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Abstract: Nowadays, smart electricity grids are managed through advanced tools
and techniques. The advent of Artificial Intelligence (AI) and network technology
helps to control the energy demand. These advanced technologies can resolve
common issues such as blackouts, optimal energy generation costs, and peak-
hours congestion. In this paper, the residential energy demand has been investi-
gated and optimized to enhance the Quality of Service (QoS) to consumers.
The energy consumption is distributed throughout the day to fulfill the demand
in peak hours. Therefore, an Edge-Cloud computing-based model is proposed
to schedule the energy demand with reward-based energy consumption. This
model gives priority to consumer preferences while planning the operation of
appliances. A distributed system using non-cooperative game theory has been
designed to minimize the communication overhead between the edge nodes.
Furthermore, the allotment mechanism has been designed to manage the grid
appliances through the edge node. The proposed model helps to improve the
latency in the grid appliances scheduling process.

Keywords: Edge-cloud computing; smart grid; smart home; energy scheduling;
non-cooperative game theory

1 Introduction

In a smart grid, there is a critical requirement of an intelligent framework that can perform effective
leading peaks deduction in energy consumption. Energy consumption is rising day by day due to
population growth, technological development, and high load. Sometimes careless behavior also causes a
rise in energy consumption in different sectors. Smart grids with cloud technology play an essential role
in saving a high amount of energy and cost. An intelligent management structure that performs
effectively, leading to peak reduction in energy consumption, is desperately needed in a smart grid [1].
Using a smart grid is a potential option for coordinating today’s world’s impending requirements.
Traditional power systems cannot fulfill today’s electrical demand. The idea of a smart grid with Edge-
Cloud computing for scheduling energy consumption is established to address this requirement. Smart
grids are established to fulfill today’s rising electricity demand due to population growth and increased
electricity usage. A smart grid is a type of power grid that enables the bidirectional movement of data and
energy with the use of electronic communication systems to monitor and adjust the changes in demand [2].
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In the previous few years, where Cloud-IoT was used to accomplish adequate energy consumption is
smart energy; this subject has been covered in detail in the paper [3]. Nations have created energy
efficiency research, businesses, and institutions to produce tools for monitoring, regulating, and
monitoring energy use within homes, buildings, and grids. Various research projects have made possible
new device solutions like sensors, smart meters, or controllers [4]. The issue persists, and a solution must
be found, despite the efforts made to educate consumers about the value of lowering energy use in public
areas, workplaces, and at home. Public spaces are where unchecked energy usage and waste are most
apparent. Still, several factors contribute to this, including many users and the variety of choices and
comfort needs. The age of the buildings and the inadequate funding for the initial setup of technology
would fit in their facility’s infrastructure [5].

The edge layer includes the intermediary storage, communication, and computational capabilities
between the smart grid control center and the rest of the system. The idea of the edge is a relative one.
The smart meter is an illustration that relates to the tier if it is just used for data collection and
transmission; the edge layer serves as the foundation for domestic energy analysis. The considerable
resources in the edge layer may be separated into sub-layers according to their positions. The sub-layers
nearer to the objects are comprised of a variety of high-performance and low-power resources. They are
primarily made to carry out local and immediate analytics. Resources with powerful processing
capabilities are accurately placed in the sub-layers nearer to the control center. They can interact via a
dependable communication link to conduct detailed, extensive research and monitoring.

Since the advent of cloud computing, complicated issue solving has been assigned to the cloud platforms
having powerful CPUs, ample storage space, and memory capacities. Thus, several smart grid services,
including those that handle devices, schedule operations, and optimize energy use, employ cloud services
to enhance productivity [6]. However, there may be significant latency concerns due to the great distance
between users and cloud services and the massive volume of data created by linked user appliances.
Therefore, edge computing is an intriguing solution to address this issue since they are moving data
processing near the end-users. Instead of replacing cloud computing, the term Edge-Cloud computing is
used to take the benefit of both [7]. Edge computing provides end users with many intriguing services
within the smart grid and smart urban sectors. As a result, increasingly more studies are looking at
leveraging future technologies like edge computing in a smart grid setting.

