the depth image, while the non-human body region is assigned 0. The depth channel,
temporal channel, and contour channel of each frame are stacked to form the depth spatio-temporal
feature map.

3.3 Subnet Structure

The model proposed in this paper is shown in Fig. 1. The whole model consists of two sub-networks: the
depth sub-network and the skeletal sub-network. The inspiration of the two sub-networks comes from
Resnet-18 [32]. The whole network is mainly composed of two modules, as shown in Fig. 3 below. The
residual-block (RB) is composed of two 3 × 3 convolutions connected in series, and a shortcut indicates
that the input is added with the results of the two convolutions before output. The difference between the
residual-block with downsampling (RBD) and the residual-block is that the first 3 × 3 convolution stride
of the former has changed from 1 to 2, and there is also an additional 1 × 1 convolution with a stride of
2 for downsampling on the shortcut. The input size of the two subnets is 224 × 224. The first two layers
are a convolution layer with a size of 7 × 7, stride of 2 and a padding of 3. A pooling layer size is 3 × 3,
stride of 2 and a padding of 1.

The main difference between these two subnets is the different number of RB and RBD used, RB and
RBD are represented by two different colored rectangles on Fig. 1, where the channels depicted in the figure
indicates the number of output channels of the convolutional layer, i.e., the number of convolutional kernels.
In addition, Gaussian Error Linear Unit(GELU) and Rectified Linear Unit(RELU) are commonly used
activation functions in neural networks. They have different sensitivity to different data, depth subnet

Skeletal
Data

Draw the shape channel, skeletal channel 
and temporal channel of each frame.

Stack three 
channels

superposition

Figure 2: Skeleton spatiotemporal feature map construct process
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uses GELU as the activation function after each convolution, while skeletal subnet uses RELU as the
activation function after each convolution.

3.4 Pre-Training Strategy

Because of the different inputs of the two sub-networks, they need to pay attention to different features.
When these two sub-networks are trained separately, they do not influence each other and focus on their own
parts, but when they are combined into a complete trained model, they will have a certain influence on each
other’s parameters. That is to say, the weights obtained by training the two models separately and obtained by
directly training the complete model are different. In a word, the sub-networks trained separately are more
focused on their own fields, and more complementary information will be considered between sub-networks
when training the complete model directly.

In this paper, we first train the two sub-networks separately, so that the two sub-networks can fully
extract the features of their respective input modalities. The complete model is further trained with the
respective weights and biases of the two subnetworks, so that these two subnetworks can consider each
other’s information to some extent, while fully extracting the features of their respective input modalities,
for example, allowing the skeletal subnetwork to analyze the skeletal structure with reference to the
contour information. Such a training method not only allows the sub-network not to focus too much on
itself and cut off from the other sub-network, but also does not let the two sub-networks have too much
influence on each other and lose effective information, so as to obtain a model with higher accuracy.

4 Experiments and Results

In this section, the proposed method is evaluated. Firstly, the datasets used for the experiments are
presented. Then, the method is compared with current state-of-art methods on two datasets. Finally,
various modules of the proposed method are validated, including different coding schemes, two sub-
networks, and the application of pre-training strategy.

4.1 Training Details

To alleviate the overfitting problem, we used a random cropping method to implement data enhancement
on the spatio-temporal feature maps. The proposed model was constructed using PyTorch framework [33]
with both depth spatio-temporal feature map and skeletal spatio-temporal feature map as inputs to the
model, both with a resolution of 224 × 224. For the whole model, we used Stochastic Gradient Descent
(SGD) as the optimizer for an initial learning rate of 0.005, a momentum of 0.9, a weight decay of

Conv(3x3,S=2)

Conv(3x3,S=1)

Conv(3x3,S=1)

Conv(3x3,S=1)

Conv(1x1)

Residual-block(RB)
Residual-block with 
downsample(RBD)

Figure 3: Residual block (RB) and residual block with downsampling(RBD) are the basic blocks of depth
subnet and skeletal subnet, where s represents stride
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0.00001, epoch of 100, and small batch of 32. Cross-entropy loss function can help model learn information
between classes, so the network is trained to minimize the cross-entropy loss between the predicted and
actual labels during the training process.

4.2 Comparison with State-of-the-Art Methods

We compared the proposed method and model on the SHREC’17 dataset and the DHG-14/28 dataset,
respectively, with some models that have recently achieved advanced results. These two datasets were chosen
because they are publicly available and provide skeletal data and depth data for easy evaluation of the
proposed models and methods, and they are also two challenging datasets.

