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Abstract: The lightweight encryption algorithm based on Add-Rotation-XOR
(ARX) operation has attracted much attention due to its high software affinity
and fast operation speed. However, lacking an effective defense scheme for phy-
sical attacks limits the applications of the ARX algorithm. The critical challenge is
how to weaken the direct dependence between the physical information and the
secret key of the algorithm at a low cost. This study attempts to explore how
to improve its physical security in practical application scenarios by analyzing
the masking countermeasures of ARX algorithms and the leakage causes. Firstly,
we specify a hierarchical security framework by quantitatively evaluating the indi-
cators based on side-channel attacks. Then, optimize the masking algorithm to
achieve a trade-off balance by leveraging the software-based local masking stra-
tegies and non-full-round masking strategies. Finally, refactor the assembly
instruction to improve the leaks by exploring the leakage cause at assembly
instruction. To illustrate the feasibility of the proposed scheme, we further con-
ducted a case study by designing a software-based masking method for Chaskey.
The experimental results show that the proposed method can effectively weaken
the impact of physical attacks.

Keywords: IoT security; lightweight encryption; anti-physical attack; ARX
algorithms

1 Introduction

With the promotion and development of the Internet of Things (IoT), data security problem in the
hardware devices are becoming more and more prominent. However, due to the strict limitations of
economy and energy consumption for various reasons (economy, energy consumption, etc.), the
performance of hardware devices in IoT, such as sensor networks and distributed systems, are usually
orders of magnitude lower than server or client PCs. Since these performance-constrained devices may
not be enough to support these mainstream security protection measures, many traditional data protection
schemes have not satisfied the security necessary [1–3]. To this end, some professional organizations,
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such as the National Institute of Standards and Technology (NIST) information technology laboratory [4],
have actively established the standard lightweight encryption algorithms for IoT devices. In the decade, a
plenty of the candidate encryption algorithms have been widely applied in practical scenarios and making
a great contribution for related IoT researches. However, these algorithms are facing the serious threat of
side-channel attacks (also known as physical attacks) [5,6], and their strategies to deal with physical
attacks need to be verified and further optimized [7].

ARX algorithm, composed of ADD-ROTATION-XOR operation, is one of the popular methods among
the NIST candidate lightweight algorithms. Due to its high software affinity and fast operation speed, ARX
algorithm has achieved excellent performance in software and special instruction architecture [8]. However,
the drawback of ARX algorithm is that it is usually vulnerable while attacked by the power analysis (DPA),
and how to defense the DPA has become the key issue in related area [9,10]. The major challenge in solving
this problem lies in how to weaken or even eliminate the direct dependence between the physical information
and the secret key of algorithm at a low cost. The core countermeasures adopted can be divided into masking
countermeasures and hiding countermeasures [11]. Specifically, by modifying the algorithm, masking
strategy decouples sensitive intermedia variables to protect operation results from intermedia variables
affecting. Hiding countermeasures aim to reduce the distinguishability of the data by averaging the “0”
and “1”.

Furthermore, the masking strategies of ARX algorithm can be divided into software-based masking
strategies [12,13] and hardware-based (Threshold Implementation) masking strategies [14,15]. Software-
based masking countermeasures are highly portable, but their security may be affected by the way they
are compiled and optimized. Hardware-based masking countermeasures need to consider the impact of
the difference in instruction architecture, and will be affected by computing power, circuit scale, energy
consumption, etc. [16,17]. Regardless of the implementation, ARX masking strategies may be limited due
to its cost several times the algorithm itself [10]. In addition, although the theoretical security of some
mainstream encryption algorithms’ masking countermeasures has been verified, they still leak when
subjected to DPA, and even threaten the security [18,19]. Therefore, it is necessary to explore more
effective methods to reduce the cost of ARX algorithm masking countermeasures on the one hand, and
improve its physical security on the other hand.

2 Related Research

� Status Quo of ARX lightweight algorithms in IoT applications

In recent years, many well-designed lightweight block cipher algorithms have emerged in the field of
IoT applications [20–22]. Some lightweight block ciphers use the S-box as the nonlinear part, and some
block ciphers such as ARX algorithms use the addition operation as the nonlinear part. The cryptographic
algorithm based on ARX realizes the nonlinearity, ambiguity, and diffusion of the algorithm through the
combination of Addition, Rotation, and XOR. According to the report of FelICS [23], the block cipher
implementation of ARX is superior to other S-box-based ciphers, and some ARX algorithms specially
designed for IoT nodes have emerged [24–27].

