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Abstract: The main idea behind the present research is to design a state-feedback
controller for an underactuated nonlinear rotary inverted pendulum module by
employing the linear quadratic regulator (LQR) technique using local approxima-
tion. The LQR is an excellent method for developing a controller for nonlinear
systems. It provides optimal feedback to make the closed-loop system robust
and stable, rejecting external disturbances. Model-based optimal controller for a
nonlinear system such as a rotatory inverted pendulum has not been designed
and implemented using Newton-Euler, Lagrange method, and local approxima-
tion. Therefore, implementing LQR to an underactuated nonlinear system was
vital to design a stable controller. A mathematical model has been developed
for the controller design by utilizing the Newton-Euler, Lagrange method. The
nonlinear model has been linearized around an equilibrium point. Linear and non-
linear models have been compared to find the range in which linear and nonlinear
models’ behaviour is similar. MATLAB LQR function and system dynamics have
been used to estimate the controller parameters. For the performance evaluation of
the designed controller, Simulink has been used. Linear and nonlinear models
have been simulated along with the designed controller. Simulations have been
performed for the designed controller over the linear and nonlinear system under
different conditions through varying system variables. The results show that the
system is stable and robust enough to act against external disturbances. The con-
troller maintains the rotary inverted pendulum in an upright position and rejects
disruptions like falling under gravitational force or any external disturbance by
adjusting the rotation of the horizontal link in both linear and nonlinear environ-
ments in a specific range. The controller has been practically designed and imple-
mented. It is vivid from the results that the controller is robust enough to reject the
disturbances in milliseconds and keeps the pendulum arm deflection angle to zero
degrees.
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1 Introduction

The rotary inverted pendulum (RIP) is an unstable system with nonlinear dynamics. RIP is the
underactuated mechanical system with lesser control inputs than the degree of freedom. The control of
such a system is a more challenging task, and the system becomes a classical benchmark for designing,
testing, estimating, and comparing different control techniques [1–5]. The RIP controller design is a
crucial problem with the inherent instability feature. Undoubtedly, the RIP has gained importance in the
research community in the field of control engineering because of its effectiveness in testing the
performance and robustness of different control techniques [6–8]. The objective of the proposed work is
contributed in 3 parts: Background Literature Review and Analysis; Proposed Work and Novelty Aspects;
Experimental Results.

1.1 Background Literature Review and Analysis

It is a multivariable nonlinear dynamical system having two links. One link revolves around an axis in
the horizontal plane so that the other can balance itself upright [9,10]. Due to its nonlinear behaviour, the RIP
control helps design the altitude controller of rockets and satellites. RIP control plays a vital role in real-life
applications ranging from robotics to aerospace, locomotive to marine systems, and flexible to pointing
control systems. Additionally, studying the dynamics and control of an inverted pendulum helps maintain
the equilibrium of tall buildings [11–15].

Model-based control techniques have been used frequently, but fuzzy and non-model-based approaches
have been utilized too. Newton’s laws or energy balance approaches have been used to formulate the
dynamic model [16–19]. The fuzzy cascade control based on Hierarchical Fair Competition-based
Genetic Algorithms has been used in [20]. The fuzzy cascade control approach has been designed as a
nonlinear system with higher disturbance and settling time. It consists of two fuzzy controllers placed in a
cascade manner, and their parameters are optimized using a genetic algorithm. The inner loop controls the
position of the rotating arm, while the outer loop provides the appropriate input to the inner loop due to a
change in the angle of the vertical arm. Simulation has been performed, and the results have been
validated on the real hardware. The counter-based approach has been used to design swings, while pole
placement with an integrator has been used to stabilize the vertical arm [21]. The study shows a settling
time of 4.5 s for the swing-up controller. Similarly, stabilization of the vertical arm has been shown
through simulation.

The energy-based method achieves swing-up and vertical stabilization [22]. The H2/H1 has been used
to reduce oscillations and stabilize the system. Compared to the feedback controller, fewer oscillations have
been observed with the proposed controller. The only drawback is the control signal is not optimal and
requires a higher value for smaller fluctuations. Kharitonov polynomial has been formed with a
proportional-integral (PI) controller transfer function [23]. Routh Hurwitz criteria have been utilized to
design a stable controller, and stability has been analyzed using the Nyquist plot. A swing-up controller
has been designed in [24]. It is based on energy control and feedback linearization. Simulation has been
performed to show the effectiveness of the proposed approach. The value of gain has been associated
with energy convergence to zero. The higher gain means faster convergence. Another control approach
has been reported in [25]. It consists of a backstepping controller for swing-up and linear state feedback
controllers for stabilization. The quadratic Lyapunov system and Sylvester’s criterion have been used to
determine a sufficient stability margin around the equilibrium point. A comparison has been developed
between the proposed method and the classical scheme. The results have been evaluated in percentage to
show the effectiveness of the proposed approach.
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1.2 Proposed Work and Novelty Aspects