4.2.1 SHREC’17
SHREC’17 dataset [34] is a dataset containing 14 gestures, which can be divided into coarse-grained

gestures and fine-grained gestures according to gesture characteristics, as shown in Table 1 Among them,
each gesture is performed by a single finger and the whole hand, so it can be further divided into
28 gestures. Each gesture was performed 1 to 10 times by 28 participants in two ways, and then
2800 frame sequence data were obtained. Each frame included skeletal data and depth images, in which
the skeletal data contained the 2D and 3D spatial coordinates of 22 joints in each frame. The depth image
size was 640 × 480 pixels, and the length of each sample ranged from 20 to 50 frames. In this paper, only
2D skeletal data and depth images are used.

For all experiments conducted on the SHREC’17 dataset, we followed the data splitting scheme given in
the dataset: 70% of the samples as the training set and the rest as the test set, i.e., 1960 samples as the training
set and 840 samples as the test set, which is also the same data splitting scheme used in those studies [31,35–
39] that we want to compare.

Table 1: List of the 14 gestures in SHREC’17 dataset

Class Name of the gesture Type of the gesture

1 Grab Fine

2 Tap Coarse

3 Expand Fine

4 Pinch Fine

5 Rotation CW Fine

6 Rotation CCW Fine

7 Swipe right Coarse

8 Swipe left Coarse

9 Swipe up Coarse

10 Swipe down Coarse

11 Swipe X Coarse

12 Swipe V Coarse

13 Swipe + Coarse

14 Shake Coarse
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The results of the comparison experiments on SHREC’17 are shown in Table 2. Compared with methods
in the table, the method proposed in this paper outperforms all the methods on 14 gestures, where [39] uses a
bi-directional long and short-term memory network (Bi-LSTM) to extract temporal features. It can be seen
that our method has the same effect as that using Bi-LSTM, although the accuracy is slightly lower than that
method on 28 gestures. This indicates that our proposed method and model are indeed capable of extracting
features in the temporal dimension without using recurrent neural networks and their variants, but the deep
feature extraction capability leaves something to be desired.

A closer look reveals that the use of multimodal data is more effective than single class data, and skeletal
data is more effective than depth data. This may be because depth data is more ambiguous and more noisy
than skeletal data, and the combination of the two can provide complementary information to some extent. In
addition, the recognition accuracy of 28 class gestures is always lower than that of 14 class gestures, because
28 class gestures require higher details of features. Figs. 4 and 5 show the confusion matrices of 14 gestures
and 28 gestures on the SHREC’17 dataset, respectively, and overall satisfactory results are achieved.
However, the recognition of some similar gestures could be improved, for example, the gesture Pinch
could be easily mistaken for Grab.

4.2.2 DHG-14/28
To validate the generalization performance of the model, we also validated the proposed method and

model on DHG-14/28 dataset [35]. DHG-14/28 dataset is like SHREC’17 dataset, and it is also a dataset
containing 14 gestures. Each gesture was performed five times by 20 participants in two ways, and a total
of 2,800 frame sequences were obtained. The data type and collection method are the same as those of
SHREC’17 Dataset.

The experiment on DHG-14/28 dataset adopts the same data splitting scheme as those methods to be
compared [13,36,40,41]. Each time, the data of 19 participants is used as the training set, and the data of
the remaining one participant is used as the test set. By setting different participants as the test set,
20 experiments are conducted, and the average value is used result.

The results of the comparison experiments on the DHG-14/28 dataset are shown in Table 3 The
recognition accuracy of the proposed method in this paper is 87.14% for 14 gestures and 84.36% for
28 gestures, and it can also be seen that our method outperforms most dynamic gesture recognition
methods using LSTM. To further observe the cross-validation results, we visualized the cross-validation
of 14 gesture and 28 gesture, as shown in Figs. 6 and 7. It can be seen from the figure that good
recognition results can be achieved for most subjects. But whether it is 14 gestures or 28 gestures, the
gesture of No.2 subject is always the most difficult to recognize, followed by No.6. It may be necessary

Table 2: Comparison of top-1 recognition rates (%) with state-of-the-art methods on SHREC’17 dataset

