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Abstract: Remote sensing image (RSI) classifier roles a vital play in earth obser-
vation technology utilizing Remote sensing (RS) data are extremely exploited
from both military and civil fields. More recently, as novel DL approaches devel-
op, techniques for RSI classifiers with DL have attained important breakthroughs,
providing a new opportunity for the research and development of RSI classifiers.
This study introduces an Improved Slime Mould Optimization with a graph con-
volutional network for the hyperspectral remote sensing image classification
(ISMOGCN-HRSC) model. The ISMOGCN-HRSC model majorly concentrates
on identifying and classifying distinct kinds of RSIs. In the presented
ISMOGCN-HRSC model, the synergic deep learning (SDL) model is exploited
to produce feature vectors. The GCN model is utilized for image classification
purposes to identify the proper class labels of the RSIs. The ISMO algorithm is
used to enhance the classification efficiency of the GCN method, which is derived
by integrating chaotic concepts into the SMO algorithm. The experimental assess-
ment of the ISMOGCN-HRSC method is tested using a benchmark dataset.

Keywords: Deep learning; remote sensing images; image classification; slime
mould optimization; parameter tuning

1 Introduction

Remote sensing images (RSI) comprise a large number of applications. Remote images or data were
captured by gadgets and designed for advanced learning. Hence, we can understand different aspects of
the relevant areas [1]. Remote sensing scene classification (RSSC) could offer a sequence of semantic
classes that could help classify land use and land cover. RSIs with higher spatial resolutions were the
conventional category for RCCS. Therefore, RS is frequently used in target detection, urban mapping,
natural resource management, and precision agriculture [2]. Lately, extensive attempts are being made to
develop feature representation and classifiers for the task of RSI scene classifier in a wide range of
applications [3]. Urban areas have been focused in recent times on remote sensing applications. Urban
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water and gas pollution, urban land cover classifications, urban flood, hard target detection, urban green
space detection, and many more have arisen with the development and occurrence of RS imaging [4].
The RSI datasets show colour and texture information due to their higher spatial resolution. RSIs have
many more scene classes and changes than conventional RSI and become highly difficult to identify with
conventional pixel-related approaches [5]. Deep learning (DL) allows the object-level classification and
recognition of RSI and a better understanding of the RSIs contents at the semantic levels.

In a period of huge data, DL exhibits interesting viewpoints. It undergoes unprecedented achievement in
several applications [6]. DL utilizes machine learning (ML) approaches, including unsupervised or
supervised strategies for learning hierarchical representation in deep networks. DL employs deep
structures to deal with complicated relations between the class label and the input data [7]. DL and
ensemble-related methods have been highly effective for multi-temporal and multisource RSI classifiers.
DL has shown superior performance in feature extraction in multispectral and hyperspectral images like
extraction of semantic segmentation, types of labels, recognition of objects and classes, and pixel-based
classification [8]. DL methods study features in the data; lower-level features were derived from the
spectral and texture and regarded as the bottom level. The topmost level becomes the representation of
resultant features [9]. Indeed, several methods have expressed that the efficiency of the land cover scene
classifier has significantly enhanced because of the robust features to robust feature representations
learned by diverse DL structures [10].

This study introduces an Improved Slime Mould Optimization with a graph convolutional network for
the hyperspectral remote sensing image classification (ISMOGCN-HRSC) model. In the presented
ISMOGCN-HRSC model, the synergic deep learning (SDL) model is exploited to produce feature
vectors. The GCN model is utilized for image classification purposes, enabling the identification of the
proper class labels of the RSIs. The ISMO approach was used to enhance the classification efficiency of
the GCN model, which is derived by integrating chaotic concepts into the SMO algorithm. The
experimental assessment of the ISMOGCN-HRSC approach was tested using a benchmark dataset. The
comparison study reported that the ISMOGCN-HRSC model shows promising performance over other
DL models in the literature. In short, the paper's contribution is summarized as follows.

� Develop an effective ISMOGCN-HRSC technique to classify hyperspectral remote sensing images.