Fig. 1 depicts the rotary inverted pendulum module coupled to the Quanser SRV02 plant in the correct
configuration. SRV02 has a direct current (DC) motor enclosed in an aluminum frame and is equipped with a
planetary gearbox. The module is attached to the SRV02 load gear, and the pendulum arm is linked to the
module body. The linear quadratic regulator (LQR) has been designed to stabilize the pendulum. The
LQR is an excellent approach that provides optimal feedback to make a closed-loop system robust and
stable. It also provides a local approximation to develop optimal control for nonlinear systems [26].

To our knowledge, no efforts have been reported in the literature so far in which an optimal controller for
a nonlinear system such as a rotatory inverted pendulum has been designed and implemented using Newton-
Euler, Lagrange method, and local approximation. In the current research work, the following are the key
contributions:

� The system has been modelled.

� The resulting model has been linearized around an equilibrium point.

� The comparison of the two models has been made in Matlab and Simulink to find the local
approximation.

� The linearized state-space model has been used to estimate the parameters of the LQR controller.

� The controller has been implemented for both models, and its performance and stability have been
analyzed.

Figure 1: Rotary inverted pendulum
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1.3 Experimental Results

The proposed work has been implemented, and the hardware is developed, as shown in Fig. 1. From the
experimental results, it is seen that theoretical results are well verified from the experimental results.

The paper is organized as follows. In Section 2, mathematical modelling has been developed, and
linearization has been done around the equilibrium point. The simulation result of the comparison to find
a local approximation has been described in Section 3. The controller design has been discussed in
Section 4. Section 5 highlights the performance and stability of the controller. The conclusion of the
paper has been given in Section 6.

2 System Model Development

The Lagrange method has been used to develop the mathematical model of this underactuated nonlinear
unstable system Newton-Euler. Newton-Euler equations describe the translation and rotation of a rigid body.
These equations show the relation among forces and torques acting on a rigid body in the form of matrices
[27]. Lagrange establishes the relationship between the net energy of the system and forces or torques acting
on it through partial differentiation. Thus, it becomes convenient to develop a mathematical model of the
system using its potential and kinetic energy [28].

A free-body diagram of RIP mounted on a box having the reference frames is presented in Fig. 2. The
horizontal link with length r is rotating with an angle h; and the vertical arm of length L and mass m swings
with an angle a. Reference frames have been attached to the moving links for the calculation of the position
vector (P) with respect to a fixed frame. All the symbols used in the mathematical modelling are given in
Table 1.

Figure 2: Free body diagram of the pendulum with reference frames
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Table 1: List of symbols used in system modelling

Symbols Description

L Length to pendulum’s center of mass

m Mass of pendulum arm

r Rotating arm length

h Servo load gear angle (in degrees)

a Pendulum arm deflection (in degrees)

h Distance of pendulum center of mass from the ground

Jeq Moment of inertia of motor, gear, and arm

2.1 Design Parameters

The potential energy (PE) Ep of the inverted pendulum is given by [29]:

Ep ¼ mgLcosa (1)

where m is the mass of the pendulum arm, g denotes the force of gravity, L represents the length of the
pendulum’s center of mass, and a is the deflection of the pendulum arm. The kinetic energy (KE) Ek of
the inverted pendulum is given by [30]:

Ek ¼
mv2

2
þ Jeq _h

2

2
(2)

v2 ¼ r2 _h2 þ L2sin2a _h2 þ L2 _a2 � 2rLcosa _h _a (3)

Substituting Eqs. (3) in (2), we get

Ek ¼
1

2
mr2 _h2 þ 1

2
mL2sin2a _h2 þ 1

2
mL2 _a2 � mrLcosa _h _aþ Jeq _h

2

2
(4)

The Lagrangian LLagr is given by:

LLagr ¼ Ek � Ep (5)

LLagr ¼
1

2
mr2 _h2 þ 1

2
mL2sin2 að Þ _h2 þ 1

2
mL2 _a2 � mrlcosa _h _aþ 1

2
Jeq _h

2 � mgLcosa (6)

Now by simplification of Eq. (A21) from Appendix A.1, we got the following results:

