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Abstract: For surface defects in electronic water pump shells, the manual detec-
tion efficiency is low, prone to misdetection and leak detection, and encounters
problems, such as uncertainty. To improve the speed and accuracy of surface
defect detection, a lightweight detection method based on an improved YOLOv5s
method is proposed to replace the traditional manual detection methods. In this
method, the MobileNetV3 module replaces the backbone network of YOLOv5s,
depth-separable convolution is introduced, the parameters and calculations are
reduced, and CIoU_Loss is used as the loss function of the boundary box regres-
sion to improve its detection accuracy. A dataset of electronic pump shell defects
is established, and the performance of the improved method is evaluated by com-
paring it with that of the original method. The results show that the parameters
and FLOPs are reduced by 49.83% and 61.59%, respectively, compared with
the original YOLOv5s model, and the detection accuracy is improved by
1.74%, which is an indication of the superiority of the improved method. To
further verify the universality of the improved method, it is compared with the
results using the original method on the PASCALVOC2007 dataset, which veri-
fies that it yields better performance. In summary, the improved lightweight meth-
od can be used for the real-time detection of electronic water pump shell defects.

Keywords: Electronic water pump shell; surface defect detection; lightweight
network; loss function

1 Introduction

The electronic water pump is an important component of automotive engine cooling systems, and its
performance has a direct effect on the operation of the engine. The main function of the electronic water
pump is to drive the circulation of the coolant, absorb the excess heat generated by the engine and
transfer it to the external air through a heat dissipation device to prevent the engine temperature from
rising too high. Excessively high engine temperatures will prevent proper oil lubrication and result in
increased wear; high temperatures beyond a certain threshold will lead to cylinder explosion or tile
burning and other serious failures and ultimately lead to the engine being scrapped. The electronic water
pump shell, as one of the main parts of the electronic water pump (as shown in Fig. 1), is prone to burrs,
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scratches, and other defects in the injection molding process, which dramatically affects the performance of
the electronic water pump and can lead to insufficient cooling performance and therefore potentially
dangerous problems. Real-time detection of the electronic water pump shell can effectively reduce the
presence of unqualified products on the market and increase automobile safety. Therefore, we propose a
network architecture for the real-time defect detection of the electronic water pump shell.

The defect detection of the electronic water pump shell is carried out manually. Because such defects are
often small and the surface of the electronic water pump shell is complex, defects are often undetected
because inspections are performed quickly and under extreme pressure. At the same time, there is
uncertainty about the validity of the results generated by workers with different experience levels.
Therefore, there is an urgent need for a method that can realize automatic inspection in real-time to
change the status quo. The defects of electronic water pumps are often in the form of burrs and small
surface scratches and do not relate to the materials and their quality, so image-based defect detection
methods are the most direct, simple, and effective. Overall, replacing manual defect detection with an
algorithm based on deep learning technology that uses a camera combined with a trained defect detection
model to identify and distinguish objects or defects is both simple and practical and improves detection
efficiency, thus freeing workers from having to perform tedious detection work.

Image classification was first tested using convolutional neural networks (CNN) [1]. Riaz et al. [2]
proposed an innovative neural network that utilizes live camera occupancy detection and recognition for
various types of sensors. In recent years, advances in computer algorithms have made them more
competitive and abundant, and image classification algorithms have been rapidly developed. Many
excellent classification models have been verified, such as VGG [3], GooLeNet [4], and ResNet [5].
Using a single network model is not sufficient for solving difficult problems and thus some researchers
have contributed their research objects to improve the network model. Chen et al. [6] proposed a visual
detection device for plastic gasket defects based on GoogLeNet InceptionV2 transmission learning to
solve the problem of its surface defects being numerous and difficult to extract while classifying its
features. Chakravarthi et al. [7] proposed a hybrid deep learning algorithm employing CNN-LSTM
classification in combination with the ResNet152 model to identify human emotions. Lui et al. [8]
proposed a new enhanced data-driven pedestrian tracking method for public buildings that use
pedestrians’ trajectories to predict their destination. Riaz et al. [9] developed the MULTIMOORA method
based on the q-ROF Einstein aggregation operator for MCDM to improve energy efficiency in low-
income households at the national level in Pakistan. Xing et al. [10] proposed a fusion algorithm based

Figure 1: The electronic water pump shell
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on SURF and SWT for regional railcar positioning to locate the enhanced images produced by the improved
single-scale Retinex algorithm. The results show that the accuracy of the method is 96.91% in complex cases.