� Problems existing in ARX lightweight algorithms in the field of IoT security

ARX algorithm itself has a fast operation speed, a small amount of calculation, and the mathematical
theory is safe, but the resistance to physical attacks is weak [28]. ARX algorithms are different from the
block ciphers with S-box, and their masking strategy needs to be aimed at the whole algorithm rather
than the S-box part, which will lead to the cost of masking strategy being too high [10]. Therefore, the
application of ARX algorithms in highly sensitive scenarios will be limited.
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� Research status of ARX lightweight algorithms in physical security

1) For the problem that the cost of the masking strategy of ARX algorithms is too expensive, there are
few studies at present. In addition to improving the ability of the ARX algorithm itself to resist
physical attacks [29], it is generally believed that the masking strategy of ARX algorithms needs
to be implemented as a whole algorithm, which needs to involve arithmetic masking (AM),
Boolean masking (BM) [30], and Conversion between arithmetic and Boolean masking [31].
Some studies have implemented local masking (initialization phase and finalization phase)
countermeasures to special algorithms based on software to reduce the overhead of masking
countermeasures while ensuring security [32]. The hardware-based masking scheme is mainly
implemented based on TI (Threshold Implementation) [33,34], and there are studies using the
second operand feature of the ARM instruction set to reduce the computational complexity of
Boolean masking [35]. Inserting pseudo-instructions into an algorithm to hide side-channel
information is a means of resisting high-order physical attacks, but this method often causes
concerns in security evaluation and scalability [36]. It is also an effective protection method to find
codes that may lead to leaks during the compilation process and then take specific measures [37,38].

2) Compared with other block ciphers with S-box, the leakage model of ARX algorithms has more
leakage points [39,40], and the leakage trajectory is easy to track [41,42]. ARX algorithms with
masking countermeasure are found to be leaking by some new leakage models [18,19,43].
Therefore, in view of the problems and shortcomings of the above research, it is necessary to
explore a new idea to deal with the physical security of ARX algorithms.

3 Three Aspects to Improve the Physical Security of ARX Algorithms

Based on the research status mentioned above, we summarize the key problems and scientific
significance of ARX algorithms for IoT applications in three different aspects.

1) In the NIST lightweight encryption algorithm solicitation activity, the physical security
performance of candidate ARX algorithms is yet to be verified. In the view of the characteristics
of ARX algorithms, it appears necessary to refer to the actual security standards required by the
industry, combine the algorithms’ computing speed and required platform performance, explore
the relationship between the cost of masking countermeasures and actual security level, and
create a set of reasonable security classifications. The framework aims to provide a reference for
the application of ARX algorithms and the cost of masking countermeasures for different IoT
application scenarios. Therefore, trying to achieve a breakthrough in the physical security
evaluation standard of ARX algorithms must be significant.

2) The cost of the masking strategy of ARX algorithms is too expensive. In view of the consideration
of the performance of IoT devices, the practical application significance should be limited.
Therefore, the masking strategy of ARX algorithms needs further study and optimization.
Combined with the security classifications in the first aspect, try to explore new anti-side-
channel attack methods such as software-based local masking strategy, aiming to reduce the cost
of defending against physical attacks, making it more suitable for IoT platforms in different
scenarios.

3) The problem of leakage of ARX algorithms with masking countermeasures indicates that the
leakage may not be completely eliminated, and it reflects the necessity of the security
classification framework. Therefore, it is indispensable to explore the causes of the leakage
caused by ARX algorithms at the assembly instruction level and the corresponding protection
countermeasures.
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The relationship between the three aspects is shown in Fig. 1.

ARX algorithm security classification frameworks: It aims to not only consider various attribute
indicators of ARX lightweight algorithms, but also combine the actual needs of life in the industry to
propose a complete set of security classifications frameworks to reasonably apply different algorithms and
anti-physical attack strategies in different scenarios to achieve a coordinated balance.

Optimizing the masking countermeasures of ARX algorithms: It aims to reduce the cost of ARX
algorithms in terms of physical attack resistance. However, few studies have discussed the dedicated
masking approach of the ARX algorithms. To solve that, the key issue is how to optimize the number of
operations in the transformation between Boolean operations and arithmetic operations in masking
countermeasures, and explore whether software-based local masking countermeasures can greatly
improve the resistance to physical attacks while reducing the computational cost.