Method Modality 14 Gesture 28 Gesture

Key frames [31] Depth sequence 82.9 71.9

SoCJ + HoHD + HoWR [35] 3D-Skeleton 88.24 81.90

MFA-Net [36] 3D-Skeleton 91.31 86.55

M-sihrhs [37] 3D-Skeleton 92.14 85.69

ST-GCN [38] 3D-Skeleton 92.7 87.7

gVar-FL-fusion [39] Depth sequence + 2D-skeleton 93.33 90.24

Ours Depth sequence + 2D-skeleton 93.45 88.57
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to improve the generalization performance of the model to alleviate this kind of problem of insufficient
recognition accuracy caused by the large deviation of the speaker’s gesture from the standard. At the
same time, the cross-validation results also verify the conclusion in Section 4.4.2, that is, gesture
recognition by two sub-networks alone can also achieve good accuracy, but it is not as good as that by
combining the two sub-networks. Here, the accuracy of the depth sub-network is slightly better than that
of the skeletal sub-network, while the performance of the skeletal sub-network is a little better in the
experiment in Section 4.4.2, which shows that the two sub-networks have different performances on
different datasets. These two can make up for each other’s shortcomings to a certain extent.

4.3 Ablation Studies

To verify the effectiveness of proposed method and model, we verify the different coding schemes of
spatio-temporal feature map, two sub-networks of proposed model and pre-training strategy on
SHREC’17 dataset. The evaluation criteria are top-1 accuracy and top-5 accuracy. Top-1 accuracy refers
to the probability that the item with the largest predicted value is the correct class, and top-5 accuracy
refers to the probability that the top five items with the largest predicted value contain the correct class.

4.3.1 Different Coding Schemes
Firstly, the skeletal, temporal and shape features of the skeletal spatio-temporal feature map are input

into the skeletal sub-network in different combinations to verify the effectiveness of each coding scheme
of the skeletal spatio-temporal feature map. The experimental results are shown in Table 4.

Figure 4: The 14 gesture confusion matrix of the proposed approach for SHREC’17
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Figure 5: The 28 gesture confusion matrix of the proposed approach for SHREC’17

Table 3: Comparison of recognition rates (%) with state-of-the-art methods on DHG-14/28 dataset

Method 14 Gesture 28 Gesture

RNN + Motion feature [40] 84.68 80.32

3D CNN + LSTM [13] 85.6 81.1

MFA-Net [36] 85.75 81.04

Smedt et al. [41] 86.86 84.22

Ours 87.14 84.36

Figure 6: Cross-validation results of 14 gesture on DHG-14/28 dataset. ‘14-depth’ means the recognition
result of the depth subnet, ‘14-skeleton’ means the recognition result of the skeletal subnet, and ‘14-
gesture’ means the recognition result of the complete network

CSSE, 2023, vol.46, no.1 681



As can be seen from Table 4 we have conducted seven groups of experiments to verify the effect of the
coding scheme of the skeletal spatio-temporal feature map, and each group of experiments has tested
14 gestures and 28 gestures respectively. Each coding scheme of the skeletal spatio-temporal feature map
has achieved good results, and the temporal channel is the best among the three channels. When skeletal,
temporal and shape are combined, the overall effect is the best in all groups. The above experiments
show that our proposed skeletal spatio-temporal feature map is effective for gesture recognition.

Similarly, we use the depth sub-network to verify the different combinations of depth, temporal and
contour features of the depth spatio-temporal feature map. The experimental results are shown in Table 5.

Figure 7: Cross validation results of 28 gestures on DHG-14/28 dataset. ‘28-depth’ means the recognition
result of the depth subnet, ‘28-skeleton’ means the recognition result of the skeletal subnet, and ‘28-gesture’
means the recognition result of the complete network

Table 4: Comparison of the different skeleton encoding schemes on the SHREC’17 dataset in terms of
recognition accuracy

Channels 14-top1 (%) 14-top5 (%) 28-top1 (%) 28-top5 (%)

skeletal 81.90 98.45 76.90 95.23

temporal 86.07 97.62 81.43 95.95

shape 79.52 97.38 75.00 96.07

skeletal + temporal 89.00 98.57 83.21 97.74

shape + temporal 88.10 99.05 84.14 98.69

skeletal + shape 82.50 97.98 78.93 96.55

skeletal + temporal + shape 89.17 99.29 84.52 98.33

Table 5: Comparison of the different depth encoding schemes on the SHREC’17 dataset in terms of recognition
accuracy

