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Abstract: Brain neoplasms are recognized with a biopsy, which is not commonly
done before decisive brain surgery. By using Convolutional Neural Networks
(CNNs) and textural features, the process of diagnosing brain tumors by radiolo-
gists would be a noninvasive procedure. This paper proposes a features fusion
model that can distinguish between no tumor and brain tumor types via a novel
deep learning structure. The proposed model extracts Gray Level Co-occurrence
Matrix (GLCM) textural features from MRI brain tumor images. Moreover, a
deep neural network (DNN) model has been proposed to select the most salient
features from the GLCM. Moreover, it manipulates the extraction of the additional
high levels of salient features from a proposed CNN model. Finally, a fusion pro-
cess has been utilized between these two types of features to form the input layer
of additional proposed DNN model which is responsible for the recognition pro-
cess. Two common datasets have been applied and tested, Br35H and FigShare
datasets. The first dataset contains binary labels, while the second one splits the
brain tumor into four classes; glioma, meningioma, pituitary, and no cancer.
Moreover, several performance metrics have been evaluated from both datasets,
including, accuracy, sensitivity, specificity, F-score, and training time. Experimen-
tal results show that the proposed methodology has achieved superior perfor-
mance compared with the current state of art studies. The proposed system has
achieved about 98.22% accuracy value in the case of the Br35H dataset however,
an accuracy of 98.01% has been achieved in the case of the FigShare dataset.

Keywords: Brain tumor; convolutional neural network; gray level co-occurrence
matrix; noninvasive; FigShare dataset; Br35H dataset

1 Introduction

Brain neoplasms, also known as intracranial tumors, are more commonly affected in all human age
classes, older adults, toddlers, and infants. Carcinogenic factors, such as ionizing radiation and the family
history of the disease, are two of the most common brain cancer causes [1]. The major problem of brain
cancer is the lack of control growth of normal cells, which causes an esteemed uncontrolled growth of
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tumors, disrupting normal tissues and causing shear stress on cells, eventually killing them. Early diagnosis is
critical for reducing long-term morbidity and mortality rates by reducing life-threatening cancer disease
complications and saving appropriate treatment on time [1]. Accordingly, the need for an automatic,
quick, and accurate brain tumor recognition algorithm considers essential. There are several methods of
tumor imagining scans, such as magnetic resonance imaging (MRI) [2], computed tomography (CT) [3],
positron emission tomography (PET) [4], single photon emission computed tomography (SPECT) scans
[5], and cerebral angiography [6].

The most common technique is MRI, which has the following advantages: nonionizing, reducing the risk
of harm to healthy tissues, generating 3-D images efficiently, and precise localization of the brain tumor. The
main aim of this study is to identify and recognize brain tumors using a deep learning structure and exclude
them from the other tissues such as grey and white brain matter, and cerebrospinal fluid (CSF).

The major contributions of this study are:

i) Extracting low levels of salient features from the GLCM data frame, including energy, correlation,
contrast, homogeneity, and dissimilarity, then selecting the best of them using a proposed DNNmodel.

ii) Extracting a high level of salient features from a proposed CNN deep structure with a robust
layering structure and fine-tuned hyperparameters.

iii) Concatenating the two types of extracted features to form a homogenous features data frame.
iv) Proposing an additional DNN model that fed with the homogenous features matrix as an input

layer to additional deep layers which directly increases the recognition accuracy in both single
and multi-classes of datasets.

The rest of this manuscript is summarized as follows: Section 2 introduces the recent related works,
Section 3 presents the principal methodology of the proposed fused algorithm, Section 4 shows the
experimental results of this study and its discussions, and finally, the conclusions and the expected future works.

2 Related Works

Vankdothu et al. proposed a model that detects and classifies brain tumor grades, including glioma,
meningioma, pituitary tumor, and no tumor. They combined a CNN with a Long Short-Term Memory
(STM) to extract the main brain features. Finally, the images have been classified and scored 89.39%
accuracy in CNN, 90.02% in recurrent neural network (RNN), and 92% in the CNN-LSTM method [7].

