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Abstract: Cyber-physical system (CPS) is a concept that integrates every
computer-driven system interacting closely with its physical environment. Inter-
net-of-things (IoT) is a union of devices and technologies that provide universal
interconnection mechanisms between the physical and digital worlds. Since the
complexity level of the CPS increases, an adversary attack becomes possible in
several ways. Assuring security is a vital aspect of the CPS environment. Due
to the massive surge in the data size, the design of anomaly detection techniques
becomes a challenging issue, and domain-specific knowledge can be applied to
resolve it. This article develops an Aquila Optimizer with Parameter Tuned
Machine Learning Based Anomaly Detection (AOPTML-AD) technique in the
CPS environment. The presented AOPTML-AD model intends to recognize
and detect abnormal behaviour in the CPS environment. The presented
AOPTML-AD framework initially pre-processes the network data by converting
them into a compatible format. Besides, the improved Aquila optimization algo-
rithm-based feature selection (IAOA-FS) algorithm is designed to choose an opti-
mal feature subset. Along with that, the chimp optimization algorithm (ChOA)
with an adaptive neuro-fuzzy inference system (ANFIS) model can be employed
to recognise anomalies in the CPS environment. The ChOA is applied for optimal
adjusting of the membership function (MF) indulged in the ANFIS method. The
performance validation of the AOPTML-AD algorithm is carried out using the
benchmark dataset. The extensive comparative study reported the better perfor-
mance of the AOPTML-AD technique compared to recent models, with an accu-
racy of 99.37%.
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1 Introduction

Cyber physical system (CPS) involves incorporating the physical system into the real-time and control
software in the cyber world, whereby the network interconnects the two worlds and is accountable for the
data exchange amongst themselves [1]. Wide-ranging development in communication technology might
assist real-time communication with lower latency making them possible to remotely control various
physical systems and provide smart facilities to CPS users [2]. Furthermore, adapting wired and wireless
networks in a CPS allows the state of a large number of industrial equipment to be observed.
Consequently, it is the potential to flexibly organize and handle a complicated industrial system [3].
Therefore, the CPS is the fundamental technology for different industrial sectors involving smart grid
systems, smart transportation systems, and medical systems. Fig. 1 displays the overview of CPS.

As the connectivity of CPS rises and becomes increasingly sophisticated, the path through which
attackers infiltrate the CPS is growing [4]. The network that connects the CPS and the control software is
particularly susceptible to an external attacker that aims to invade the physical system and cause a
malfunction in the CPS [5]. Once the attacker access the network, the control authority of CPS operation
on the network can be seized, the implementation of control critical software is disturbed in the cyber
world, and the attacker's power of the CPS or control the physical system with a deceitful attack
detection technique [6]. The CPS attack harms industrial processes and equipment, which causes human
casualties and economic losses. To identify unexpected errors and attacks in CPS, an anomaly detection
system is introduced to mitigate the threat [7]. For instance, statistical models (for example, Gaussian
model, histogram-based model) based method, rule, and state estimation (for example, Kalman filter) are
exploited to learn the typical status of CPS. But the method usually needs expert knowledge (for
example, the operator manually extracts some rules) or should be aware of the fundamental distribution
of standard datasets [8].

Machine learning (ML) approaches don’t depend on domain-specific knowledge. However, they
typically need a massive amount of labelled datasets (for example, classification-based method). They
also could not capture the unique attribute of CPS (for example, spatiotemporal relationship). An
intrusion detection system (IDS) ensures network transmission security [9]. Physical property is captured
to represent the immutable nature of CPS. Program implementation semantics are considered to protect
the control system. But, as CPS becomes more complex and the attack is more stealthy, this method is
more difficult to ensure the status of CPS (for example, protecting multi-variate physical measurement). It

Figure 1: Overview of CPS
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requires further domain knowledge (for example, correlation and more components) [10]. An anomaly
detection system needs to adapt to capture novel features of CPS.