In this research work, we look at the issue of household demand scheduling for appliances. Our primary
goal is to spread out power consumption more evenly throughout the day and to prevent or lower energy
needs at peak times. Then, in order to motivate customers to reduce their power use, we employ an Edge-
Cloud multi-agent environment. As per the previous work done by authors, ideal incentives mechanism at
different networking layers have been suggested to lower the overall energy distribution cost to reduce
the cost of the world’s electricity consumption. The two goals of the optimization challenges are to
minimize cost and each appliance’s waiting period to the absolute minimum. However, both plans may
be at odds with one another. In this case, cutting costs may result in longer wait times and vice versa.
The writers have tried to establish a compromise between the two goals.

The main aim is to arrange each energy load individually; we want to prevent each customer from acting
selfishly to maximize his profit. This behavior does not address the issue of peak demand; instead, this creates
new peaks throughout low-price hours. As a result, we want to reduce the overall cost of energy among all
users, where every appliance’s schedule is dependent on the other appliance’s schedule. In this paper, we
suggest an edge computing-based paradigm in which job scheduling task is processed in edge nodes. The
cloud environment handles the uncertainties and loads in peak hours. Additionally, we offer an
optimization technique for assigning edge nodes that tries to optimize the usage of every node’s resources
while minimizing the delay of energy rescheduling.
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2 Related Works

Researchers have used several methodologies and ways to handle demand planning problems over the
years. That includes distributed artificial intelligence approaches, which have proved helpful for management
control, and upcoming technologies like cloud, edge, and fog computing. Planning strategies frequently
employ various tactics and processes concurrently to maximize their advantages and make their most
effective use. Following is a summary of relevant studies and the techniques and methods used.

In [8], the authors demonstrated an energy control solution with real-time load data to control power and
minimize cost, considering accessibility. According to its usage over time, devices inside a single residence
were categorized as: thermostatically controlled, elastic, inelastic, regular, and user aware. Subscribers might
manually regulate the delay time of devices to maximize user accessibility. The knapsack was used to
manage cost reduction, which was accomplished using the genetic algorithm. The findings suggest that
the proposed method efficiently managed energy usage by coordinating the schedules of the devices.

In order to reduce energy costs and user discomfort, the authors in [9] use a smart recharging and
clustering idea to address the issue of peak formation in demand. In accomplishing the desired goals, the
aggregation sites optimally schedule equipment and battery charging and discharging within a cluster.
The results showed that applying this method under the RTP signal allows users to save the most money
possible on their energy costs. Similarly, the authors [10] created an analytical approach with a recursive
algorithm for reducing energy consumption peaks through scheduling power usage. Using different social
welfare situations, the proposed analytical method with a recursive algorithm is analyzed for electricity
costs and Peak-to-Average Ratio (PAR) reductions. Chouikhi et al. [11] focused on more equally spread
daily energy usage to prevent or lessen consumption at peak times. Consequently, they offer a
methodology for scheduling energy requirements based on fog computing using the cost of energy usage
as a motivator. In the proposed model, the edge nodes coordinate the appliance actions to minimize the
electricity bills on a personal scale and the cloud on a global scale to honor customer choices.

In [12], a Genetic algorithm (GA) is used to schedule equipment and use “supervisory control and data
acquisition (SCADA)” to control the residential sectors for energy consumption. By limiting energy usage to
peak power levels, the energy management system keeps supply and demand in balance. The scheduler
considers price signals and user preferences to place appliances in a given time slot as efficiently as
possible. Additionally, a case study using the “Intelligent Energy System Laboratory” has been
conducted. It has three different energy-producing components: wind turbines, fuel cells, and solar
energy. The outcomes of the suggested approach are also contrasted with MINLP at the conclusion.