Srikanth et al. introduced computer-assisted technology to detect and diagnose brain tumor disease
automatically. Instead of using traditional machine learning algorithms (ML), they proposed a deep neural
network based on the Visual Geometry Group (VGG-16) to improve the multi-classification accuracy
value. Extensive experiments demonstrate that the updated VGG-16 model outperforms the current
studies in terms of performance metrics [8].

Deshpande et al. proposed a fused algorithm to recognize a brain tumor based on a deep learning
structure. Their framework has been merged with a Discrete Cosine Transform (DCT), CNN, and
ResNet50 into one model to improve the recognition accuracy. The experimental results reveal that the
proposed model scores the best in evaluating metrics [9].

Abirami et al. proposed a model called Border Collie Firefly Algorithm-based Generative Adversarial
Network (BCFA-based GAN), which classifies the severity level of brain tumors effectively. They
preprocessed the brain images using a Laplacian filter and then segmented them by a deep joint model.
Furthermore, the main features have been extracted, including statistical and Texton and Karhunen-Loeve
Transform-based features using slave nodes. Finally, the extracted features were classified using BCFA-
based GAN and scored 97.515% of classification accuracy [10].
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An adaptive multisequence fusing neural network (AMF-Net) has been implemented by Huang et al. to
precisely diagnose brain tumor grades. This model can merge the different MRI characteristics of sequences
with adaptive weights. The experimental results score the accuracy value ranged between 92.1% and 98.1% [11].

Irmak presented the three different CNN models to improve the detection of a brain tumor automatically
and accurately. The second CNN splits the database into five brain tumor categories: normal, glioma,
meningioma, pituitary, and metastatic. Moreover, the third CNN divides brain tumors into three grades:
Grade II, Grade III, and Grade IV scoring 92.66% and 98.14% classification accuracy, respectively, when
the hyperparameters are tuned using a grid search optimization algorithm. Finally, to confirm the
robustness of the proposed model, its experimental results have been compared with the pre-trained
models such as ResNet-50, Alex Net, Inceptionv3, VGG-16, and GoogleNet and scored the best
performance metrics values [12].

Chanu et al. differentiate between benign and malignant tumors using the computer-aided algorithm
based on a 2D convolutional neural network model. The proposed model can classify MRI images as
normal and tumor classes with 97% classification accuracy [13].

In [14], Zeineldin et al. presented a brain tumor segmentation model named DeepSeg, which divides
each MRI image into two corresponding core parts based on the relation between encoding and decoding
algorithms. A convolutional neural network (CNN) is used as an encoder to extract spatial information.
Then, the resulting semantic map is used as the decoder part for getting a high-resolution probability map
based on modified U-Net architecture. Different CNN models have also been utilized, such as residual
neural networks (ResNet), dense convolutional networks (DenseNet), and NASNet.

In [15], the brain tumor features have been extracted from MR images using the pre-trained models,
Dense+Net-41, and ResNet-50. Afterward, the extracted features have been localized and classified using
the proposed model, called a custom Mask Region-based Convolution neural network (Mask RCNN).
This work achieved the best performance compared to the recent state-of-the-art studies.

3 Framework for Brain Tumor Recognition

Fig. 1 shows the main components of the proposed brain tumor recognition algorithm. Fig. 2 refers to the
block diagram of the proposed methodology that starts by loading and extracting images and their labels from
different datasets and then applying preprocessing and augmentation techniques. After that, splitting the
dataset to train, test, and validate categories.

3.1 Datasets

The presented study has been built based on two standard MRI datasets, a multi-class dataset and a
binary one. The first dataset captures from Nanfang Hospital and General Hospital, Tianjin 107 Medical
University, China, between 2005 and 2007. It was published online in 2015 [16], and the most recent
108 revisions were completed in 2017. This dataset contains three different cases of brain tumors,
including (meningioma, glioma, and pituitary) and no tumors. All MRI images have been acquired from
three different views: axial (994 images), coronal (1045 images), and sagittal (1025 images) views [17].
On the other side, the second dataset can distinguish between equally healthy and tumor cases to form a
3000 MRI images dataset [18]. Fig. 3 refers to the sample of the different applied datasets, and the
detailed datasets have been tabulated in Table 1.
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3.2 Preprocessing Stage