€h ¼ 1

sin2a: L2 þ r2ð Þ þ Jeq
m

� � T
m
� 2L2sinacosa _h _a � rLsina _a2 þ rLsinacos2a _h

2 þ rgcosasina

� �
(7)

Substituting the value €h in Eq. (A19) in Appendix A.1:

€a ¼ rcosa

L sin2a L2 þ r2ð Þ þ Jeq
m

h i
0
@

1
A T

m � 2L2sinacosa _h a� rLsina _a2 þ rLsinacos2a _h
2þ rgcosasina

h i

þ sinacosa _h2 þ g

L
sina

(8)
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2.2 Linearization Around an Equilibrium Point

Mathematical modelling uses the Newton-Euler, Lagrange method to design a controller. The resulting
model was nonlinear, so linearization was required, which was done around an equilibrium point. Following
are the assumptions from Eqs. (7) and (8):

€h ¼ 1

sin2a L2 þ r2ð Þ þ Jeq
m

0
B@

1
CA T

m
� L2sin2a _h _a � rLsina _a2 þ rLsinacos2a _h

2 þ 1

2
rgcosasin2a

� �
(9)

€a ¼ rcosa

Lsin2a L2 þ r2ð Þ þ Jeq
m

0
B@

1
CA T

m
� L2sin2a _h _a� rLsina _a2 þ rLsinacos2a _h

2 þ 1

2
rgsin2a

� �
þ

þ g

L
sina

(10)

where €h ¼ f1 and €a ¼ f2. The linearized system is given by (see derivation in Appendix A.2):

_h
€h
_a
€a

2
664
3
775 ¼

0 1 0 0
0 0 mrg

Jeq
0

0 0 0 1
0 0 g

L
1þ mr2

Jeq

� �
0

2
664

3
775

h
_h
a
_a

2
664
3
775þ

0
1
Jeq
0
r

LJeq

2
664

3
775T (11)

y1
y2

� �
¼

1 0 0 0
0 0 1 0

2
4

3
5

h
_h
a
_a

2
664
3
775 (12)

The motor torque is given by:

T ¼ T gear � Beq
_h ¼ KtKg

Rm
gmgg U � KmKg

_h
� �

� Beq
_h ¼ KtKg

Rm
gmggU � _h

KtK2
gKm

Rm
gmgg þ Beq

 !
(13)

where U is the input voltage and is a control signal. Substitute the value of T in the state-space model, and we
get:

_h
€h
_a
€a

2
664
3
775 ¼

0 1 0 0
0 0 mrg

Jeq
0

0 0 0 1
0 0 g

L
1þ mr2

Jeq

� �
0

2
664

3
775

h
_h
a
_a

2
664
3
775þ

0
KtKggmgg
RmJeq

0
rKtKggmgg
LRmJeq

2
664

3
775U �

0
a
0
b

2
664
3
775 : _h (14)

where:

a ¼ � 1

Jeq

KtK2
gKmgmgg
Rm

þ Beq

 !

b ¼ � r

LJeq

KtK2
gKmgmgg
Rm

þ Beq

 !
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_h
€h
_a
€a

2
664
3
775 ¼

0 1 0 0
0 a m:r:g

Jeq
0

0 0 0 1
0 b g

L
1þ mr2

Jeq

� �
0

2
664

3
775

h
_h
a
_a

2
664
3
775þ

0
KtKggmgg
RmJeq

0
rKtKggmgg
LRmJeq

2
664

3
775U (15)

where, Beq denotes the viscous damping of the motor, gg is the efficiency of the gear, gm represents the
efficiency of the motor, Rm is the resistance of the motor, Kt is the torque constant of the motor, Kg is
the gear ratio, Km is the damping constant, Kenc is the encoder constant, and U is the control voltage.

3 Estimation of Local Approximation for Nonlinear System

To find the range of angle (a) for which a nonlinear model behaves linearly around an equilibrium point,
i.e., local approximation, to develop optimal control of a nonlinear system, a comparison of linear and
nonlinear models has been performed in MATLAB Simulink and the setup is shown in Fig. 3.
Comparison has been made by setting the initial value of 1� of a in both models without any input. The
vertical arm will start falling under the influence of gravity. The value of angle a will begin rising. The
result of the comparison is given in Fig. 4. It can be seen that the variation in a is the same until 20� for
both models, and the difference is 0�. After that nonlinear model behaves differently, and the angle
difference starts rising. It has given an excellent local approximation, and control must be done in this
range, i.e., from �20� to 20�. The controller has been designed with a much smaller range than the
estimated range.