Regarding the smart grids, the Multi-Agent System (MAS) techniques are implemented for various
purposes. MAS has demonstrated expertise in demand management. MAS can perform and make smart
decisions without human involvement, making the demand monitoring systems self-sufficient, scalable,
fault-tolerant, and adaptable. An ontology-oriented multi-agent energy monitoring system was proposed
to regulate and manage houses and buildings [13]. To attain the optimum operating strategy, various
agents have been developed. The suggested technique used communication and cooperation among
decision-making agents to fix the demand/supply management issues. The mass has been used by Klaimi
et al. [14,15] to reduce end-user bills. In this proposed solution, the system’s entities, like consumers,
storage techniques, and producers, are depicted as agents to exchange information with each other. For
high entity gain, stability of demand, and supply of power generation, the researchers expanded their
work [16] and described methodologies for negotiating processes and cooperation among agents. The
authors of [17] proposed a demand-side management solution entirely related to the Internet of energy.
They focused on decreasing latency by implementing an intelligent gateway between cloud and fog
domains. A dynamic scheduling sequence was created to organize the appliances based on customer
relevance, regulations, and the status of power sources. By utilizing an enhanced particle swarm
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optimization algorithm, the authors [18] have taken advantage of fog to schedule and balance a smart
manufacturing load over to production cluster centers. In [19] studies, the smart energy savings in public
work establish an edge-IoT framework.

The proposed technique suggested in [20] is based on an edge-fog-IoT architecture with responsive peak
load control and optimization. The researchers [21] implemented an energy management-as-a-service feature
using a fog-cloud environment. This feature allows the end-user to custom-make power management at a low
expenditure. The authors have adopted a smart grid [22] comprising three layers of fog-cloud computing
components. It can handle and manage a large number of smart energy grid systems, including IoT
devices. Moreover, the authors suggested a cost-cutting prototype to identify information on customer
association, workload distribution, and QoS constraints for fog-edge devices.

3 Problem Formulations

We focus on reducing the overall everyday expense of all customers. Thus the objective function ‘h’ is
defined as follows:

h ¼
X
t2T

�t

X
a2a
X

b2ba
dtb

� �
(1)

The optimum consumption scheduling is the answer to the restricted minimization issue shown below:

miny h Yð Þ ¼
X
t2T

�t b
X
a2a

X
beba

XKb

k¼1
ytbks

t
bk

 !
(2)

This is subject to the restrictions outlined in the 3, 4, 5, 6, 7, and 8 equations. Its judgment vectors or
schedule is Y ¼ yb½ � 8 b 2 ba and the entries of yb are y

bk
t . Several convex problem-solving methods, like the

‘Interior Point Method’ (IPM) [23], can be used to tackle issues in the cloud computing platform. Moreover,
the data of energy usage, operating duration, min and max power, and beginning and finish time slots. Energy
profiles for all the system’s appliances must be transferred to the centralized system. The application of game
theory enables users to collaborate with minimal information sharing.

4 Scheduling of Energy Consumption

4.1 System Model

We examine a set a of a household apartment and designate the set of baseload, uninterruptible, and
interruptible load-based equipment related to a building a 2 a by ba ¼ jba|. Every piece of equipment has
a distinct energy utilization profile with varying dynamics. The configuration of appliances is obtained in
the equipment specification and measured empirically. The operation of equipment is made up of many
uninterruptible sequential load periods. Symbol stbk indicates the power of the equipment throughout
loading stage k where ðk ¼ 1; 2; . . . ; kbð Þ at a time slot t 2 s, where sj j ¼ T indicates the subset of
time periods. To convey the energy, stbk are multiple factors that indicate the time period in hours. Actual
and continuous energy components exist. In addition, we establish control variables ytbk 2 0 and 1 to
signify whether or not such a load profile should be evaluated at the time for slot t. It is worth noting that
while arranging the daily energy need, we consider the accessibility energy amount. Several strategies
and procedures for rescheduling energy consumption in the event of a low energy supply are not in this
article’s scope.
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The vector of daily usage is an appliance as b 2 ba is written as follows:

Rb ¼ R1
b ; . . . ; Rt

b; . . . ; RT
b

� �
(3)

Here Rt
b represents the required energy at the slot time t is calculated as:

Rt
b ¼ b

Xkb
k¼1

ytbks
t
bk (4)

Further, add the additional judgment variable y and provide a xtbk as the binary variable to determine
whether or not the phase load k of the equipment has been completed by slot time t. Whereas if stages
load k of equipment has already been completed by time slot t than xtbk ¼ 1; otherwise xtbk ¼ 0. As a
result, we have the following constraint:

xtb þ ytb � 1; 8 b; k; tf g (5)

This constraint ensures both ybk and xbk cannot be changed to 1 at slot time t, as the three alternative
scenarios are described in the following:

� k has already been completed, with ytbk ¼ 0 and xtbk ¼ 1.