Firstly, the image size has been decreased to 140 × 140 × 1 to reduce dimensionality which has a great
impact on the training time. Moreover, splitting the image datasets into the train, test, and validation sets with
the percentage of (70% for training, 15% for testing, and 15% for the validation process). Accordingly,
shuffling and normalizing datasets have been performed according to Eq. (1) [19],
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Figure 1: Introduces the proposed brain tumor recognition methodology
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Â ¼ A � min value of A

max value of A � min value of A

� �
� R � Mð Þ þM (1)

where Â is Min-Max Normalized data, R and M are the predefined boundaries, and the range of the original
data is A.

Finally, some geometric augmentation processes on split images, including right/left mirror, flipping
them around the x-axis. Fig. 4 refers to the main used augmentation process.
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Figure 2: Block diagram of the proposed deep structure

Figure 3: Sample of both Datasets (a) Multi-class MRI and (b) Binary MRI
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3.3 Feature Representation Methods

This section describes the proposed feature extraction criteria for the process of brain tumor recognition.
The textural features selected for the first model and Gray Level Co-occurrence Matrix (GLCM), are spatial
features extracted from the co-occurrence matrix [20]. Four main texture features have been selected,
including contrast, correlation, energy, and homogeneity [21]. The contrast is also called the sum of
squares variance, which displays the difference between co-occurrence pairs of pixels over the entire data
image and computes by Eq. (2) [22],

Contrast ¼
X
i

X
j

i� jð Þ2 p i; jð Þ (2)

where p (i, j) refers to the probability of pair of image pixels having gray level values i and j appearing at a
given space and direction.

The correlation computes the gray-level linear dependence between pixels at given spaces from each
other, which formulates by Eq. (3), where mi and mj are the mean of every row and column, and si and
sj are the standard deviations of every row and column, respectively.

Correlation ¼
X
i

X
j

p i; jð Þ i� lið Þ j� lj
� �� �

rirj
(3)

Energy, known as angular second moment (ASM), refers to the degree of homogeneity of the gray level
distribution and the thickness of texture, which measures the greyscale patterns, thus obtaining a significant

Table 1: The detailed datasets description

Dataset type Tumor category Number of slices

Multi-class (Fig Share) Tumor Meningioma 1645

Glioma 1621

Pituitary 1757

No tumor 2000

Binary label (Br35H) Tumor 1500

No tumor 1500

Figure 4: (a) Original image, (b) right/left mirror, and (c) up/down flipping
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value of the energy feature needs a more stable regulation. Moreover, the energy is the quadratic sum of
GLCM elements and measures the concentration of the gray level intensity according to Eq. (4) [23],

ASM ¼
X
i

X
j

P i; jð Þ2 (4)

Homogeneity refers to the structural similarity of an image, which computes by Eq. (5) [24],

Homogeneity ¼
X
i

X
j

p i; jð Þ
1þ i� jj j (5)

Finally, after the GLCM features have been extracted, the data frames now have been formulated and
used as input for the proposed deep structure to select the best of them. Fig. 5 introduces a sample of the
GLCM Data frame.

The second model was created based on the proposed CNN architecture to extract the main features from
the enhanced MRI brain image datasets. It contains three convolutional layers that use the convolution kernel
to extract the best feature information from the input matrix with the ReLU activation function defined in Eq.
(6) [25]. Moreover, two max-pooling layers with size (2 × 2) downsampling the input matrix by replacing the
pooling area with its maximum value to speed up the training efficiency while retaining meaningful
information, which defines by Eq. (7) [26],

f ðxÞReLU ¼ max 0; xð Þ (6)

pmaxu;v ¼ max
i;j2yu;vai;j (7)

The dropout layer is also added to reduce overfitting, which may occur during the training process, and
flattens the neurons at the end; Fig. 6 shows the proposed CNN structure. Finally, after building both feature
extraction models, the concatenation fusion was applied between them, which formulates in Eq. (8) [27]. The
fully connected layer has been added and followed by a SoftMax layer with two neurons output in the case of
a binary dataset and repeated with four neurons output in a multi-class dataset, computed by Eq. (9) [28].