4 Controller Design and Parameters Estimation

MATLAB (2018a, MathWorks, MA, USA) has been used to evaluate the parameters of the LQR
controller. Matrices A and B have been assessed using the system setup parameters and initial conditions
in Table 2. These parameters are for rotary inverted pendulum hardware developed by Quanser. Q matrix
has weights on the states of the system. Similarly, controller vector K has been evaluated using the same
parameters and MATLAB LQR function.

A ¼
0 1 0 0
0 �20:38 54:06 0
0 0 0 1
0 �19:22 109:56 0

2
664

3
775

Figure 3: System setup for the local approximation evaluation
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B ¼
0
35:84
0
33:81

2
664

3
775

Q ¼
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775

Q matrix contains 1 in the main diagonal, which means the angular velocities, i.e., ( _h, _a) have also been
considered in the evaluation.

K ¼ �1 �2:02 27:68 3:56
� �

Figure 4: Comparison of variation in a for the linear and nonlinear system

Table 2: List of system setup parameters

Parameters Parameters description Values

L Length of pendulum’s center of mass in meter 0.1675

m Mass of pendulum in kg 0.125

r Length of rotating arm in meter 0.158

Jeq Moment of inertia (motor, gear, arm) 0.0036

Beq Viscous damping of the motor 0.004

gg The efficiency of the gear 0.9

gm The efficiency of the motor 0.69
(Continued)
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5 Controller Validation

The designed controller has been simulated in Matlab Simulink. Simulation has been performed for both
models, and the controller’s performance has been presented in this section. The plots show the variation in
angles along the vertical axis vs. time along the horizontal axis. These plots have been generated by varying h
and a. Results have been presented first for the linear system and then for the nonlinear system.

5.1 Linear System

Fig. 5 shows the simulation setup for the linear model along with an LQR Controller in Simulink. Fig. 6
shows the performance and stable behaviour of the RIP. Both angles are zero at the beginning of the
simulation. Then, the RIP was disturbed by rotating h at 5:7� (0.1 rad) after 5 s. The vertical arm swings
at an angle of approximately 0:19� due to the horizontal link’s motion and returning to its initial stable
position, i.e., it stays upright. The variation in angle a due to the change in h has been adjusted by the
controller as shown in Fig. 6. The system is stable at the new orientation of h; and the vertical arm is still
maintaining zero inclination, i.e., it is not falling in any direction rightward or leftward.

Similarly, the vertical arm of RIP has been shaken by setting a 5:7� (0.1 rad) at the beginning as the
initial condition, as shown in Fig. 7. The controller rotates the horizontal link from zero to approximately
�13� to balance the vertical arm and brings it to its stable upright position. h angle has been brought
back to zero in 5 s. It shows that the controller adjusts the variation in both variables of the system and
maintains the vertical arms in a stable upright position. The presentation of the results validates the
designed controller.

Table 2 (continued)

Parameters Parameters description Values

Rm Resistance of the motor 2.6

Kt Torque constant of the motor 0.0077

Kg Gear ratio 70

Km Damping constant 0.0076

Kenc Encoder constant 0.0015

Figure 5: Simulation of a linear model with a controller in MATLAB simulink
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5.2 Nonlinear System

Fig. 8 shows the simulation setup for the nonlinear model along with LQR Controller. The performance
of the LQR has also been tested on the nonlinear model because it provides a local approximation to develop
an optimal controller for nonlinear systems.

In Fig. 9 h has been moved from 0� to 5:7� for initial five seconds, and then it has been rotated back to 0�.
The vertical arm’s angle a has swung twice, but the controller has brought it back to its stable vertical
position, as shown in Fig. 9.

Similarly, the performance of the controller has been evaluated by changing both variables of the system,
i.e., (h and a), as shown in Fig. 10. In the beginning, the controller adjusts the a to 0�, which was given an
initial value of 5:7� (0.1 rad). The corresponding rotation of h is shown in Fig. 10. After 5 s, the h has been set
at 5:7� (0.1 rad) a has been brought back to 0� by the controller.

Figure 6: Stability analysis by varying the h

Figure 7: Stability analysis by varying the a
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6 Hardware Implementation and Analysis

The designed controller has been tested over an inverted pendulum, shown in Fig. 1, and the results are
shown in Figs. 11 and 12. These plots depict the comparison in a real and simulated environment. Fig. 12
shows the variation in angle h; and Fig. 11 shows the corresponding angle a. The blue line with dots
represents the measured value, and the green is of simulation results. It is vivid from that the actual
measured values are very close to the simulated values. These results validate the proposed controller.
The controller adjusted the disturbance and kept the pendulum in a stable upright position, as shown in
Fig. 11, by rotating the horizontal link of the pendulum.