� k is still active, therefore, ytbk ¼ 1 and xtbk ¼ 0.

� k has not started yet, thus ytbk ¼ 0 and xtbk ¼ 0.

Customers might select a start slot sb 2 T , and after that, the equipment works and ends at the slot
fb 2 T before the equipment finishes its job to satisfy them. fb � sb þ Tb , whereby Tb is the time slots
that are required to be completed for b’s load profile. As a result, two restrictions are required:

b
X

tETb
ytbks

t
bk ¼ Eb (6)

and

ytb ¼ 0; 8 t 2 T (7)

where Eb denotes the equipment’s daily energy usage, and Tb ¼ sb; sbþ1; . . . ; fb�1; fb
� �

denotes the
collection of slots time among the beginning and end. Restriction Eqs. (6) and (7) secure that the
equipment must start and complete its work at the specified times Tb, while leftover slots time T ; Tb
must be left unoccupied Tb. The sb ¼ 1 and fb ¼ T for loads of uninterruptible equipment.

Two limitations guarantee that uninterruptible equipment operation:

yt�1
bk � ytbk � xtbk ; 8 b; kf g; 8 t ¼ 2 to T ; (8)

and

xt�1
bk � xtbk ; 8 b; kf g; 8 t ¼ 2 to T (9)

Whenever a stage k is executing at slot time t � 1 (i.e., yt�1
bk ¼ 1), constraint Eq. (8) assures that it will

either resume its t operations (i.e., ytbk ¼ 1 and xtbk ¼ 0) or complete (ytbk ¼ 0 and xtbk ¼ 1) at slot time t. The
stage is not executing at t � 1 (i.e.,; yt�1

bk ¼ 0), three possibilities exist at slot time t as follows:

� k has already been completed, with ytbk ¼ 0 and xtbk ¼ 1;

� k will start its execution with ytbk ¼ 1 and xtbk ¼ 0;

� k will be already in the waiting stage, implying that ytbk ¼ 0 and xtbk ¼ 0;
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Condition 9 assures that if stage k is completed at slot period t � 1 (xt�1
bk ¼ 1), it could not be resumed

execution, accordingly xtbk should be assigned to 1. Furthermore, if the stage is not completed during t
(xtbk ¼ 0), it could not be completed at t � 1, and xt�1

bk is assigned to 0.

A load stage begins only after all previous steps have been completed to maintain the load stages of the
processing sequence. We applied the additional restriction to ensure all these:

ytbk � xtb k�1ð Þ; 8 b; tf g; 8 k ¼ 2 to kb (10)

The price function ℧tð Þ yields the price of energy usage at slot time t. The overall quantity of energy
consumed determines the cost of one kWh. During busy hours, the price does rise, and we suggest using a
rising and strictly convex price function. Numerous piece-wise steps for linear function can be utilized to
promote energy saving. Distributors provide electricity prices following government regulations. The
same provider might make several deals and offers with varied 1 kWh pricing and subscription charges.
The supplier communicates these prices, and the price function, to the edge agents.

4.2 Non-Cooperative Planning Game

To decrease delay and used energy, it is preferable to plan energy usage at the edge layer rather than the
cloud layer, as previously stated. We merge the edge computing framework with a multi-agent system to
apply a quasi-distributed energy usage work schedule. The modeling of components of the system by
intelligent agents is represented in Fig. 1. Consumer appliances are supposed to be fitted with technology
that allows them to communicate through the agent of buildings. Low-power ZigBee and Bluetooth
technologies might link things within a residence. In contrast, PLC, Wi-Fi, and Ethernet technology could
be used to interconnect edge and consumer agents within the building. These can connect to the cloud
using fiber optics, 5G, or 4G services.

Figure 1: Scheduling of energy consumption using the multi-agent system-based edge architecture
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With autonomous individual scheduling, the pricing method within this approach is based on overall
energy consumption rather than individual demand. As a result, each appliance’s schedule is determined
by the schedules of all other appliances, reducing demand peaks and balancing energy use throughout the
day. According to the proposed proposal, the subscribers should delegate the demand schedule to the
edge agents. The following section will cover the assignment of the buildings to the edge nodes. To
accomplish the best scheduling, the edge agents must collaborate. The set of edge nodes is represented by
s eðE ¼ ej jÞ; and the decision vector is redefined as Y ¼ ðY1; : : : ; Ye; : : : ; YEÞ. Here, the

consumption schedule vector Ye is written as Ye ¼ ytbj

h i
8b 2 ba ^ að Þ allocated to e. The non-cooperative

planning game is defined as follows:

� Edge agents are the players.