RF ¼ max 0;
Xn

i
wili þ

Xm

i
wjhj þ b

� 	
(8)

where Ph1_F = l1; l2; l3; l4; . . . ; li; . . . ; lnf g, and Ph2_F = h1; h2; h3; h4; . . . ; hj; . . . ; hm

 �

represent
model one, model two features, and b is the model bias.

smðzÞi ¼
eziPk
j¼1 e

zj
for i ¼ 1; . . . ; k and z ¼ z1; . . . ; zkð Þ 2 Rk (9)

where zi refers to the element number, z is the input vector, and the resulting values have normalized by
dividing the sum of all the exponentials. Algorithm 1 describes the proposed brain tumor recognition,
Fig. 7 describes the detailed layer of the proposed model, and Fig. 8 shows its main architecture. Both

contrast homogeneity energy correlation label

0 204.125636 0.313721 0.096960 0.894945 0.0

1 335.220717 0.277447 0.093683 0.912148 0.0

2 301.578832 0.318182 0.104449 0.887562 0.0

3 224.192882 0.331177 0.103919 0.914002 0.0

4 576.100074 0.307271 0.112997 0.888428 0.0

Figure 5: Sample of GLCM data frame
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Figs. 7, and 8 represent the main deep layering structure in the case of using multi-class datasets of output =
4 classes. However, in the case of using any binary dataset with output = 2 classes, the output layer will be
altered to be 2 outputs only.

Algorithm 1: Proposed MRI brain tumor recognition

Input: MRI brain tumors images.

Output: Tumor type identified Ti.

Start procedure

Import Model libraries

Read Brain tumors image datasets bt.

Preprocess images (resizing, augmenting, and normalizing)

Extract the main features from the two models

Feature Representation Models:

For each brain tumor image bt 2 D

Extract GLCM features from bt images (contrast, correlation,

energy, homogeneity)

Create Dataframe (Df) for textural features and their labels

Shuffle the values in the data frame

end

Training Phase 1:

Split Data frame (Df) to 70% for training, 15% for testing, and 15% for validation.

� Training Set: train_x.

� Label of Training Data: train_y, M =Model 1.

Train Network layers for Model 1.

Summary of model 1.

Training Phase 2:

Split images (I) to 70% for training, 15% for testing, and 15% for validation.

� Training Set: train_x.

� Label of Training Data: train_y, M =Model 2.

Train Network layers for Model 2.

Summary of model 2.

fusion between both models:

Train the Fused network layers

Summary of the Fused model

Compile Fused Model

Where {loss function = Xi/Optimizer = yi/Metrics = Acc.}

Fit Fused Model

(Continued)
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Where {epochs = 30/Batch size = 64/Verbose = 2}

Evaluate the Fused model

Plot Accuracy (Acc.)/Loss curves

Plot Confusion Matrix

Calculate performance metrics (precision, recall, and f1-score)

Store the Fused Model

End procedure
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Figure 6: The proposed CNN architecture

Algorithm 1 (continued)

4 Results and Discussions

For evaluating the proposed model results, there are several parameters that must be extracted from the
confusion matrix first, including true positive (TP), true negative (TN), false positive (FP), and false negative
(FN). Figs. 9 and 10 show the resulting confusion matrix from both multi-class and binary datasets. Eight
performance metrics have been computed from these parameters: accuracy, sensitivity, specificity,
precision, false discovery rate, F1-score, training time, and recall. The accuracy of the fused model
computed from Eq. (10) [29],

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
� 100 (10)

Sensitivity or a true positive rate (TPR), which can measure the correctly recognized sets from a dataset
and computes from Eq. (11) [30],

TPR ¼ TP

TP þ FN
� 100 (11)
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The specificity is, also called True Negative Rate (TNR), can measure the not correctly learned samples
from a dataset, which computed from Eq. (12) [30],

TNR ¼ TN

TN þ Fp
� 100 (12)

Figure 7: The detailed layers of the proposed multi-class model
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Figure 8: The main architecture of the proposed four classes recognition model

Figure 9: The confusion matrix of the proposed model for a multi-class dataset
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The number of accurately predicted data that turned out to be positive is precision, which calculates from
Eq. (13) [31],