� Perform feature extraction using the SDL model for hyperspectral remote sensing image
classification.

� Propose an ISMO with a GCN model for the hyperspectral remote sensing image classification
process.

� Validate the results of the ISMOGCN-HRSC technique on IPI and PAU datasets.

The rest of the paper is organized as follows. Section 2 offers the related works, and Section 3 introduces
the proposed model. Later, Section 4 provides performance validation, and Section 5 concludes the work.

2 Related Works

The authors in [11] modelled to utilize the 3D structure for extracting spectral-spatial data for framing a
deep neural network (DNN) for Hyperspectral RSI (HIS) classification. Depending on DenseNet, the 3D
closely connected convolutional network has been enhanced for learning spectral-spatial features of HSIs.
The closely connected framework could improve feature communication, supports feature reusage,
enhance data flow from the network, and induce deep network simpler for training data. The 3D-
DenseNet contains a deep structure compared to 3D-CNN; therefore, it could study very powerful
spectral-spatial features from HSIs. In [12], the authors devise an RS scene-classifier technique related to
vision transformer. Such networks that were now identified as existing methods from natural language
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processing (NLP) do not depend on the convolution layer as in conventional neural networks (CNNs).
Alternatively, it uses multi-head attention systems as the chief generating block for deriving long-range
contextual relationships among pixels from the image. During the initial step, images in the study were
classified into patches after being transformed into series by embedding and flattening.

In [13], the authors offer baseline solutions to declared complexity by advancing a general multi-modal
DL (MDL) structure. Specifically, they also examine an unusual case of multimodality learning (MML)-
cross-modality learning (CML), which occurs extensively in RSI classifier applications. The authors in
[14] devise a deep CNN method which could categorize RS test data from a dataset distinct from the
trained data. To achieve this, they initially retrained a ResNet-50 method employing EuroSAT, a large-
scale RS data set for advancing a base method. Afterwards, they compiled Ensemble learning and
Augmentation to enhance its generalizing capability. The authors in [15] formulate a novel RSSC-based
error-tolerant deep learning (RSSC-ETDL) technique for mitigating the negative influence of incorrect
labels on the RSI scene data set. In this devised RSSC-ETDL approach, learning multi-view CNNs and
rectifying error labels was otherwise directed iteratively. To cause the alternative method to work
efficiently, they frame a new adaptive multi-feature collaborative representation classifier (AMF-CRC),
which helps adaptively integrate many features of CNNs to rectify the label of indefinite samples. The
authors in [16] formulate an extensive and deep Fourier network for learning features proficiently through
pruned features derived in the frequency domains. The derived feature was pruned to recall significant
features and diminish computation.

The authors in [17] present a new deep convolutional CapsNet (DC-CapsNet) dependent upon spectral-
spatial features for improving the efficiency of CapsNet from the HSI classifier but significantly decreasing
the computation cost of this method. In detail, a convolution capsule layer dependent upon the growth of
dynamic routing utilizing 3D convolutional was utilized to reduce the count of parameters and improve
the robustness of learned spectral and spatial features. The authors in [18] examine a great HSI denoising
approach named non-local 3DCNN (NL-3DCNN), which integrates typical ML and DL approaches. NL-
3DCNN utilizes the higher spectral correlation of HSI utilizing subspace representation, and equivalent
representation coefficients can be named eigenimages. The higher spatial correlation in Eigen images can
be utilized by grouping non-local same patches that can be denoised by 3DCNN.

The authors in [19] propose a DL-based extracting feature process for a hyperspectral data classifier.
Initially, the authors exploited an SDAE for extraction of the in-depth feature of HIS data: a huge count
of unlabeled data can be pretrained for extracting the depth pixel features. The authors added arbitrary
noise to the input layer of networks for generating a de-noising AE machine and further process inputs
for recreating novel data. During the top layer, DNN has been fine-tuned by the Softmax regression
classifier. The authors in [20] examine a full CNN for the HSI classifier. The knowledge of the present
approach is that 2-D convolution layers learned the feature maps dependent upon the spectral-spatial data
of HSI data, and the FC layers of CNN carried out the HSI classifier.