Exploring the cause of leakage: It aims to explore the possible causes of security problems caused by
leakage even after the algorithm is masked. The key part is to explore whether the types of ARX
algorithm assembly instructions and specific combinations will obviously cause potential leakage based
on specific processor architecture, and what measures should be taken to optimize such assembly
instructions with the least cost.

4 Discussion of Research Methods and Technical Routes

4.1 Research Methods

Under the current research background of IoT security issues, the existing ARX algorithms and NIST
candidate ARX algorithms can be used as research and experimental targets to analyze the operation
speed, calculation amount, number of instructions, energy consumption, physical attack resistance, and
the masking cost. Then a hierarchical security framework based on performance and security (Cost-
Security Balance) can be proposed by quantitative evaluation combined with actual industry standards.
For the problem that the masking strategy of the ARX algorithm is too expensive, it is necessary to

Figure 1: Schematic diagram of improving the physical security of ARX algorithms
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consider optimizing AM, BM, and the conversion between AM and BM to reduce the cost. Additionally,
considering the problem of leakage after algorithm masking, we recommend analyzing and collecting
assembly instructions (or some fixed instruction pairs) that may cause leakage, and verify their
effectiveness through manual intervention and assembly instruction reorganization. The research methods
and their relationships are shown in Fig. 2.

4.2 Technical Routes

4.2.1 Building ARX Algorithm Security Hierarchical Framework
To construct the ARX algorithm security hierarchical framework, it is first necessary to evaluate the

operation speed, calculation amount, instruction number, energy consumption, and physical attack
resistance of existing ARX algorithms or NIST candidate ARX lightweight algorithms, and then combine
the evaluation criteria such as the security requirement level, platform performance, anti-side channel
attack requirements, and computational cost, to finally define the security hierarchical framework
according to specific application scenarios by quantitative evaluation. (See Table 1).

Welch’s T-test could be utilized for leak assessment of ARX algorithms. In formula (1), A represents
fixed input, B represents random input, XA represents the average of A, XB represents the average of B,
and SA and SB represent the standard deviation of A and B, respectively. The T value could be flexibly
set according to the security classification framework and application scenarios (The recommended value
is 0.045).

Figure 2: Schematic diagram of research methods and technical routes

Table 1: Core evaluation metrics of ARX hierarchical security framework

Physical
security
requirements

Platform
performance

Masking
cost

Leak
assessment

Algorithm
computational
cost

Leak
assessment
after
masking

Threshold

Scenario
metrics

H/M/L/N (P) (CO) (L) (O) (Lm) 0.01–0.1
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T ¼ XA � XBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2A
NA

þ S2B
NB

s
(1)

4.2.2 Optimizing Masking Strategies of ARX Algorithms
Masking is a strategy against side-channel attacks. It consists of two or more (first order/higher order)

shares to represent sensitive values in cryptographic primitives. The sum or XOR of these shares is usually
equal to the variable before being split value. The intermediate variable values resulting from the splitting of
the primitives in the encryption algorithm into shares will not correlate with the actual (no masking
countermeasures) intermediate variable values. Since the ARX algorithm uses a combination of two
different types of operations, Boolean and arithmetic, two masking strategies are required: arithmetic
masking and Boolean masking. Furthermore, to guarantee that all intermediate variables are independent
of the masked data, the conversion between arithmetic masking and Boolean masking should be considered.

AM includes addition and subtraction operations, and BM includes XOR, rotation, and shift. In order to
guarantee that intermediate variables are resistant to power analysis attacks (DPA), the correlation between
arithmetic and Boolean operations should be eliminated. Due to the particularity of ARX algorithms, high-
order masking algorithms are usually not practical (in view of the cost-effectiveness of computation and
security) Therefore, the optimization of the computation amount in the conversion process between AM
and BM is a necessary method in the first-order masking countermeasure. Fig. 3 illustrates a schematic
diagram of the masking strategy of ARX algorithms.

Arithmetic operations in the ARX algorithm refer to addition and subtraction operations. Let the original
intermediate variable be x, the intermediate variable after implementing masking is x0, and the random
number is r. Then the arithmetic masking method can be expressed as formula (2). Boolean operations
refer to rotation and shift, which can be expressed as formula (3).

x ¼ x0 þ rxmod2n (2)

Figure 3: ARX algorithms masking strategy
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x ¼ x0 � rx (3)

Fig. 4 presents the masking process of ARX algorithms and the location and relationship of the object of
this study (conversion between arithmetic operations and Boolean operations).