This article develops an Aquila Optimizer with Parameter Tuned Machine Learning Based Anomaly
Detection (AOPTML-AD) technique in the CPS environment. The presented AOPTML-AD model pre-
processes the network data by converting it into a compatible format. In addition, the improved Aquila
optimization algorithm-based feature selection (IAOA-FS) technique is designed to choose an optimal
feature subset. Furthermore, the chimp optimization algorithm (ChOA) with an adaptive neuro-fuzzy
inference system (ANFIS) model can be employed to recognise anomalies in the CPS environment. The
ChOA is applied for optimal adjustment of the membership function (MF) indulged in the ANFIS model.
The performance validation of the AOPTML-AD algorithm is carried out using the benchmark datasets.

2 Related Works

Thiruloga et al. [11] introduce a new unsupervised technique for detecting cyber-attacks in (CPS). The
authors define an unsupervised learning method by using a Recurrent Neural network (RNN) that can be a
time sequence predictor in this method. They employ the Cumulative Sum technique for identifying
anomalies in a replication of a water treatment plant. The presented technique not just identifies
anomalies in the CPS but also detects a sensor that has been attacked. In [12], the researchers review the
existing deep learning (DL)-related anomaly detection (DLAD) techniques in CPSs. They suggest a
taxonomy relating to the anomaly’s types, implementation, evaluation metrics, and strategies for
understanding the necessary properties of existing techniques. Additionally, they use this taxonomy for
identifying and highlighting novel features and models in every CPS field. Luo et al. [13] suggest an
anomaly detection method by integrating the intellectual DL method called convolutional neural network
(CNN) with Kalman Filter (KF) related Gaussian-Mixture Model (GMM). The suggested method can be
utilized to detect abnormal conduct in CPSs. This recommended structure has 2 significant procedures.
The primary step was pre-processing the data by filtering and transforming the original data into an
innovative format and attained privacy data preservation. And then, the research scholars suggested the
GMM-KF integrated deep CNN method for anomaly detection (AD) and precisely assessed the posterior
probability of legitimate and anomalous events in CPSs.

Nagarajan et al. [14] suggested the Data-Correlation-Aware Unsupervised DL method for AD in CPS
that utilizes an undigraph framework for storing samples and implied relation amongst samples. The
authors devise a dual-AE for training both original features and implied correlation features amongst data.
They build an estimation network by use of GMM for evaluating the probability sample distribution for
the completion of an anomaly analysis. Xi et al. [15] recommend a new time sequence anomaly detection
technique termed Neural System Identification and Bayesian Filtering (NSIBF), where a specially crafted
NN framework was posed for system identification. Singh and Feng et al. [16] offer a structure and
method to develop a cyber-physical AD system (CPADS) that uses synchrophasor dimensions and
network packet properties to detect data integrity and transmission failure assaults on measurement and
control signals in CRAS. The suggested ML-related method adopts a rules-related technique for selecting
relevant input features, uses DT and variational mode decomposition (VMD) methods for developing
multiple classification methods, and executes final event identification utilizing a rules-related decision
logic. In [17], an intelligent anomaly identification (IAI) method for these mechanisms was provided
using data-driven tools which leverage a multi-class support vector machine (MSVM) for anomaly
localization and classification. The impacts of cyber-anomalies like false data injection and denial of
service (DoS) assaults that target the transmission network were taken in this study.
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3 The Proposed Model

In this study, a new AOPTML-AD model intends to recognize and detect anomalous behaviour in the
CPS environment. The presented AOPTML-AD framework initially pre-processed the network data by
converting them into a compatible format. The IAOA-FS method is designed to elect an optimal subset
of features. This study utilises the ChOA with the ANFIS model for anomaly detection and classification.
Fig. 2 depicts the overall process of the AOPTML-AD approach.

3.1 Data Pre-processing

The presented AOPTML-AD framework initially pre-processed the network data by converting them
into a compatible format. The data accumulated in real applications is noisy and consist of certain
missing values or errors. Moreover, the scale of data from various kinds of sensors could differ. Thus,
data cleaning becomes essential and significant for further processing. The z-score normalization can be
utilized to normalize the data. Thus, the data which is collected contain unit variance and zero means.
The normalization is attained by making use of the equation, which is given below.

xi0 ¼ xi � li
ri

(1)

Here, xi0 was the normalized data. xi is measurement data from the i-th sensor. li refers to the mean value
of the measurement. ri denotes the standard deviation.