PPV ¼ TP

TP þ FP
� 100 (13)

F1-score refers to the weighted average of precision and recall computed from Eq. (14) [32],

F1 � score ¼ 2TP

2TP þ FP þ FN
� 100 (14)

The False Discovery Rate (FDR) is a metric that estimates the irrelevant alerts, as calculated by Eq. (15)
and the False Negative Rate (FNR) obtained from Eq. (16) [33],

FDR ¼ FP

FP þ TP
� 100 (15)

FNR ¼ FN

FN þ TP
� 100 (16)

where TP is a true positive value, TN is a true negative value, FP is a false positive value, and FN is the false
negative value.

The dataset has been split first to train, test, and validate with a 70%:15%:15% ratio to evaluate the
mentioned performance metrics. Then, compiling and fitting the proposed model according to the number
of the selected tuned hyperparameters, including batch normalization, reduces the value of the internal
shift of the activation layers with size 64. The parameters update step size or learning rate with a value of
0.0005, the sparse categorical cross-entropy for the loss function [33], and the momentum factor value
sets to 0.5. Moreover, to consume less memory size and computational time, the Adam optimizer selects
for training the proposed fused mode. The main hyper-parameters applied in the proposed models in this
manuscript have been tabulated in Table 2. The proposed models have been programmed and tested on a

Figure 10: The confusion matrix of the proposed model for a binary dataset
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PC having these specifications: Microsoft Windows 10 operating system, 7-core processor @ 4.0 GHz, 12
GB of RAM, NVidia Tesla 16 GB GPU.

4.1 Evaluation of Binary Dataset (Br35H)

According to the appropriate tuning parameters listed in Table 2, the proposed fusion model has been
assessed using the binary dataset, which contains two classes: brain tumor and no tumor. The evaluation
metrics of the proposed model from the binary dataset have been extracted from its confusion matrix
parameters, including a true positive value, a true negative value with the same value of 221, a false
positive value, and a false negative value with an equal value of 4. Accordingly, the mentioned equations
of the performance metrics have been computed using these parameters and listed in Table 3. In addition,
Figs. 11 and 12 show the loss and accuracy curves of the proposed model and the precision-recall curves,
respectively, which scored 98.22% of accuracy in a total training time of nearly 30 s.

Table 2: The selected tuned hyper-parameters

Parameters Value

Image size 140 × 140

Batch size 64

Learning rate 0.0005

Epochs 30

Optimizer Adam

Momentum factor 0.5

Loss function Sparse categorical

Table 3: The performance metrics of the binary dataset

Model Accuracy (%) Sensitivity (%) F-score (%) Specificity (%) FNR (%) Time (s)

Br35H 98.22 98.2 98 98 1.77 30

Figure 11: The accuracy and loss curves of the binary dataset with fusion
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4.2 Evaluation of Multi-Class Dataset (Fig Share)

Moreover, the proposed methodology has been applied and tested using the multi-class dataset (Fig Share)
with the same optimum tuning parameters listed in Table 2. The main parameters of the multi-class model have
been extracted from its confusion matrix in Fig. 9, which reached 98.01% accuracy in a training time of nearly
50 s, and then tabulated with the other performance metrics in Table 4. Furthermore, Table 5 shows the detailed
accuracy of each class, including Meningioma, Glioma, Pituitary, and no tumor, and Figs. 13 and 14 show the
accuracy and loss curves and precision-recall curves, respectively.

Figure 12: The precision-recall curves of the binary dataset

Table 4: The performance metrics of the multi-class dataset

Model Accuracy (%) Sensitivity (%) F-score (%) Specificity (%) FNR (%) Time (s)

Fig Share 98.01 96.03 96 98.67 3.96 50

Table 5: The detailed accuracy for each class in the multi-class dataset

MRI label Accuracy (%)

Meningioma 89.14

Glioma 97.35

Pituitary 98.73

No tumor 97.28

Figure 13: The accuracy and loss curves of the multi-class dataset with fusion
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The proposed model results with binary and multilabel datasets had compared to the same CNN
architecture but without fusion with GLCM and scored 97.5% and 97.02% in accuracy value, respectively.
Fig. 15. shows the loss and accuracy curves of the binary and multilabel datasets of the CNN model, and
Fig. 16. shows the output detection of both datasets. Moreover, Fig. 17 shows the precision-recall curves,
and Table 6. lists the main performance results of all proposed models and the best one.