3 The Proposed Model

This study has recognised a novel ISMOGCN-HRSC approach for identifying and classifying RSIs. The
SDL model is exploited in the presented ISMOGCN-HRSC approach to produce feature vectors. For image
classification purposes, the ISMO with GCN model is utilized. Fig. 1 illustrates the overall process of the
ISMOGCN-HRSC algorithm. As shown in the figure, the proposed model follows a series of operations
namely image preprocessing, SDL-based feature extraction, GCN-based RSI classification, and SMO-
based hyperparameter optimization.
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3.1 Synergic Deep Learning-Based Feature Extraction

In this work, the SDL model is exploited to produce feature vectors. Extracting feature is a procedure of
dimensionality decrease by that the primary set of raw data has decreased for other controllable groups to
process. A feature of these huge databases is a massive count of variables which need a lot of computing
resources for processing. Extracting feature is the name for approaches that choose and integrate variables
as to features, efficiently decreasing the count of managed data but still correctly and entirely describing
the novel database. The procedure of extracting features is helpful if it is required to reduce the count of
resources required to process without losing significant or relevant data. Extracting features also decreases
the count of redundant data to provide a study. Similarly, the data reduction and the machine efforts in
structure variable combination (feature) enable the DL procedure’s learning speed and generalized stages.

The presented SDL method refers to SDLn, comprises three main components: an image pair input layer
n DCNN component and a C2

n synergic network [21]. The input of the SDL method is a collection of
arbitrarily chosen images rather than individual images. Every DCNN model of network architecture
assists in learning representation independently from an image from the supervision of the true label of
the input image. Then, we explore every three elements of the SDL method.

Pair Input Layer

Unlike conventional DCNN, the suggested SDLn mechanism concurrently accepts n input images that
are arbitrarily chosen in the training set. Every image and its class labels are inputted into the DCNNmodule,
and every pair of images has respective synergic labels that use a synergic network. For unifying the image
size, we have resized all the images to 224� 224� 3 using the bi-cubic interpolation.

DCNN Component

As a result of the stronger representative ability of the prominent residual network, we employed a pre-
trained fifty-layer RNN (ResNet50) as the initialisation of every DCNN component represented as DCNN i
ði ¼ 1; 2; . . . ; nÞ. Every DCNN module is trained by an image sequence X ¼ x 1ð Þ; x 2ð Þ; . . . ; x Mð Þ� �

and a

Figure 1: Overall process of ISMOGCN-HRSC approach for RSI classification
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respective class label sequences Y ¼ y 1ð Þ; y 2ð Þ; . . . ; y Mð Þ� �
; aims at finding a parameter set h that

minimalizes the subsequent cross-entropy loss

1 hð Þ ¼ � 1

M

XM

i¼1

XK

j¼1
1 y ið Þ ¼ j
n o

log
ez

ið Þ
jPk

l¼1 e
z ið Þ
1

" #
(1)

In Eq. (1), K refers to the class number, Z ið Þ ¼ F x ið Þ; h
� �

denotes forward computing. This optimization
issue is resolved by using the mini-batch SGD approach. The attained set of parameters for DCNN i is
represented as h ið Þ, and the parameter is not shared amongst distinct DCNN modules.

Synergic Network

To supervise the training of every DCNNmodule through the synergic labels of every pair of images, we
designed a synergic network comprising an embedded layer, an FC learning, and a resultant layer. Consider a
pair of images xA; xBð Þ to be input into 2 DCNN modules (DCNN-i, DCNN-j), correspondingly. The
resultant of the final FC layer from the DCNN is determined by the deep image feature learned by
DCNN that is attained by ward computing, represented in the following

fA ¼ F xA; h
ið Þ

� �
(2)

fB ¼ F xB; h
jð Þ

� �
Next, the deep feature of an image is concatenated by fA�B and input as to synergic networks. The

anticipated outcome is the synergic labels of an image pair that can be expressed by

yS xA; xBð Þ ¼ 1 if yA ¼ yB
0 if yA 6¼ yB

�
(3)