Further achievements have been made using deep learning methods, such as the YOLO [11–13], RCNN
[14–16], and SSD series [17,18], as well as R-FCN [19], in the detection of workpiece surface defects. Xing
et al. [20] proposed an improved YOLOv3 rail wheel surface defect detection framework to solve the
problem of conventional wheel defect detection techniques being unable to achieve automatic
classification and accurate defect localization. Li et al. [21] modified the loss and activation functions of
YOLOv5 and introduced an attention mechanism to enable rapid and accurate detection of small targets
and obscured objects. These methods are also applied to detect workpiece surface defects. Yao et al. [22]
proposed an online pantograph slider monitoring system based on 2D laser displacement sensors and
used an effective slider wear state assessment method. The system demonstrated good wear detection
accuracy and can automatically evaluate the wear status of the slider to meet actual needs in the field. Bin
Roslan et al. [23] proposed a real-time detection and classification method of plastic surface defects based
on deep learning to address slow deceleration and high labor costs. Tabernik et al. [24] proposed a deep
learning framework based on segmentation to recognize and divide surface anomalies. Xing et al. [25]
suggested an automatic detection strategy based on convolutional neural networks. The results
demonstrated that this technique increases the precision of workpiece surface detection. Ho et al. [26]
improved the ResnNet50 network by using a deep residual neural network (DRNN) to conduct both
feature extraction and classification tasks. Lu et al. [27] proposed using an emerging image detection
algorithm (YOLO-V3) to train self-created datasets and categorize ECs. Lee et al. [28] proposed two
residual aggregation networks based on dual cores that use fixed and deformable cores to detect surface
defects and shape defects on molded products, respectively. However, these methods are mainly intended
for different research objects and thus do not accurately detect electronic water pump shell defects and
cannot balance detection time and detection accuracy. The MobileNetV3 module, which is an innovative
network model design, is thus used to balance the detection time of the network.

To standardize automatic product detection and reduce manual involvement in the electronic water
pump shell surface defect detection tasks, this paper presents a lightweight electronic water pump shell
detection network model based on YOLOv5s. To minimize the number of parameters and calculations
and expedite detection, the model replaces the feature extraction backbone network with
MobileNetV3 and utilizes YOLOv5s as its core network structure. The model replaces the GIoU_Loss
used in YOLOv5s with CIoU_Loss, which eliminates the issue of GIoU_Loss diverging during training,
enhances the target identification accuracy, stabilizes the target box regression, and allows for real-time
detection of the electronic water pump shell.

The remainder of this paper is structured as follows. Section 2 describes the defect detection network
model and the evaluation metrics for assessing networks. Section 3 presents the dataset collection process
and two datasets that are used to test the network and compare its performance with that of other
networks. Section 4 concludes.

2 Methods

2.1 YOLOv5 Network Architecture

The YOLO series network architecture is the most classic one-stage algorithm and the most widely used
target detection network in the industrial field. YOLOv5 extends upon the advantages of YOLOv4 by
optimizing its backbone and neck to yield better detection accuracy and faster inference speed. Based on
the depth of the network and the breadth of the feature map, the YOLOv5 series is separated into four
models: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x [29].

CSSE, 2023, vol.46, no.1 963



These four models feature identical input, backbone, neck, and prediction networks, with YOLOv5s
processing data at the quickest rate and YOLOv5x having the best detection accuracy. In this paper, we
present a design approach that obtains a lightweight and accurate model while reducing the FLOPs,
number of parameters, and model size. As a result, YOLOv5s is chosen as the base model to be
enhanced. The network structure of YOLOv5s is shown in Fig. 2.