Figure 14: The precision-recall curves of the multi-class dataset

Figure 15: The accuracy and loss curves of CNN models (a) binary dataset, (b) the multi-class dataset
without fusion

CSSE, 2023, vol.46, no.2 1611



Finally, the proposed models also have been compared with recent research in [7,8,10,12], then
tabulated these results in Table 7. The proposed model results in the mentioned table scored 98.22% in
recognition accuracy value in the low training time, enhancing the brain tumor’s detection and
recognition and outperforming the current state-of-the-art studies.

Figure 16: The output detection of binary and multi-class datasets

Figure 17: The precision and recall curves of CNN models (a) binary dataset, (b) the multi-class datasets
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Table 6: The performance metrics of the proposed applied models

Model Accuracy (%) Sensitivity (%) F-score (%) Specificity (%) FNR (%) Time (s)

Br35H (Fused) 98.22 98.2 98 98 1.77 30

Fig Share (Fused) 98.01 96.03 96 98.67 3.96 50

Br35H (CNN) 97.55 97.55 97 98 2.44 22

FigShare (CNN) 97.02 94.04 94.04 98.01 5.95 47

Table 7: Comparative study between the proposed model and recent research

Reference
no

Dataset Methodology Success
accuracy

Challenges

Vankdothu
et al. [7]

FigShare
(multi-
class)

They have combined the CNN model with
Long Short-Term Memory (STM) to extract
the main MRI Brain tumor images.

92% Low accuracy

Srikanth
et al. [8]

FigShare
(multi-
class)

They are upgraded DNN based on
VGG16 to improve the classification
accuracy of multi-class MRI images.

98% Only depend on the old
pre-trained model.

Irmak [12] FigShare
(multi-
class)

The proposed CNN model has applied to
multi-class brain tumor images then they
used a grid search to select the best
hyperparameters.

92.66% Low accuracy value
with complicated
realization.

Deshpande
et al. [9]

Binary
dataset

They fuse the discrete cosine transform
model with the pre-trained model ResNet
50 to distinguish MRI brain tumor images.

98.1% Based on available
models.

Abirami
et al. [10]

FigShare
(multi-
class)

They preprocess MRI brain tumor images
using a Laplacian filter, then segment and
extract features using Texton and Karhunen-
Loeve Transform-based features. Finally,
these features have been fed to BCFA-based
GAN for severity level classification.

95.51% Complicated realization
with large
computational time.

Chanu et al.
[13]

Binary
dataset

They have proposed a computer-aided
model with a 2D convolutional neural
network to classify the brain MRI images
into two classes

97% Only verify one binary
dataset.

Proposed
model

Binary
FigShare

We extracted GLCM features from two MRI
brain tumor image datasets and then, fused
them with other features from the proposed
CNN model features. Finally, we detected
and recognized the different tumor types
based on a proposed deep learning model.

98.22%
98.01%

Large computational
model.
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5 Conclusion

This paper proposes a CNN and GLCM feature fusion recognition technique to detect and recognize
MRI brain tumor images into four classes. MRI images have been preprocessed, segmented, enhanced,
and tested using a robust DNN architecture. According to the appropriate evaluation metrics, a
comprehensive study has been manipulated between the proposed methodology and the current state-of-
the-art to ensure the robustness of the proposed model. Experimental recognition results have proved that
the performance of the proposed fusion model outperforms any of the recent techniques in state of art of
accuracy, sensitivity, specificity, FNR, recall, and training time. The proposed fusion model scores about
98.22% and 98.01% on both binary and multi-class dataset’s accuracy values respectively. Furthermore, it
scored about 98.2%, 98%, and 1.77% in sensitivity, specificity, and FNR, respectively, within 30 s only.
Future work of interest will be targeting the fusion between other feature extractors in state of art of deep
learning.
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