It can be advantageous to monitor the synergic signals by utilizing the subsequent binary cross-entropy
loss and including additional sigmoid layers

1S hsð Þ ¼ yS log byS þ 1� ySð Þlog 1� bySð Þ (4)

In Eq. (4), the variable of the synergic network is represented as hS , and the forward computing of the
synergic network is indicated as byS ¼ F fA�B; hS

� �
. Fig. 2 portrays the procedure of the SDL technique.

Figure 2: Procedure of SDL
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3.2 Image Classification Using GCN Model

For image classification purposes, the GCN model is utilized. Intend to learn the relation-aware feature
depiction of nodes through the propagation of the intrinsic data of graph structure. In contrast to the CNN-
based method that operates convolution on local Euclidean structure, GCN generalizes the convolution
function to non-Euclidean information (for example, graph) [22]. Especially accomplishes spectral GCN
on the feature of neighbouring nodes and upgrades the feature representations of every node integrating
the intrinsic structure data of the graph in the learning method.

Assumed a graph G ¼ V ; Eð Þ with N node vi 2 V i ¼ 1; Nð Þ, edges vi; vj
� � 2 E and a neighbourhood

matrix A 2 RN�N that defines the correlation of N nodes, GCN aims to encode the graph G through a NN
mechanism f ¼ X ; Að Þ whereby X 2 RlVjD denotes the original feature of N nodes. A multilayer GCN
upgrades the node feature based on the subsequent layer-by-layer propagating rules:

H lþ1ð Þ ¼ r ~D
�1=2~A~D

�1=2
H lð ÞW lð Þ

� �
(5)

In Eq. (5), ~A ¼ Aþ IN denotes the neighbourhood matrix A with self-connection, IN refers to the

identity matrix, and ~Dii ¼
P

j
fAij indicates the degree matrix. W lð Þ 2 Rdl�dlþ1 shows a trained weight

matrix, and r denotes an activation function (ReLU). H lð Þ 2 RN�dl represents the feature representation of
the node; dl indicates the feature dimension, and H lþ1ð Þ 2 RN�dlþ1 shows the upgrade node feature. It
should be noted that H 0ð Þ ¼ X . Subsequently, the relation-aware feature representation of the node is
attained by the message-passing model of the multilayer GCN.

3.3 Parameter Tuning Using ISMO Algorithm

The ISMO algorithm is used to improve the classification efficiency of the GCN approach, which is
derived by integrating chaotic concepts into the SMO algorithm. SMO algorithm is a novel optimizer
inspired by the natural SM oscillation mode. SMO algorithm exploits weight as the positive and negative
feedback produced by mimicking the foraging method of SM, where oscillating, approaching food, and
wrapping food are the three dissimilar forms [23]:

Approach Food

SM relies on the smell of the air to get closer to the desired food, and it is expressed as:

x t þ 1ð Þ ¼
xb tð Þ þ vb� W � xA tð Þ � xB tð Þð Þ r < p

vc� x tð Þ r � p

8<: (6)

In Eq. (6),W denotes the weight of SMs. X tð Þ indicates the optimum global location, and x tð Þ represents
the location of every SM. vb oscillates among �a; a½ �: X tð Þ and X tð Þ are arbitrary locations. The formula of
vc and W are given in Eqs. (8)–(10).

Here p is represented in the following:

p ¼ tanh Fit ið Þ � BFj j (7)

In Eq. (7), Fit(i) denotes the fitness of every SM; BF indicates the optimal fitness of SM in the existing
iteration.

vb ¼ a; a½ �; a ¼ arctanh � t

max iter

� �
(8)
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vc ¼ �b; b½ �; b ¼ 1� t

max iter
(9)

Amongst them, t specifies the existing iteration amount, and maxiter denotes the maximal iteration.