The input comprises mosaic data augmentation, image size processing, and adaptive anchor box
computation. Mosaic data augmentation increases the number of tiny items in the background and dataset
by merging four photos, as shown in Fig. 3. Image size adaptive processing employs a minimum black
boundary to scale the original image evenly and without distortion to a standard size. The adaptive
anchor box computation compares the increased expression box with the actual box predicated on the
starting anchor box and calculates the gap between them to determine the best anchor box value [30],
after which it updates in the opposite direction.

The YOLOv5s backbone network is made up of modules such as Focus, Conv, C3, SPP, and others. The
Focus module splits the picture data into four segments, each of which is downsampled two times. To create a
new feature map with no information loss and size reduced by half, the data of all four are combined. The

Figure 2: The network structure of YOLOv5s

Figure 3: The electronic water pump shell mosaic data enhancement
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Focus module can minimize information loss and computation while increasing the diversity of difficult
samples and data. Conv is the fundamental unit of convolution in YOLOv5s. The C3 module is made up
of several structural modules known as bottleneck residuals. The SPP module uses different kernel sizes
to perform maximum pooling and fuses features by connecting them [31].

The neck network is primarily in charge of feature augmentation and enhances the features that are taken
from the backbone network to increase the accuracy of the subsequent predictions. The FPN and PAN
pyramid structure is employed in the neck network [32,33]. The capacity of the neck network to fuse
features is improved by combining these two structures.

The prediction network contains the target item’s category probability, object score, and bounding box
position. The detection network has three detection layers and utilizes feature maps of various sizes to
identify targets of various sizes. Each detection layer outputs related vectors, which are then used to
create prediction bounding boxes and designate the various items in the original picture.

2.2 Improvement of YOLOv5s Network Architecture Design

2.2.1 MobileNet Lightweight Improvement
Real-time defect detection of electronic water pump shells requires a certain detection speed.

YOLOv5 is a one-stage algorithm that meets the requirements of the experimental object. Thus, a
lightweight network model based on YOLOv5s is developed for electronic water pump shell defect
detection. The model uses the MobileNetV3 module instead of the original YOLOv5s backbone network
structure, as shown in Fig. 4. In the backbone network of this method, the algorithm flow of the
MobileNetV3 network structure is shown in Table 1. MobileNetV3 is separated into several phases, and
SE modules are added to some of MobileNetV3’s bottlenecks. The key features of MobileNetV3 are its
depth-separable convolution, reverse residual structure, and attention mechanism [34].

The backbone network consisting of MobileNet contains 13 convolutional layers, an average pooling
layer, and a fully connected layer in addition to the input and output layers. Its core idea is deep-
separable convolution, which converts ordinary convolution operations into 1 × 1 depthwise convolution
and pointwise convolution. Depthwise convolution is used to extract information from each input
channel, and pointwise convolution is used to linearly fuse multiple deep convolution outputs. Depth
convolution only requires a single convolution kernel to extract features from each input channel.
Because both depthwise and pointwise convolution use 1 × 1 convolution kernels, the number of
computations and number of model parameters can be greatly reduced, thus increasing the overall speed
of the network. Fig. 5 depicts the deep-separable convolution. The basic convolution kernel is shown in
Fig. 5a, while the deep convolution kernel and the 1 × 1 point convolution kernel are shown in Figs. 5b
and 5c, respectively.

Theoretically, the impact of training increases as a network deepens. However, because of the difficulty
of learning, an excessively deep network may degenerate in the actual operating process and thus be
counterproductive. This flaw may be compensated for by using a reverse residual network.
MobileNetV3 uses the V2 reverse residual structure. Compared with traditional residual networks, this
structure has relatively few input channels. To train the network, the channel is first expanded, then its
features are extracted and compressed. To increase the efficiency of memory utilization and gradient
cross-layer propagation, shortcuts are introduced to the residual structure throughout this process.