� The energy schedule Ye is determined by each edge agent e.

� For each agent e, pe Ye; Y�eð Þ is the payoff function.

pe Ye; Y�eð Þ ¼
X
t2T

�t b
X
a2a

X
beba

XKb

k¼1
ytbks

t
bk

 !
(11)

where Ye ¼ Y1; . . . ; Yeþ1; . . . ; YEð Þ is the vector representing containing all of the agents’ schedules
except e, and E is the count of edge agents.

Each edge agent strives to discover the optimal demand scheduling that shrinks the payout while
working with different agents until the Nash equilibrium. The payout function pe Ye; Y�eð Þ is strictly
convex since the cost function is growing. This game belongs to the N-person game, and Nash
equilibrium’s existence and uniqueness are a direct outcome [24].

The Nash equilibrium is established, and no player can reduce their payoff function by adjusting its
scheduling. The schedule forms the Nash equilibrium for such a game Y �

e ; 8e 2 E if and only if:

pe Y �
e ; Y

�
�e

� � � pe Y �
e ; Y

�
�e

� �
; 8e 2 E; Ye � 0 (12)

The optimal edge agent e schedule may be found by addressing the local optimization problem,
given Y�e.

S0: min
Ye

pe Ye; Y�eð Þ ¼
X
t2T

�t b
X
a2a

X
b2ba

XKb

k¼1
ytbks

t
bk

 !
(13)

The issue related to the local, when the energy consumption schedule Ye is for the sole variable for e.

To demonstrate this, we restructure the equation into the equivalent issue as follows:

S1: min
Ye

pe Ye; Y�eð Þ ¼
X
t2T

�t b
X
a2a

X
b2ba

XKb

k¼1
ytbks

t
bk þ

X
g2a=ae

X
b2ba

dtb

0
@

1
A (14)

Here, ae denotes the collection of buildings that have been allocated to e. The goal of the local issue is
similar to the global issue Eq. (1). It is evident that e can resolve the case at the local level with IPM if it
knows the total consumption scheduling De of all other nodes required to compute the 2nd term of
Eq. (14) and the price function. The non-cooperative planning game is performed continuously in
Algorithm 1. The edge agents run the algorithm in the sequence specified by a pre-defined list. The edge
nodes reorganize this list when the cloud server initializes it. The first agent’s e in the list solves the issue
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Eq. (14) and calculate its schedule de in the first iteration by using it’s genuine everyday consumption and a
randomized D�e.

It creates a global consumption scheduling D, sets it to de and passes it on to the next agents in the list
queue. Depending on the incoming D, this agent g estimates its scheduling dg, incorporates in the D. Further
passes it on to the contiguous agent. These steps are repeated till every agent has decided on schedules of
their own and has entered them into D. The final agent within the list is responsible for transferring the
global schedule D to ‘e’. In case ‘e’ discovers that D has changed, it rearranges the lists and delivers it to
the new list heading along with the energy demand. Alternatively, it declares the end of the game and
notifies each edge node’s building of the final scheduling.

Algorithm 1: Non-cooperative planning game at edge tier.

1: Regulate Ye using Interior Point Method (IPM);

2: Assign de to next agent;

3: Repetition

4: obtain list and D;

5: if ‘e’ == first.list then

6: if D not changed then

7: indicates end of game;

8: end if

9: updating D;

10: rearrange lists;

11: assigns D&lists to first.list

12: end if

13: Ye ¼ IPM D�eð Þ;
14: if Ye, Yopt

e then ⊳opt is used for term optimization

15: Updating Yopt
e , D, and D�e;

16: end if

17: assign D and next.lists;

18: Until obtain end of game

The cost of energy is monotonically declining, and the edge agents successively upgrade their
consumption plans. Additionally, because the cost could only take on positive values, it must drop to a
positive fixed point as the number of repetitions goes to þ1. The best solution of the game is identical
to the game equilibrium, and the optimal solution of Yopt

e is unique to Eq. (2).