W is formulated below:

W SmellIndex ið Þð Þ ¼

�
1þ r � log

	
BF � Fit ið Þ
BF �WF

þ 1


�
condition�

1� r � log

	
BF � Fit ið Þ
BF �WF

þ 1


�
others

8>>><>>>: (10)

SmellIndex ¼ sort ðFitÞ (11)

SmellIndex is the series of fitness values afterwards arranged. r denotes an arbitrary value within zero
and one; the condition specifies that Fit(i) is ordered in the first half.

WRAP FOOD

This section exploits a mathematical expression for stimulating the shrinkage of SM. The negative and
positive feedback amongst food concentrations is formulated in Eq. (5). Once the food concentration of the
region is higher, the weight close is larger, and once the food concentration nearer the region is lower, the
weight near reductions to discover other regions as:

x t þ 1ð Þ ¼
rand � UB� LBð Þ þ LB rand < z
xb tð Þ þ vb� W � xA tð Þ � xB tð Þð Þ r < p
vc� x tð Þ r � p

8<: (12)

Whereas UB and LB embody the upper and lower limits of the overall space. z is frequently considered
as a small value, 0.03. The definition of vb; VC; W ; p; xb; xA, and xB are given in Eq. (6).

OSCILLATION

The SM, for a major part, changes the cytoplasm flow in the vein through the propagative wave
produced using the biological vibrator to be located in the best food concentration location. To mimic the
variations in the pulse width of SM bacteria, vb, and VC are employed to accomplish these variations.

The mathematical method is applied to stimulate the vibrational frequency of food concentration. vb is
produced arbitrarily within �a; a½ � and approaches 0 with the maximum iteration count. VC is within the
interval [−1, 1] and lastly obtains zero.

In this study, the ISMO algorithm is derived by integrating chaotic concepts into the SMO algorithm.
Amongst the existing chaotic searching approaches, logistic chaotic mapping is commonly utilized.
Because of easier functioning and optimal performance, the ISMO algorithm makes use of the chaotic
map for population initialization to accomplish acceleration in the earlier process. The logistic map can
be determined as follows

xkþ1 ¼ a� xk 1� xk
� �

(13)

where a denotes the real number a ¼ 4ð Þ; k represents the present round, and xk denotes the kth chaotic
number.
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Algorithm 1: Pseudo Code of Chaotic Initialization

Create a variable based on the Logistic map defined in Eq. (13)

For i ¼ 0 to N

For j ¼ 0 to Dim

Xi;j ¼ LBj þ xki;j � ðUBj−LBÞ
End for

End for

The ISMO system grows a fitness function (FF) for accomplishing higher classifier performance. It
solves a positive integer for representing an optimum performance of candidate outcomes. During this
analysis, the minimizing of classifier error rate has supposed that FF, as determined in Eq. (14).

fitness xið Þ ¼ Classifier Error Rate xið Þ ¼ number of misclassified samples

total number of samples
� 100 (14)

4 Experimental Validation

The experimental validation of the ISMOGCN-HRSC approach is tested utilizing 2 datasets, namely
Indian Pines (IPI) dataset [24] and Pavia University (PAU) dataset [25]. The IPI dataset is a
Hyperspectral image segmentation dataset. The input data consists of hyperspectral bands over a single
landscape in Indiana, US (Indian Pines data set) with 145 × 145 pixels. For each pixel, the data set
contains 220 spectral reflectance bands. The PAU dataset is a hyperspectral image dataset collected by a
sensor known as the reflective optics system imaging spectrometer (ROSIS-3) over the city of Pavia,
Italy. It has 610 × 340 pixels with 115 spectral bands. The image is separated into 9 classes with a total
of 42,776 labelled samples, comprising asphalt, meadows, gravel, trees, metal sheet, bare soil, bitumen,
brick, and shadow.

Fig. 3 shows the confusion matrices created by the ISMOGCN-HRSC method on the classification of
RS images under the IPI dataset. The figures reported that the ISMOGCN-HRSC model has proficiently
categorized all 16 class labels.