Figure 8: Simulation of a nonlinear model with a controller in MATLAB simulink

Figure 9: Variation in h for the nonlinear system
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Figure 10: Variation in a for the nonlinear system

Figure 11: Pendulum arm deflection a
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7 Conclusion & FutureWork

In the proposed research work, we have designed a state-feedback controller for the inverted rotary
pendulum utilizing the LQR techniques. A complete set of analyses has been developed to provide a
validation of the designed system. The performance of the designed controller is measured for the linear
and the nonlinear system using the local approximation. It is evident from the simulation results that the
designed controller is giving optimal performance and is robust enough to keep the pendulum in an
upright, stable position. The performance has been evaluated by varying the angles of the horizontal and
vertical arms of the RIP. From the simulation results, it can be seen that the controller stabilizes the
pendulum arm under various disturbances in a specific range. The simulation results have been validated
over a real, inverted pendulum. In future, a fuzzy controller will be implemented to compare the
performance of the two controllers.

Acknowledgement: Authors would like to thank Christopher Hille and Dmitry Konstantinov for a thorough
discussion.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare they have no conflicts of interest to report regarding the present
study.

References
[1] A. Shahzad, Aamir, S. Munshi, S. Azam and M. N. Khan, “Design and implementation of a state-feedback

controller using LQR technique,” CMC-Computers Materials & Continua, vol. 73, no. 2, pp. 2897–2911, 2022.

[2] N. Arulmozhi and T. A. A. Victorie, “Kalman filter and H-infinity filter based linear quadratic regulator for furuta
pendulum,” Computer Systems Science and Engineering, vol. 43, no. 2, pp. 605–623, 2022.

[3] Z. Meng, Z. Hu, Z. Ai, Y. Zhang and K. Shan, “Research on planar double compound pendulum based on RK-8
algorithm,” Journal on Big Data, vol. 3, no. 1, pp. 11–20, 2021.

Figure 12: Servo load gear angle h

CSSE, 2023, vol.46, no.1 865



[4] N. P. Nguyen, H. Oh, Y. Kim and J. Moon, “A nonlinear hybrid controller for swinging-up and stabilizing the
rotary inverted pendulum,” Nonlinear Dynamics, vol. 104, no. 1, pp. 1117–1137, 2021.

[5] A. de. Carvalho, J. F. Justo, B. A. Angélico, A. M. de. Oliveira and J. I. da. S. Filho, “Rotary inverted pendulum
identification for control by paraconsistent neural network,” IEEE Access, vol. 9, no. 1, pp. 74155–74167, 2021.

[6] Y. Dai, K. Lee and S. Lee, “A real-time HIL control system on rotary inverted pendulum hardware platform based
on double deep Q-network,” Measurement and Control, vol. 54, no. 3–4, pp. 417–428, 2021.

[7] H. -R. Li, Z. -Y. Nie, E. -Z. Zhu, W. -X. He and Y. -M. Zheng, “Double loop DR-PID control of a rotary inverted
pendulum,” in Proc. IEEE Int. Conf. on Networking, Sensing and Control (ICNSC), Xiamen, China, pp. 1–5,
2021.

[8] Z. S. Mahmood, I. B. Kadhim and A. N. Nasret, “Design of rotary inverted pendulum swinging-up and
stabilizing,” Periodicals of Engineering and Natural Sciences, vol. 9, no. 4, pp. 913–920, 2021.

[9] J. Huang, T. Zhang, Y. Fan and J. -Q. Sun, “Control of rotary inverted pendulum using model-free backstepping
technique,” IEEE Access, vol. 7, no. 1, pp. 96965–96973, 2019.

[10] M. F. Hamza, H. J. Yap, I. A. Choudhury, A. I. Isa, A. Y. Zimit et al., “Current development on using rotary
inverted pendulum as a benchmark for testing linear and nonlinear control algorithms,” Mechanical Systems
and Signal Processing, vol. 116, no. 1, pp. 347–369, 2019.

[11] M. Antonio-Cruz, R. Silva-Ortigoza, J. Sandoval-Gutiérrez, C. A. Merlo-Zapata, H. Taud et al., “Modeling,
simulation, and construction of a furuta pendulum test-bed,” in Proc. Int. Conf. on Electronics,
Communications and Computers (CONIELECOMP), Cholula, Mexico, pp. 72–79, 2015.