The main design of MobileNetV3 incorporates the squeeze and excitation neural networks (SE-Net)
[35], as shown in Fig. 6. By explicitly modeling the connection between network convolution feature
channels, the main goal is to enhance the representation quality of network formation. In particular,
learning is used to automatically determine the significance of each feature channel. This outcome leads
to functional traits being enhanced while suppressing those that are not important for the task at hand.
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Figure 4: The improved YOLOv5s network structure

Table 1: Algorithm flow of MobileNetV3 network structure

Input Layer Exp Size Out SE NL Stride

2242 × 3 ConvBS-3 × 3 – 16 False h-swish 2

1122 × 16 MN-3 × 3 16 16 True ReLU 2

562 × 16 MN-3 × 3 72 24 False ReLU 2

282 × 24 MN-3 × 3 88 24 False ReLU 1

282 × 24 MN-5 × 5 96 40 True h-swish 2

142 × 40 MN-5 × 5 240 40 True h-swish 1

142 × 40 MN-5 × 5 240 40 True h-swish 1

142 × 40 MN-5 × 5 120 48 True h-swish 1

142 × 48 MN-5 × 5 144 48 True h-swish 1

142 × 48 MN-5 × 5 288 96 True h-swish 2

72 × 96 MN-5 × 5 576 96 True h-swish 1

72 × 96 MN-5 × 5 576 96 True h-swish 1
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The improved model uses depthwise separable convolution to reduce the number of parameters and
FLOPs values. The reverse residual structure is used to improve the efficiency of gradient cross-layer
propagation. Finally, the SE attention mechanism is used to improve the overall accuracy of the algorithm.

2.2.2 Loss Function Improvement
The YOLOv5 loss function includes confidence loss, classification loss, and target box and prediction

box position loss. The total loss function is the combination of three losses expressed by:

Loss ¼ lobj þ lcls þ lbox (1)

Figure 5: Schematic diagram of the depth-separable convolution

Figure 6: SE module structure diagram

CSSE, 2023, vol.46, no.1 967



and the confidence loss function is as follows:

lobj ¼
Xs2
i¼0

XB
j¼0

Iobjij Ĉi log Cið Þ þ 1� Ĉi

� �
log 1� Ĉi

� �� �

� knoobj
Xs2
i¼0

XB
j¼0

Inoobjij Ĉi log Cið Þ þ 1� Ĉi

� �
log 1� Ĉi

� �� � (2)

where s2 represents the number of cells, B represents the number of predicted bounding boxes, Iobjij represents
the object in the i-th cell and j-th bounding box, knoobj represents a constant parameter, Ci and Ĉi represent the
label and prediction of confidence of the bounding box predictor, respectively.

When calculating the classification loss for training, each label is exposed to the binary cross-entropy
loss, which eliminates the use of the softmax function and reduces the computational complexity. The
classification loss function is calculated as follows:

lcls ¼
XS2
i¼0

labjij

X
c2classes

P̂iðcÞ log PiðcÞð Þ þ 1� P̂iðcÞ
� �

log 1� PiðcÞð Þ� �
(3)

where Pi and P̂ represent the probability values of the predicted and actual targets, respectively.

The GIoU_Loss function is employed in YOLOv5s to calculate the loss of the target box and prediction
box positions [36]. The calculation is as follows:

lbox ¼ LGIoU ¼ 1� IoU � jC � ðA [ BÞj
jCj

� �
(4)

where IoU represents the ratio of the intersection and union of the predicted bounding box and the labeled
bounding box, A represents the area of the actual box, B represents the area of the predicted box, and C
represents the area of the smallest external rectangle.

GIoU_Loss serves as the boundary box regression loss function in YOLOv5s. The loss function in
IoU_Loss is not distinguishable when the prediction box and the target box do not intertwine—that is,
when IoU = 0—thus making IoU_Loss impossible to optimize in the scenario in which the two boxes do
not intersect. This problem is resolved by implementing the cross-scale measurement approach in
GIoU_Loss. Additionally, IoU_Loss is unable to discriminate between prediction boxes at the juncture
where they meet when they are the same size and have the same IoU. However, because the various
kinds of prediction boxes and target boxes are identical, GIoU_Loss cannot handle the situation of the
prediction box being inside the target box and both box sizes being the same.