Table 1 provides an overall RS image classification outcome of the ISMOGCN-HRSC model on the IPI
dataset. The obtained values demonstrated that the ISMOGCN-HRSC model had shown enhanced
performance under each class. For instance, on the entire dataset, the ISMOGCN-HRSC model has
gained average accuy, precn, recal, specy, Fscore, and kappa of 99.06%, 82.31%, 72.01%, 99.50%,
71.92%, and 91.41% respectively. Meanwhile, on 70% of training (TR) data, the ISMOGCN-HRSC
approach has reached average accuy, precn, recal, specy, Fscore, and kappa of 99.06%, 82.09%, 71.61%,
99.51%, 71.64%, and 91.43% correspondingly. Eventually, on 30% of testing (TS) data, the ISMOGCN-
HRSC system has reached average accuy, precn, recal, specy, Fscore, and kappa of 99.06%, 77.94%,
72.09%, 99.50%, 70.93%, and 91.38% correspondingly.

The training accuracy (TRA) and validation accuracy (VLA) acquired by the ISMOGCN-HRSC system
on the IPI dataset is showcased in Fig. 4. The experimental result exposed that the ISMOGCN-HRSC
approach has been able to improve values of TRA and VLA. Mostly the VLA looked that superior to TRA.

Table 2 offers an overall RS image classification outcome of the ISMOGCN-HRSC approach on the
PAU dataset. The obtained values show that the ISMOGCN-HRSC methodology has enhanced
performance under each class. For the sample, on the entire dataset, the ISMOGCN-HRSC technique has
attained average accuy, precn, recal, specy, Fscore, and kappa of 98.93%, 91.24%, 91.09%, 99.37%,
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91.10%, and 93.62% correspondingly. In the meantime, on 70% of TR data, the ISMOGCN-HRSC approach
has reached average accuy, precn, recal, specy, Fscore, and kappa of 98.93%, 91.20%, 91.09%, 99.37%,
91.08%, and 93.64% respectively. Finally, on 30% of TS data, the ISMOGCN-HRSC methodology has
gained average accuy, precn, recal, specy, Fscore, and kappa of 98.92%, 91.32%, 91.09%, 99.36%,
91.15%, and 93.57% correspondingly.

Figure 3: Confusion matrices of ISMOGCN-HRSC approach under IPI dataset (a) Entire dataset, (b) 70%
of TR data, and (c) 30% of TS data
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Table 1: Result analysis of ISMOGCN-HRSC approach with different class labels under the IPI dataset

Entire dataset

Labels Accuracy Precision Recall Specificity F-Score Kappa score

1 99.58 83.33 13.89 99.99 23.81 –

2 99.67 98.80 98.89 99.80 98.85 –

3 99.41 98.13 94.44 99.84 96.25 –

4 99.28 84.62 30.14 99.95 44.44 –

5 99.34 95.73 89.71 99.81 92.63 –

6 99.06 98.36 88.38 99.89 93.10 –

7 99.72 00.00 00.00 100.00 00.00 –

8 99.46 95.48 93.11 99.78 94.28 –

9 99.88 100.00 25.00 100.00 40.00 –

10 99.21 98.69 93.00 99.87 95.76 –

11 98.91 97.19 98.31 99.10 97.74 –

12 99.09 94.29 90.37 99.65 92.29 –

13 98.73 68.42 73.58 99.27 70.91 –

14 98.73 98.97 90.88 99.86 94.75 –

15 99.37 90.94 93.36 99.62 92.13 –

16 95.51 13.95 79.10 95.65 23.71 –

Average 99.06 82.31 72.01 99.50 71.92 91.41

Testing phase (70%)