[12] Y. -F. Chen and A. -C. Huang, “Adaptive control of rotary inverted pendulum system with time-varying
uncertainties,” Nonlinear Dynamics, vol. 76, no. 1, pp. 95–102, 2014.

[13] S. Jadlovský and J. Sarnovský, “Modelling of classical and rotary inverted pendulum systems-A generalized
approach,” Journal of Electrical Engineering, vol. 64, no. 1, pp. 12–19, 2013.

[14] N. J. Mathew, K. K. Rao and N. Sivakumaran, “Swing up and stabilization control of a rotary inverted pendulum,”
IFAC Proceedings Volumes, vol. 46, no. 32, pp. 654–659, 2013.

[15] P. Seman, B. Rohal-Ilkiv, M. Juh and M. Salaj, “Swinging up the furuta pendulum and its stabilization via model
predictive control,” Journal of Electrical Engineering, vol. 64, no. 3, pp. 152–158, 2013.

[16] I. Hassanzadeh and M. Saleh, “Controller design for rotary inverted pendulum system using evolutionary
algorithms,” Mathematical Problems in Engineering, vol. 2011, no. 1, pp. 1–17, 2011.

[17] T. C. Kuo, Y. J. Huang and B. W. Hong, “Adaptive PID with sliding mode control for the rotary inverted
pendulum system,” in Proc. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, Singapore, pp.
1804–1809, 2009.

[18] D. I. Barbosa, J. S. Castillo and L. F. Combita, “Rotary inverted pendulum with real time control,” in Proc. IX
Latin American Robotics Symp. and IEEE Colombian Conf. on Automatic Control, Bogota, Colombia, pp. 1–
6, 2011.

[19] M. Akhtaruzzaman and A. A. Shafie, “Modeling and control of a rotary inverted pendulum using various
methods, comparative assessment and result analysis,” in Proc. IEEE Int. Conf. on Mechatronics and
Automation, Xi’an, China, pp. 1342–1347, 2010.

[20] S. -K. Oh, S. -H. Jung and W. Pedrycz, “Design of optimized fuzzy cascade controllers by means of hierarchical
fair competition-based genetic algorithms,” Expert Systems with Applications, vol. 36, no. 9, pp. 11641–11651,
2009.

[21] V. Nath and R. Mitra, “Swing-up and control of rotary inverted pendulum using pole placement with integrator,”
in Proc. IEEE Recent Advances in Engineering and Computational Sciences (RAECS), Chandigarh, India, pp. 1–
5, 2014.

[22] Al-Jodah, H. Zargarzadeh and M. K. Abbas, “Experimental verification and comparison of different stabilizing
controllers for a rotary inverted pendulum,” in Proc. IEEE Int. Conf. on Control System, Computing and
Engineering, Penang, Malaysia, pp. 417–423, 2013.

866 CSSE, 2023, vol.46, no.1



[23] J. George, B. Krishna, V. George, C. Shreesha and M. K. Menon, “Stability analysis and design of pi controller
using kharitnov polynomial for rotary inverted pendulum,” Sensors & Transducers Journal, vol. 138, no. 3, pp.
104–113, 2012.

[24] K. Chou and Y. Chen, “Energy based swing-up controller design using phase plane method for rotary inverted
pendulum,” in Proc. 13th IEEE Int. Conf. on Control Automation Robotics & Vision (ICARCV), Singapore,
pp. 975–979, 2014.

[25] A. Tiga, C. Ghorbel and N. B. Braiek, “Nonlinear/linear switched control of inverted pendulum system: Stability
analysis and real-time implementation,”Mathematical Problems in Engineering, vol. 2019, no. 1, pp. 1–10, 2019.

[26] L. Wei and W. Yao, “Design and implement of LQR controller for a self-balancing unicycle robot,” in Proc. IEEE
Int. Conf. on Information and Automation, Lijiang, China, pp. 169–173, 2015.

[27] V. Aslanov, G. Kruglov and V. Yudintsev, “Newton–Euler equations of multibody systems with changing
structures for space applications,” Acta Astronautica, vol. 68, no. 11–12, pp. 2080–2087, 2011.

[28] J. M. Mazón, “The Euler–Lagrange equation for the anisotropic least gradient problem,” Nonlinear Analysis: Real
World Applications, vol. 31, no. 1, pp. 452–472, 2016.

[29] Y. Silik and Y. Ulas, “Control of rotary inverted pendulum by using on–off type of cold gas thrusters,” Actuators,
vol. 9, no. 4, pp. 1–17, 2020.