Table 2 reveals the conditions and guaranteed objects of arithmetic operations and Boolean operations
for the masking countermeasure.

4.2.3 Optimization of ARX Masking Algorithm Based on Software
The ARX algorithm is designed to be very efficient in software, but it will loss advantage once it is

subject to DPA. However, the ARX algorithm is different from AES or other algorithms with S-boxes,
and cannot perform masking countermeasures for S-boxes. It is generally considered that the entire
algorithm process needs to be masked, which will lead to high costs. In order to improve the DPA
resistance and maintain the advantages based on software, we study the feasibility of the local masking
countermeasure of the ARX algorithm in combination with the security hierarchical framework.

The following discussion takes the ARX algorithm Chaskey as an example. Chaskey is a permutation-
based ARX algorithm for MAC authentication. It is designed to run on 32-bit processors. The Chaskey
algorithm is shown in Table 3, which identifies the part of the algorithm that attempts the masking
strategy. The verification of security after masking can be achieved through DPA attacks and Test Vector
Leakage Assessment (TVLA). Its effectiveness can be evaluated under the ARX algorithm security
hierarchical framework.

Figure 4: The position and relationship between AM and BM

Table 2: Conversion between AM and BM

BM to AM

Require: (x′,r) such that x ¼ x0 � rx
Ensure: (A, r) such that x = A + rxmod2n

Algorithm of BM to AM /* need to be optimized */
AM to BM
Require: (A, r) such that x ¼ A þ rxmod2n

Ensure: (x′,r) such that x ¼ x0 � rx
Algorithm of AM to BM /* need to be optimized */
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4.2.4 The Cause of Leakage
In recent years, with the gradual deepening of Internet of Things security research, some new leakage

models have been proposed and it has been found that the masked algorithm will still leak and even threaten
security. This is often due to design problems in the hardware and unexpected interactions in the hardware
and is unavoidable. We suggest that possible leaks can be explored at the assembly instruction level of the
ARX algorithm, analyze and summarize the possible causes of leaks, and try to optimize assembly
instructions to reduce such leaks. A feasible technical route is as follows:

Since the interaction between instruction pairs may cause leakage, the ARX algorithm assembly
instructions can be analyzed by tracing instructions and registers, the Hamming distance between related
instruction pairs can be counted, and then the effect of interactions between instruction pairs on leakage
can be examined by the Pearson correlation coefficient Experiments (Eq. (4)).

qX ;Y ¼ Cov X ; Yð Þ
rX � rY ¼ X � �X �j jY � �Yj j

j X � �Xj jj2 Y � �Yj jj j2
(4)

The assembly instructions could be interfered with by screening, refactoring, optimization, etc., and the
ability of anti-physical attack of the algorithm could be improved at a reasonable cost by combining the
aforementioned security hierarchical framework indicators. Fig. 5 reveals the detailed steps of this
technical route.

5 Experiments

Following the discussion of masking strategies in above section, we conduct an empirical study on the
Chaskey algorithm. Fig. 6 shows the power consumption trajectory (with random input) of Chaskey’s
original algorithm and the masked algorithm (Table 3) under ARM-CortexM0 processor architecture.

Table 3: Chaskey’s permutation process and the local masking strategy

Chaskey Algorithm

TimesTwo(a) /* Initialization phase */
if a [127] = 0 then return (a << 1) ⊕ 0128

else return (a << 1) ⊕ 012010000111
SubKeys(K) /* Key generation phase */
K1 ← TimesTwo(K)
K2 ← TimesTwo(K1)
return (K1, K2)

Chaskeyπ(K, m) /* Permutation phase, π represents permutation round, m represents plaintext */
(K1, K2) ← SubKeys(K)
m1 . . . kmℓ ← m
h1 ← K
for i = 1, . . . , ℓ − 1 do hi+1 ← π(hi ⊕ mi) /* Masking Target */
if |mℓ| = n then L ← K1 /* Final phase */
else
mℓ ← mℓk10

n−|mℓ|−1

L ← K2

hℓ+1 ← π(hℓ ⊕ mℓ ⊕ L) ⊕ L
return τ ← rightt(hℓ+1)
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Industrial IoT hardware devices need to consider device performance and energy consumption requirements,
compilation and optimization could be performed when processing algorithms. Therefore, we also consider
power consumption trajectories under different compilation optimization levels and the influence of noise on
the trajectory as well. The noise set follows the security standards of ISO/IEC 17825 (SNR = 0.1~1).