Labels Accuracy Precision Recall Specificity F-Score Kappa score

1 99.57 83.33 18.52 99.98 30.30 –

2 99.70 98.79 99.05 99.80 98.92 –

3 99.44 98.02 94.74 99.84 96.35 –

4 99.28 80.00 32.00 99.92 45.71 –

5 99.42 96.44 90.42 99.84 93.33 –

6 99.15 98.61 89.87 99.90 94.04 –

7 99.64 00.00 00.00 100.00 00.00 –

8 99.49 95.93 93.28 99.80 94.59 –

9 99.91 100.00 16.67 100.00 28.57 –

10 99.17 98.56 92.84 99.85 95.62 –

11 98.91 97.31 98.21 99.13 97.76 –

12 99.19 93.83 92.33 99.62 93.08 –

13 98.70 69.72 67.86 99.37 68.78 –

14 98.64 98.71 90.52 99.83 94.44 –

15 99.34 90.78 92.92 99.61 91.84 –

16 95.42 13.43 76.60 95.59 22.86 –

(Continued)
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Table 3 indicates the comparative results of the ISMOGCN-HRSC model with other existing models on
the IPI dataset. The results inferred that the ISMOGCN-HRSC model had shown enhanced results over other
models. For instance, concerning accuy, the ISMOGCN-HRSC model has attained an improved accuy of
99.06%, whereas the SVMT, SVMEPFT, CoSVMT, CoSVM-EPFT, GFSVMT, and GFSVMEPFT
models have obtained reduced accuy of 81.06%, 89.65%, 90.78%, 90.98%. 94.91% and 95.37%,
respectively. Also, concerning kappa, the ISMOGCN-HRSC approach has achieved an enhanced kappa of
91.38%, whereas the SVMT, SVMEPFT, CoSVMT, CoSVM-EPFT, GFSVMT, and GFSVMEPFT
algorithms have acquired minimal kappa of 69.18%, 66.77%, 68.91%, 71.40%. 74.22%, and 75.40%
correspondingly.

Table 4 demonstrates the comparative outcome of the ISMOGCN-HRSC method with other existing
algorithms on the PAU dataset. The outcome exposed that the ISMOGCN-HRSC system has
outperformed the improved outcomes of other models. For instance, in terms of accuy, the ISMOGCN-
HRSC methodology has attained a higher accuy of 98.92%, whereas the SVMT, SVMEPFT, CoSVMT,
CoSVM-EPFT, GFSVMT, and GFSVMEPFT systems have obtained lower accuy of 94.26%, 95.57%,
96.47%, 96.73%. 96.56%, and 97.33% correspondingly. Also, concerning kappa, the ISMOGCN-HRSC
algorithm has attained improved kappa of 93.57%, whereas the SVMT, SVMEPFT, CoSVMT, CoSVM-

Table 1 (continued)

Entire dataset

Labels Accuracy Precision Recall Specificity F-Score Kappa score

Average 99.06 82.09 71.61 99.51 71.64 91.43

Testing phase (30%)

Labels Accuracy Precision Recall Specificity F-Score Kappa score

1 99.60 00.00 00.00 100.00 00.00 –

2 99.60 98.83 98.55 99.79 98.69 –

3 99.34 98.37 93.78 99.86 96.02 –

4 99.25 100.00 26.09 100.00 41.38 –

5 99.17 94.17 88.18 99.72 91.08 –

6 98.86 97.64 84.35 99.86 90.51 –

7 99.91 00.00 00.00 100.00 00.00 –

8 99.39 94.44 92.73 99.72 93.58 –

9 99.82 100.00 33.33 100.00 50.00 –

10 99.30 99.00 93.40 99.90 96.12 –

11 98.90 96.91 98.52 99.02 97.71 –

12 98.86 95.38 86.11 99.72 90.51 –

13 98.81 66.13 87.23 99.06 75.23 –

14 98.95 99.61 91.76 99.95 95.52 –

15 99.43 91.30 94.38 99.63 92.82 –

16 95.70 15.18 85.00 95.79 25.76 –

Average 99.06 77.94 72.09 99.50 70.93 91.38
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EPFT, GFSVMT, and GFSVMEPFT methodologies have obtained minimal kappa of 78.8%, 79.42%,
82.45%, 83.70%. 83.41% and 85.34%, respectively.