[30] N. Gupta and L. Dewan, “Modeling and simulation of rotary-rotary planer inverted pendulum,” Journal of
Physics: Conference Series, vol. 1240, no. 1, pp. 1–9, 2019.

Appendix

Appendix A

A.1 Derivation of €h and €a

To evaluate v, a position vector P of mass must be defined as,

P ¼
x
y
z

2
4
3
5 ¼

cosh �sinh 0
sinh cosh 0
0 0 1

2
4

3
5 r

0
0

2
4
3
5þ

1 0 0
0 cosa sina
0 �sina cosa

2
4

3
5 0

0
�L

2
4

3
5

0
@

1
A (A1)

P ¼
x
y
z

2
4
3
5 ¼

cosh �sinh 0
sinh cosh 0
0 0 1

2
4

3
5 r

�Lsina
�Lcosa

2
4

3
5 (A2)

P ¼
x
y
z

2
4
3
5 ¼

rcoshþ Lsinhsina
rsinhþ Lcoshsina
�Lcosa

2
4

3
5 (A3)

where r denotes the length of the horizontal link. To evaluate v, we need to differentiate the position vector P
of m as,

v ¼ P ¼
_x
_y
_z

2
4
3
5 ¼

�rsinh _hþ Lcoshsina _hþ Lsinhcosa _a
�rcosh _hþ Lsinhsina _h� Lcoshcosa _a
�Lsina _a

2
4

3
5 (A4)

v2 ¼ _x2 þ _y2 þ _z2 ¼ ð�rsinh _hþ Lcoshsina _hþ Lsinhcosa _aÞ2

þ �rcosh _hþ Lsinhsina _h� Lcoshcosa _a
� �2

þ �Lsina _að Þ2
(A5)
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v2 ¼ r2 _h2 þ L2sin2a _h2 þ L2cos2a _a2 � 2rLcosa _h _aþ L2sin2a _a2 (A6)

Taking the differential of Eq. (6) with respect to _h to get,

d

d _h
LLagr

� 	
¼ mr2 _hþ mL2sin2a _h� mrLcosa _aþ Jeq _h (A7)

Now taking d=dt of Eq. (A7) to get:

d

dt

d

d _h
LLagr

� 	� �
¼ mr2€hþ 2mL2sinacosa _h _aþ mL2sin2a€hþ mrLsina _a2 � mrLcosa €aþ Jeq€h (A8)

Taking the differential of Eq. (6) with respect to h to get:

d
dh

LLagr

� 	
¼ 0 (A9)

where:

d

dt

d

d _h
LLagr

� 	� �
� d
dh

LLagr

� 	
¼ T (A10)

where T denotes the torque. By inserting Eqs. (A8) and (A9) in (A10) to get:

mr2€hþ 2mL2sinacosa _h _aþ mL2sin2a€hþ mrLsina _a2 � mrLcosa€aþ Jeq€h ¼ T (A11)

Now differentiating Eq. (6) with respect to a and _a respectively to get:

d
da

LLagr

� 	
¼ mL2sinacosa _h2 þ mrLsina _h _aþ mgLsina (A12)

d
d _a

LLagr

� 	
¼ mL2 _a� mrLcosa _h (A13)

Now taking
d

dt
of Eq. (A18) to get:

d

dt

d
d _a

LLagr

� 	� �
¼ mL2€aþ mrLsina _h _a� mrLcosa€h (A14)

where:

d

dt

d
d _a

LLagr

� 	� �
� d
da

LLagr
� 	

¼ 0 (A15)

Now simplify Eq. (A15) to get:

mL2€a� mrLcosa€h� mL2sinacosa _h2 � mgLsina ¼ 0 (A16)

Finally, we get two equations (i.e., Eqs. (A17) and (A18)) of the system as below:

r2€hþ 2L2sinacosa _h _aþ L2sin2a€hþ rLsina _a2 � rLcosa €aþ Jeq
m

€h ¼ T
m

(A17)
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L €a�rcosa€h� Lsinacosa _h2 � gsina ¼ 0 (A18)

From Eq. (A18), the value of €a is obtained as:

€a ¼ r

L
cosa€hþ sinacosa _h2 þ g

L
sina (A19)

Substituting the value of €a from Eqs. (A19) in (A17)

r2€hþ 2L2sinacosa _h _aþ L2sin2a€hþ rLsina _a2 � r2cos2a€h� rLsinacos2a _h2 � rgcosasina

þ Jeq
m

€h ¼ T
m

(A20)

Now simplifying Eq. (A20):