The following section shall discuss choosing which edge device will schedule which building is
dedicated to edge agents assignment.

4.3 Edge-Cloud Nodes Assignment

Here, we discussed a module for allocating edge nodes to help us schedule energy usage to minimize
latency. In our view, optimizing customer energy consumption is insufficient; we also require optimizing
the scheduling procedure. As a result, we considered balance among the nodes depending on their
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features and reduced the resources used by the edge devices. Additionally, we work to minimize scheduling
delay and latency. To achieve the following three goals, we allocate edge nodes in the following ways:

� Reducing the overall schedule period and the number of edge nodes.

� Minimizing the overall amount of energy used by each edge node.

� Fair scheduling load distribution across the active edge devices.

4.4 Edge Node Selection Process

The edge nodes may address problems either in the clouds or in a distributive way. The following is how
the centralized choice of edge nodes and the schedule of energy consumption work:

1. Building agents seek data and profiles about their customers’ devices.

2. The building agents send the overall count of relevant devices to the edge node to which they are
linked.

3. The edge nodes provide this knowledge to the cloud with attributes like distance, CPU, quality of
connection, etc.

4. The cloud server resolves the issue, assigns a location to each edge agent, places the adversely
impacted nodes into the list, and provides the judgment to the edge devices. The edge agents are
put into a list randomly because the order has no bearing on the final schedule.

5. The edge agents relay the cloud server’s decisions to the allocated building agents.

6. Those agents send information gathered from customers to the appropriate nodes.

7. Algorithm 1 is executed by the edge agents, and the schedule choice is sent to the buildings. After
this, schedules are sent to the customers.

4.4.1 Energy Consumption Model
As edge nodes use energy to conduct the scheduled process and send and receive data, the power

consumed depends on the node data size to process and the communication protocol used. The processed
energy Eproc

e is determined by the type of edge node and amount of devices assigned by e. We may
describe this as a be function:

Eproc
e ¼ ’ebe (15)

The function ’e, which is specified by the nodes themselves, gives the predicted energy spent
throughout the scheduled process through the node e. The communication energy Eproc

e contains energy
dependent on the quantity of received and sent, node consumption features, connection quality, and the
distances between e and another node.

4.4.2 Network Model
A centralized cloud server connects a group of edge nodes or devices e E ¼ ej jð Þ to form the network.

The edge devices create a fully integrated network where each node is capable of wireless transmission with
every other device. So, one edge node can directly connect with each building or block a E cð Þ. A Boolean
parameter bae ¼ 0 is considered as indicating a, whether it can be directly connected with e e E or not. Here
bae ¼ 1 if a is connected to e otherwise bae ¼ 0.

5 Performance Evaluation

To implement the proposed and existing solutions, we employed MATLAB and Simulink. The edge
computing is performed using the appliances eight in numbers with varying usage patterns. The proposed
technique is compared with the unscheduled and scheduled (HSA, EWA, and Hybrid) approach for the
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RTP scheme mentioned in the article [25]. The activities are completed in 60, 30, and 5 min on these
appliances in the edge-cloud environment. The performance of the proposed and existing schemes is
tested based on the cost of energy consumption, PAR, and PKR. Moreover, the waiting time is also
calculated to ensure the users’ comfort. The fully connected graph is formed using 8 nodes and the IEEE
802.11n communication standard. The implementation is performed using an Intel Core i7-8750H CPU
with 16 GB of RAM with Thermal Design Power (TDP) of 45 W, and we also consider the processing
delay of the system.

In the cloud-edge environment, we took multiple houses, and each house had multiple appliances.
Further, the appliances are categorized based on their usage pattern, like baseload, uninterruptible, and
interruptible as described in Table 1. The proposed model can reduce electricity costs and PAR.

5.1 Scheduling Delay

The scheduling delay is increased as we increase the number of appliances in the Cloud, Fog, and Edge-
Cloud environments. The Edge agent get the detail of various appliances of a particular zone and get the
appliances in return to get their schedule. Our proposed model is compared with the [25] shown in Fig. 2,
which already compared their techniques with the distributed approach [26]. The Edge-cloud’s scheduling
time is less than the cloud and fog-oriented ecosystems because the scheduler is closer to the appliances.
As the number of appliances increases, the cloud scheduling time escalates because of communication
overhead. The cloud does not back up the fog computing environment, which results in short processing
power in terms of a large number of appliances in the area.