Figure 4: TRA and VLA analysis of ISMOGCN-HRSC approach under the IPI dataset

Table 2: Result analysis of ISMOGCN-HRSC approach with different class labels under the PAU dataset

Entire Dataset

Labels Accuracy Precision Recall Specificity F-Score Kappa score

1 99.29 87.15 79.51 99.73 83.16 –

2 98.73 94.73 90.25 99.53 92.43 –

3 99.16 88.88 83.53 99.66 86.12 –

4 98.85 95.18 95.03 99.36 95.10 –

5 98.95 81.24 86.62 99.35 83.84 –

6 99.08 91.62 95.99 99.32 93.75 –

7 99.07 88.51 93.23 99.38 90.81 –

8 98.25 98.51 97.45 98.86 97.98 –

9 98.97 95.31 98.18 99.11 96.72 –

Average 98.93 91.24 91.09 99.37 91.10 93.62
(Continued)
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Table 2 (continued)

Entire Dataset

Labels Accuracy Precision Recall Specificity F-Score Kappa score

Training phase (70%)

Labels Accuracy Precision Recall Specificity F-Score Kappa score

1 99.29 87.15 79.21 99.74 82.99 –

2 98.76 94.73 90.55 99.53 92.59 –

3 99.20 89.43 84.26 99.68 86.77 –

4 98.89 95.33 95.28 99.38 95.30 –

5 98.93 81.04 86.20 99.34 83.54 –

6 99.05 91.20 95.73 99.30 93.41 –

7 99.02 87.84 92.92 99.34 90.31 –

8 98.25 98.56 97.44 98.89 98.00 –

9 99.01 95.53 98.18 99.16 96.84 –

Average 98.93 91.20 91.09 99.37 91.08 93.64

Testing phase (30%)

Labels Accuracy Precision Recall Specificity F-Score Kappa score

1 99.29 87.17 80.21 99.73 83.54 –

2 98.65 94.72 89.57 99.52 92.08 –

3 99.08 87.57 81.82 99.63 84.60 –

4 98.75 94.82 94.44 99.32 94.63 –

5 98.99 81.71 87.59 99.36 84.55 –

6 99.17 92.56 96.54 99.38 94.51 –

7 99.20 90.11 93.97 99.47 92.00 –

8 98.24 98.41 97.49 98.81 97.95 –

9 98.87 94.83 98.17 99.00 96.47 –

Average 98.92 91.32 91.09 99.36 91.15 93.57

Table 3: Comparative analysis of the ISMOGCN-HRSCmethodwith existingmethodologies under the IPI dataset

Indian pine dataset

Methods Accuracy Kappa

SVMT 81.06 69.18

SVMEPFT 89.65 66.77

CoSVMT 90.78 68.91

CoSVMEPFT 90.98 71.40

GFSVMT 94.91 74.22

GFSVMEPFT 95.37 75.40

ISMOGCN-HRSC 99.06 91.38
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The results mentioned above and the discussion indicated that the ISMOGCN-HRSC model had better
performance than compared methods.

5 Conclusion

In this study, a novel ISMOGCN-HRSC approach was presented for identifying and classifying RSIs.
The SDL model is exploited in the presented ISMOGCN-HRSC algorithm to produce feature vectors. For
image classification purposes, the GCN model is utilized, which enables the identification of the proper
class labels of the RSIs. The ISMO algorithm is used to enhance the classification efficacy of the GCN
technique, which is derived by integrating chaotic concepts into the SMO algorithm. The experimental
assessment of the ISMOGCN-HRSC method was tested using a benchmark dataset. The comparison
study reported that the ISMOGCN-HRSC algorithm shows promising performance over other DL
techniques that exist in the literature. Thus, the ISMOGCN-HRSC model can be utilized as an effectual
RSI classification tool. In the future, the presented ISMOGCN-HRSC approach has been can be extended
to the design of hybrid DL-based fusion models to improve the classification performance.
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