€h sin2a L2 þ r2ð Þ þ Jeq
m

� �
þ 2L2sinacosa _h _aþ rLsina _a2 � rLsinacos2a _h2 � rgcosasina ¼ T

m
(A21)

A.2 System Linearization

The linear system can be expressed by:

_x ¼ Axþ Bu; y ¼ Cxþ Du (A22)

For the nonlinear system, the linearized system looks as follows:

_h
€h
_a
€a

2
664
3
775 ¼

0 1 0 0

df1
dhx¼xo

df1
d _hx¼xo

df1
dax¼xo

df1
d _ax¼xo

0 0 0 1

df2
dhx¼xo

df2
d _hx¼xo

df2
dax¼xo

df2
d _ax¼xo

2
6666666664

3
7777777775

h
_h
a
_a

2
664
3
775þ

0

df1
dTx¼xo

0

df2
dTx¼xo

2
6666666664

3
7777777775
T (A23)

y1
y2

� �
¼

1 0 0 0
0 0 1 0

2
4

3
5

h
_h
a
_a

2
664
3
775 (A24)

The equilibrium point is given by:

xo ¼
ho
0
0
0

2
664

3
775; d

dh
f1½ � ¼ 0;

d
dhx¼xo

f1½ � ¼ 0;
d

d _hx¼xo

f1½ � ¼ 0 (A25)

d

d _h
f1½ � ¼ 1

sin2a L2 þ r2ð Þ þ Jeq
m

0
B@

1
CA �L2sin2a _aþ 2rLsinacos2a _h
� 	

(A26)
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d
da

f1½ � ¼ �2sinacosa L2þ r2ð Þ

sin2a L2þ r2ð Þþ Jeq
m

� �2
0
BBB@

1
CCCA� T

m
�L2sin2a _h _a�rLsina _a2þ rLsinacos2a _h

2þ1

2
rgsin2a

� �

þ 1

sin2a L2þ r2ð Þþ Jeq
m

0
B@

1
CA� �2L2cos2a _h _a� rLcosa _a2þ rLcos3a _h

2�2rLsin2acosa _h
2þ rgcos2a

h i
(A27)

d
dax¼xo

f1½ � ¼ mrg

Jeq
;

d
d _ax¼xo

f1½ � ¼ 0 (A28)

d
d _a

f1½ � ¼ 1

sin2a L2 þ r2ð Þ þ Jeq
m

0
B@

1
CA �L2sin2a _h� 2rLsina _a
� 	

(A29)

d
dT f1½ � ¼ 1

sin2a L2 þ r2ð Þ þ Jeq
m

0
B@

1
CA 1

m
(A30)

d
dTx¼xo

f1½ � ¼ 1

Jeq
;

d
dh

f2½ � ¼ 0;
d
dhx¼xo

f2½ � ¼ 0;
d

d _hx¼xo

f2½ � ¼ 0 (A31)

d

d _h
f2½ � ¼ rcosa

L sin2a L2 þ r2ð Þ þ Jeq
m

� �
0
BB@

1
CCA �L2sin2a _a þ 2rLsinacos2a _h
� 	

(A32)

d
da

f2½ � ¼
�Lrsina sin2a L2 þ r2ð Þ þ Jeq

m

� �

L sin2a L2 þ r2ð Þ þ Jeq
m

� �� �2
0
BBB@

1
CCCA� 2Lrsinacos2a L2 þ r2ð Þ

L sin2a L2 þ r2ð Þ þ Jeq
m

� �� �2
0
BBB@

1
CCCA

T
m
� L2sin2a _h _a� rLsina _a2 þ rLsinacos2a _h

2 þ 1

2
rgsin2a

� �

þ rcosa

L sin2a L2 þ r2ð Þ þ Jeq
m

� �
0
BB@

1
CCA½ �2L2cos2a _h _a� rLcosa _a2

þ rLcos3a _h
2 � 2rLsin2acosa _h

2 þ rgcos2a � þ cos2a _h
2 þ g

L
cosa

(A33)

d
dax¼xo

f2½ � ¼ mr2g

JeqL
þ g

L
;

d
d _ax¼xo

f2½ � ¼ 0; (A34)
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d
dT x¼xo

f2½ � ¼ r

LJeq
(A35)

d
d _a

f2½ � ¼ rcosa

L sin2a L2 þ r2ð Þ þ Jeq
m

� �
0
BB@

1
CCA �L2sin2a _h� 2rLsina _a
� 	

(A36)

d
dT f2½ � ¼ rcosa

L sin2a L2 þ r2ð Þ þ Jeq
m

� �
0
BB@

1
CCA 1

m
(A37)
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