Figure 5: ARX algorithms leakage countermeasure process at assembly instruction level

(a) one trace without noise(O -0) (b) one trace without noise(O -1) (c) one trace without noise(O -2)

(d) one trace with noise(O -0) (e) one trace with noise(O -1) (f) one trace with noise(O -2)

(g) one masking trace with noise(O -0) (h) one masking trace with noise(O -1) (i) one masking trace with noise(O -2)

Figure 6: Power consumption traces of Chaskey and the masked algorithm under ARM-CortexM processor
architecture
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All parameters of this experiment are shown in Table 4. The simulation environment of the experiment is
based on the microprocessor ARM-CortexM0, the input is random 16*32 bit, and the key is fixed 4*32 bit.

Fig. 7 shows the power consumption trace of Chaskey and the part where the masking strategy is to be
implemented (where module 1 and module 2 represent the masking countermeasure parts).

We then performed Welch’s t-test on the experimental subjects. The experimental method, source code,
and datasets generated in this study are accessible (refer to the Data Availability Statement). We collected
100,000 traces for each algorithm. To reduce memory usage, we calculate the t-test values incrementally
by using Welford’s algorithm. The experimental results are shown in Fig. 8.

6 Discussion

The experimental results show that the masking strategy for Chaskey can effectively reduce the leakage,
but it leads to a new problem, i.e., the masking cost is too expensive. Specifically, the number of instructions
for the mask is about 100 times that of the original algorithm and this will result in limited application on
devices with strict resource constraints. We perform the same masking approach on SPECK and Simon,
and the experimental results are shown in Table 5.

It is worth mentioning that the random numbers introduced in our experiments are not fixed, which is
one of the reasons for the huge overhead. There have been related studies on the reuse of random numbers in
masking strategies, but the research in this area is mainly focused on stream cipher and threshold
implementation [44,45], and software-based optimization strategies for ARX block cipher deserve further

Table 4: Experimental parameters

a b c d e f g h i

Instructions ≈10000 ≈750 ≈720 ≈10000 ≈750 ≈720 ≈570000 ≈75500 ≈71500

Optimization level Lv 0 Lv 1 Lv 2 Lv 0 Lv 1 Lv 2 Lv 0 Lv 1 Lv 2

Noise (SNR) 0 0 0 0.1–1 0.1–1 0.1–1 0.1–1 0.1–1 0.1–1

Figure 7: Chaskey masking strategy in the power consumption traces under ARM-CortexM processor
architecture
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research. Moreover, the leakage assessment model may have a large impact on the results, which also
deserves further study.

7 Conclusion

In this study, we mainly discuss the anti-physical attack scheme design of ARX lightweight algorithm
for IoT applications and focus on how to systematically optimize the application of ARX lightweight
encryption algorithms in the context of IoT security. In addition, we give some different but valuable
suggestions:

� Reasonably apply different algorithms and anti-physical attack strategies in different scenarios. It is
necessary to comprehensively consider the computing speed, computing platform, masking cost and
other indicators of the ARX algorithm, and combine industry standards and actual needs to define a
hierarchical security framework.

� A strategy based on a combination of software and hardware should be adopted in optimizing the
masking and reducing leakage of ARX algorithms.

While we have discussed various aspects of how to improve the physical security of the ARX algorithm
across the board, we have only conducted a case study of software implementation-based masking
countermeasures. The experimental results show that the software implementation-based masking
countermeasure is an effective countermeasure against physical attacks, and the rest of this research
requires further in-depth analysis and discussion, which will be future work.

Figure 8: Leakage Assessment of Chaskey and masked Chaskey

Table 5: Cost comparison of ARX algorithms in experiments (O–1)

Algorithm Instructions (original) Instructions (masked) Key (bit) Input (bit) Cost

Chaskey32 ≈750 ≈75500 4 * 32 16 * 32 ≈x100

SPECK32 ≈790 ≈84200 4 * 32 16 * 32 ≈x106

Simon32 ≈1050 ≈114550 4 * 32 16 * 32 ≈x109
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