Therefore, this paper will use CIoU_Loss as the regression loss function of the target detection task [37].
The formula is as follows:

LCloU ¼ 1� IoU þ q2 b; bgtð Þ
c2

þ av (5)

where b, bgt respectively represents the center points of the prediction box and the target box, q is the
euclidean distance, c represents the diagonal distance between the minimum closure region of
the prediction box and the target box, a represents the weight function, v represents the mixing degree of
the aspect ratio between the anchor and target boxes. The calculation is shown in Eqs. (6)–(7).
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a ¼ v

ð1� IoUÞ þ v
(6)

v ¼ 4

p2
arctan

xgt

hgt
� arctan

x
h

� �2

(7)

In contrast to GIoU_Loss, CIoU_Loss considers the distance between the center point, the aspect ratio of
the bounding box, and the scale information of the overlap region between the prediction box and the target
box. To increase the bounding box regression’s stability and convergence speed, CIoU_Loss is used as the
loss function.

2.3 Evaluating Indicator

This article assesses the effectiveness of the improved experimental model using precision, recall,
mAP@0.5, mAP@0.5:0.95, average detection processing time, parameter amount, FLOPs, and model
size. The precision is calculated as the ratio of accurately guessed positive samples to specimens that
were predicted to be positive samples as follows:

Precision ¼ TP

TP þ FP
(8)

and the recall rate is determined by taking the proportion of all correctly predicted targets and dividing it by
the number of targets as follows:

Recall ¼ TP

TP þ FN
(9)

where TP denotes the number of correctly identified defective samples, FP denotes the number of incorrectly
identified qualified samples, and FN denotes the number of incorrectly identified defective samples.

The equations for mAP@0.5 and mAP@0.5:0.95 are shown in Eqs. (10)–(11).

AP ¼
Z 1

0
PðRÞdR (10)

mAP ¼ 1

N

XN
i¼1

APi (11)

mAP@0.5 is the mean AP for all categories when IoU is set to 0.5 and mAP@0.5:0.95 is the mean AP at
distinct IoU threshold values, with IoU values ranging from 0.5 to 0.95 and the number of iterations set
to 0.05.

The average detection processing time includes system convergence speed and NMS processing time.
The model size is set to the model size that was saved following the prior model training.

3 Experiments

3.1 DataSet

3.1.1 Acquisition Equipment Construction
In this experiment, a high-pixel camera is needed to obtain the surface details and the small defects of the

electronic water pump shell. Thus, an area array industrial camera with a 5-megapixel CMOS image sensor is
used. To collect clear images, the camera resolution is set to 2K. The platform for acquiring faulty features for
bespoke datasets and the real-time detection test is shown in Fig. 7. The device includes an adjustable bracket
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for adjusting the camera and the upper light source for close-up photography of the electronic water pump
shell. The upper and lower light sources are also important components for obtaining clear images of the
defect surface area. The brightness of the light source can be adjusted according to the environmental
conditions of the required exposure.

3.1.2 Image Capture and Processing
The dataset used in this experiment is from SUZHOU DITIAN ROBOT Co., Ltd. The electronic water

pump shell is mainly produced by mold injection molding, which includes two kinds of surface defects: burrs
and scratches. A total of 1423 images containing defects were collected. To create a larger dataset, each
defect was enhanced using image enhancement techniques, such as brightness enhancement, horizontal
flipping, and rotation, as shown in Fig. 8. The dataset was expanded to more than 5000 images for the
training of the network model used in this paper. The training set: validation set: test set ratio is set to 7:2:1.

We manually mark the custom dataset before training the model with the machine learning annotation
tool. Make Sense software is employed to coordinate defect area locations and to identify defect types before
exporting the .txt file that includes the training model. Fig. 9 depicts several tagging instances using Make
Sense.

3.2 Experimental Configuration and Settings

The construction, training, and testing of the experimental model in this paper are completed under the
deep learning Pytorch framework using the Windows10 operating system. The specific experimental
environment is shown in Table 2.