The optimal edge node assignment is shown in Fig. 3 concerning scheduling delay with a number of
edge nodes and appliances. The proposed scheduling approach needs time to find the desired equilibrium
because the edge nodes are weaker than fog and cloud. However, cloud support is used when a
significant latency is reached. Many parameters need to evaluate before making the scheduling decision.
Moreover, the communication time from edge nodes to the appliances is way less than fog and cloud
computing.

5.2 Peak to Average Ratio (PAR)

The performance of the proposed model is compared with the unscheduled load, and the EHSA hybrid
approach based on PAR is shown in Fig. 4. In the 24 slots in the day as per 60 min OTI, the peak hour load is
5 PM to 11 PM. Our proposed model can reduce the PAR value compared to existing techniques. Similarly,
there are 48 slots in the 30 min OTI. The peak hour for the 30 min slot is from 9 AM to 5 PM. The hybrid

Table 1: Configuration of appliances

Category Appliance LOT (Hours) Power (kWh)

Baseload Lighting 16 1

Baseload Refrigerator 24 2

Uninterruptible Washing machine 2 2

Uninterruptible Dryer 1 2.5

Uninterruptible Electric vehicle 2 3

Interruptible Dishwasher 2 3.5

Interruptible LED Screen 2 1

Interruptible Laptop 12 2
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technique is better than the unscheduled. However, the proposed model is superior in the 30 min OTI as well.
In the 5 min OTI, there are 288 slots. The peak hours are considered from 6:15 AM to 7 PM. PAR values are
also less compared to an unscheduled and hybrid approach in 5 min OTI. The low PAR value justifies the
stability of the system. The proposed method also maintains the trade-off between the quality of service
and cost.

Figure 2: Comparison of a scheduling delay

Figure 3: Comparison of scheduling delay with edge nodes
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5.3 Total Cost

The performance of the proposed model is compared with the unscheduled load, and the EHSA hybrid
approach based on cost is shown in Fig. 5. In the 24 slots in the day as per 60 min OTI, the peak hour load is
5 PM to 11 PM. Our proposed model can reduce the cost of the PAR value compared to existing techniques.
Similarly, there are 48 slots in the 30 min OTI. The peak hour for the 30 min slot is from 9 AM to 5 PM. The
hybrid technique is better than the unscheduled; however, the proposed model is also superior in the 30 min
OTI. In the 5 min OTI, there are 288 slots; the peak hours are considered from 6:15 AM to 7 PM. Cost is also
less compared to an unscheduled and hybrid approach in 5 min OTI. The proposed method is more user-
friendly than other techniques as scheduling decisions are processed locally, and in peak hours cloud can
be used to mitigate the latency issues. The reason for the cost reduction is the load reduction in peak
hours as per the category of appliances. The proposed system maintains the schedule and is on/off the
appliances in peak hours. The significant latency is compromised to reduce the cost.

Figure 5: Comparison of cost with edge nodes

Figure 4: Comparison of PAR with edge nodes
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The performance evaluation of the proposed model has been performed on various existing scheduling
techniques in the basics of scheduling delay, PAR, and cost. A different scenario has been considered by
varying the number of appliances with other numbers of edge nodes. The trade-off between cost and
quality of service has been observed. We effectively manage the peak hours to find a suitable schedule
for the appliances.

6 Conclusion

In this paper, the edge nodes are deployed near smart homes to manage energy consumption. The non-
cooperative games are applied to the scheduling process, which helps to reduce the total energy cost. Cloud
computing is used to process the scheduling program to mitigate the fault in peak hours. The edge nodes can
handle the latency issue. The fairness approach is applied to assign the edge nodes to the group of homes
based on functional appliances. Eight types of appliances are considered in each home. The operation
time interval (OTI) is regarded as 60, 30, and 5 min. The simulation results showed that the proposed
system helps reduce the scheduling delay, PAR, and total cost for the same energy demand compared to
existing techniques. The proposed approach gives better quality of service at less cost. The edge node
selection method can be further improved with optimization techniques.
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