Channels 14-top1 (%) 14-top5 (%) 28-top1 (%) 28-top5 (%)

depth 70.71 95.48 60.83 88.69

temporal 83.45 98.13 72.62 96.79

contour 71.19 93.69 62.14 89.52

depth + temporal 85.24 97.68 74.76 97.14

contour + temporal 85.12 98.05 74.40 96.43

depth + contour 75.71 95.71 69.64 93.93

depth + temporal + contour 85.95 98.69 74.76 95.24
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It can be seen from the table that, like the skeletal spatio-temporal map, the temporal channel is more
effective than the other two channels, almost reaching the effect when the three channels are combined.
The combination of temporal channel and depth channel is similar to that of temporal channel and
contour channel. The best effect still appears when the three channels are combined, which shows that
each channel of the depth spatio-temporal feature map can effectively improve the accuracy of gesture
recognition.

4.3.2 Subnet
We use different parameters to train the two sub-networks. For the skeletal sub-network, Adam is used as

an optimizer to train quickly with a learning rate of 0.0001. For the depth sub-network, SGD optimizer is
used to train with a learning rate of 0.05, a momentum of 0.9 and a weight of 0.00001, with both batch
size of 32 and epoch of 200.

The validation results of two sub-networks are shown in Table 6 From the table, it is obvious that a single
sub-network can also achieve good accuracy, especially the skeletal sub-network, but it is not as good as the
effect of using two sub-networks at the same time. If the two sub-networks are combined, the accuracy is
obviously improved.

4.3.3 Pre-Training Strategy
We apply the sub-network pre-training strategy to the complete model. First, we train the two

sub-networks separately, and save their weights with the best effect. Then, we load their weights to train
the complete network. The experimental results are shown in Table 7. From the table, it is obvious that
the accuracy of top1 without pre-training strategy is 92.02%, and that of top1 with pre-training strategy is
93.45%. The application of pre-training strategy improves the accuracy of our model by 1.5%, while it
improves the accuracy of 28 gesture by nearly 3%.

5 Conclusion

In this paper, our main work is to propose a new spatio-temporal information coding method and a multi-
modal neural network model. The proposed spatio-temporal information coding method can map the skeletal
data and depth images of any frame into a single-frame three-channel spatio-temporal feature map to
strengthen the spatio-temporal features needed for gesture recognition, thus avoiding the network fitting
to unimportant features. The proposed neural network model consists of two sub-networks, which have

Table 6: Comparison of the different net on the SHREC’17 Dataset in terms of recognition accuracy

Net 14-top1 (%) 14-top5 (%) 28-top1 (%) 28-top5 (%)

skeletal subnet 89.17 99.29 84.52 98.33

depth subnet 85.95 98.69 74.76 95.24

skeletal subet + depth subnet 93.45 99.64 88.57 99.17

Table 7: Comparison of the different training strategy on the SHREC’17 Dataset in terms of recognition
accuracy

Strategy 14-top1(%) 14-top5 (%) 28-top1 (%) 28-top5 (%)

without pre-training strategy 92.02 99.17 85.95 98.10

with pre-training strategy 93.45 99.64 88.57 99.17
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different structures to fully extract the features of the two types of inputs. At the same time, we apply a sub-
network pre-training strategy when training the network, that is, training the sub-network first and then
training the complete network. Experiments on datasets SHREC’17 and DHG-14/28 show that the
proposed spatio-temporal feature map, two sub-networks and pre-training strategy of sub-networks are all
effective, and the complete model achieves the same accuracy as the model using recurrent neural network.

However, from the experimental results, it can also be seen that the effect of the depth spatio-temporal
feature map on the SHREC’17 dataset is not as good as that of the skeletal spatio-temporal feature map,
which may be mainly due to the fact that the thresholds of the depth maps of different subject in the
dataset are not exactly the same and there is a small amount of noise, resulting in over-fitting of the
network. Therefore, we may look for a better depth spatio-temporal coding scheme in the future. We may
need to further improve the generalization performance of the model for the problem of the poor
recognition effect of some subject in the dataset, such as pre-training on larger datasets, and then
applying the transfer learning strategy on the target datasets. The proposed method has a certain
limitation on the number of video frames, if the number of frames is too high, the feature map will be too
chaotic, which may require more research on frame sampling in the future. In addition, we can also study
better model structure, such as reducing features by 1 × 1 convolution and extracting features by
convolution of different receptive fields, to further reduce the computation and improve the accuracy.
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