This experiment employs preheating training to preserve the deep stability of the model and to prevent
model oscillation caused by the overly high initial learning rate during model training. The learning rate
increases from 0 to the predetermined value of 0.01 during the preheating training phase. Following the
warm-up stage [38], the learning rate is updated using the cosine annealing technique [39]. Fig. 10

Figure 7: Image acquisition experimental platform
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depicts the particular variations in learning rate. To update and improve the network model’s weights, the
stochastic gradient descent technique is utilized during model training. The specific parameters of the
experimental training are set as follows: the image size is 640 × 640, the batch size is 32, the learning
rate is 0.01, the momentum parameter is 0.937, the weight attenuation coefficient is 0.0005, and the
maximum number of iterations is 200.

Figure 8: Image enhancement process diagram

Figure 9: Make Sense software tag example
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Table 2: The experimental environment configuration

Configuration Parameter

Operating system Windows10

CPU 12th Gen Intel(R) Core(TM) i7-12700KF 3.60 GHz

GPU NVIDIA GeForce RTX 3080Ti

Python version 3.8

Accelerated environment CUDA 11.3, CUDNN 8200

Figure 10: The learning rate change chart

3.3 Experimental Analysis

3.3.1 Experimental Analysis in Electronic Water Pump Shell Dataset
The effect of network structure changes on network performance was verified by conducting ablation

experiments. In this paper, the model is contrasted with the initial results of YOLOv5s and YOLOv7_tiny,
and the backbone model of YOLOv5s is improved in models that include YOLOv5s_CBAM,
YOLOv5s_SE, and YOLOv5s_MobileNetV2. The results are shown in Fig. 11 and Table 3.

Fig. 11 shows the performance of each network structure we tested on the electronic water pump shell dataset,
and the specific results are shown in Table 3. The results show that the training accuracy of the upgraded model is
enhanced and that the average detection processing time is somewhat longer when the attention mechanism
module (i.e., CBAM, SE) is added to the YOLOv5s backbone network. The FLOPs and model parameters are
quite similar to those of YOLOv5s. The calculating cost is decreased and the processing speed is increased
once the YOLOv5s backbone network is replaced with the MobileNetV2 module. When compared to
YOLOv5s, the average detection processing time is 6.8 ms, the FLOPs and model parameters are lowered by
85.98% and 88.29%, respectively, and the model accuracy is somewhat improved. The model used in this
paper adds the attention mechanism SE module to the MobileNet module to replace the YOLOv5s backbone
network and uses CIoU_Loss instead of GIoU_Loss. The average detection processing time is not as fast as
that of the YOLOv5s_MobileNetV2 model but reaches 7 ms. Compared with YOLOv5s, the FLOPs and the
total number of model parameters in this study decreased by 61.59% and 49.83%, respectively, and the model
accuracy increased by 1.74%. Compared with YOLOv7_tiny, the total number of FLOPs and model
parameters decrease by 52.27% and 41.07%, respectively, and the model accuracy increases by 1.01%.
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After training the model used in this paper and the YOLOv5s model, the optimal weight file is selected
and the performance comparison is conducted using the test dataset of the electronic pump shell, as shown in
Fig. 12. The left figure is the test result of YOLOv5s, and the right figure is the test result of the model used in
this paper. As shown in Figs. 12a and 12b, the detection accuracy of the proposed model is higher than that of
YOLOv5s in the detection of the original image and the top image. As shown in Figs. 12c and 12d, the

Figure 11: The comparison of the results of each model

Table 3: The results of different models

Model Precision mAP(0.5) Params FLOPs(G) Speed_GPU(ms) Weight(M)

YOLOv5s 96.52% 95.49% 7066239 16.4 7.5 13.7

YOLOv7_tiny 97.25% 95.27% 6016735 13.2 7.3 11.7

YOLOv5s_CBAM 96.84% 94.58% 7320517 17.1 7.9 13.8

YOLOv5s_SE 98.06% 94.45% 7371903 16.7 7.7 14.2

YOLOv5s_MobileNetV2 96.93% 95.10% 827605 2.3 6.8 1.71

Ours 98.26% 98.89% 3545453 6.3 7 7.01
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detection accuracy of the model are greater than that of YOLOv5 s under the interference of brightness and
blur. The results show that the proposed model is superior to the YOLOv5s model.

Figure 12: The comparison of multi-angle experimental results
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3.3.2 Experimental Analysis in PASCAL VOC2007 Dataset
To further verify the superiority and applicability of the model used in this paper, some PASCAL

VOC2007 datasets that include 15 target categories are used to verify the model.

The model results using PASCAL VOC2007 datasets are compared with those using YOLOv5s. The
results are shown in Fig. 13 and Table 4. Compared with the YOLOv5s model, the training accuracy and
detection accuracies are 84.16% and 80.78%, respectively, which represent increases of 4.37% and
2.19%, respectively. In addition, the model is smaller than the YOLOv5s model in terms of the number
of parameters, FLOPs, and model size. The comparison of the consequences of the detection between the
two models is shown in Fig. 14. The detection results for the suggested model are shown on the right,
while the detection results for YOLOv5s are shown on the left. The results show that the model’s
performance is nearly identical to that of YOLOv5s in real-life situations. However, the model
outperforms YOLOv5s for tiny objects that require dense detection.

Figure 13: The comparison of experimental results in some PASCAL VOC2007 datasets
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The outcomes of the single-class analysis between the model proposed in this paper and the YOLOv5s
model on a segment of the PASCALVOC 2007 test set are displayed in Table 5. The findings demonstrate
that in 11 of the 15 categories, the model’s single-class precision values are greater than those of the
YOLOv5s model. As a result, the method’s detection accuracy is higher than that of YOLOv5s. In multi-
category target identification tasks, the model still outperforms YOLOv5s, thus demonstrating the
adaptability of the proposed strategy.

Table 4: The comparison with YOLOv5s experimental results

Model Precision mAP(0.5) mAP(0.5:0.95) Params FLOPs(G) Weight(M)

YOLOv5s 79.79% 78.59% 51.94% 7066239 16.4 13.8

Ours 84.16% 80.78% 55.49% 3593999 6.5 7.09

Figure 14: The comparison of detection results in some PASCAL VOC2007 datasets
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4 Conclusion

In this paper, an improved lightweight network model based on YOLOv5s is proposed to detect
electronic water pump shells in real-time. The MobileNetV3 network is used to replace the original
YOLOv5s backbone network in extracting features from the image, which effectively reduces the number
of parameters and calculations. CIoU_Loss is used in the bounding box loss function of the model to
improve its accuracy. An image acquisition platform was built to collect images more quickly and
effectively, and a dedicated electronic water pump shell dataset was created and verified on it. The results
show that the detection accuracy and mAP (0.5) value of the electronic water pump shell reaches 98.26%
and 98.89%, respectively, and the detection speed reaches 7 ms. The model has higher detection accuracy
than YOLOv5s. It still has good performance in small targets and the presence of other types of
interference. In addition, the model is used to verify its versatility on the PASCAL VOC2007 dataset, and
it shows good detection performance for things observed in daily life. The model provides an effective
method for the automatic real-time detection of surface defects in electronic water pump shells and thus
completes the standardized intelligent automatic inspection of the product, reduces manual involvement,
and greatly improves the automation level of the manufacturer.

In future work, we will strive to improve the model’s accuracy and speed by incorporating attention
methods such as efficient channel attention and convolutional block attention modules.
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Table 5: The comparison with YOLOv5s experimental results

Category YOLOv5s(%) Ours(%)

Aeroplane 84.7 84.2

Bird 80.6 91

Boat 70.8 86.2

Bus 80.4 74.4

Car 82.4 89.7

Cat 85.2 90

Chair 73.9 75.2

Cow 84.4 85.9

Dog 80.7 82.1

Horse 87.5 88

Motorbike 83.2 83.9

Person 85.9 86.3

Sofa 70.6 80.9

Train 86.9 86.6

Tvmonitor 80.3 78.7
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