3.2 Design of IAOA-FS Model

Once the input data is pre-processed, the IAOA-FS algorithm is designed to choose an optimal subset
feature. AOA was recently introduced. It was claimed and proven with better performance and faster
convergence speed than other techniques [18]. Also, the individual in a swarm of the AOA has four ways
to upgrade its location, but they could only select two during the first 2/3 full process in exploration and
two during the exploitation process. In the presented technique, there exist four approaches for
individuals as follows:

Strategy 1: Expanded exploration.

Xi t þ 1ð Þ ¼ Xbest tð Þ � 1� t

T

� �
þ XM tð Þ � Xbest tð Þ � r1 (2)

In Eq. (2), Xi t þ 1ð Þ; Xbest tð Þ; and XM tð Þ represent the location of i�th individuals at t þ 1 iteration, the
best position at the existing iteration, and a mean position of each individual at a current iteration
correspondingly. XM tð Þ is evaluated by using the following expression:

Figure 2: Overall process of AOPTML-AD approach
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XM tð Þ ¼ 1

N

XN

i¼1
Xi tð Þ (3)

In Eq. (3), Xi tð Þ refers to the location of i�th individuals at t iterations. N denotes the number of
individuals in swarms. r1 represents the arbitrary value in Gaussian distribution with the range of zero
and one.

Strategy 2: Narrowed exploration.

Xi t þ 1ð Þ ¼ Xbest tð Þ � Lemy Dð Þ þ XR tð Þ þ y� xð Þ � r2 (4)

In Eq. (4), Lemy Dð Þ denotes the Levy flight in the following formula:

Levy Dð Þ ¼ s� l� r

jvj1b
(5)

where s ¼ 0:01 was a constant variable, r2 was the alternative random number. l; v denotes random numbers
between [0, 1]. The following expression evaluates σ:

r ¼
� 1þ bð Þ � sin

pb
2

� �

�
1þ b
2

� �
� b� 2

b�1
2

(6)

where b ¼ 1:5 was a constant value. XR tð Þ indicates a randomly chosen candidate at the current iteration. y
and x indicate the spiral shape:

y ¼ r � cos hð Þ (7)

x ¼ r � sin hð Þ (8)

r ¼ r1 þ U � D1 (9)

h ¼ �x� D1 þ h1 (10)

h1 ¼ 3p
2

(11)

From the expression, r1 represents a fixed number within [1, 2]. D1 represents the integer numbers from
1 to the length of problems. x ¼ 0:005 indicates a fixed constant number.

Strategy 3: Expanded exploitation.

Xi t þ 1ð Þ ¼ a� ½Xbest tð Þ � XM tð Þ þ d� UB� LBð Þ � r3 þ LB½ � (12)

In Eq. (12), LB; UB½ � represents the definitional domain of the provided problem. a and d denote 2 fixed
smaller numbers. r3 refers to the third random number in the Gaussian distribution.

Strategy 4: Narrowed exploitation.

Xi t þ 1ð Þ ¼ QF � Xbest Tð Þ � G1 � Xi Tð Þ � r4 � G2 � Lemy Dð Þ þ r5 � G1 (13)

In Eq. (13), QF indicates the quality function utilized to equilibrium the searching technique and is
evaluated by the following formula:
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QF tð Þ ¼ T
2�s6�1

ð1�TÞ2 (14)

G1 ¼ 2r7 � 1 (15)

G2 ¼ 2� 1� s
T

� �
(16)

r4; r5; r6; and r7 denote the fourth to seventh random numbers.

The IAOA is derived by including the quasi-oppositional based learning (QOBL) concept. In the AOA,
the population tries to reach the optimal solutions located in an identified place. Thus, the water strider
attempts to go to the same places, so the diversity of individuals is lost. A familiar process amongst the
meta-heuristics is utilizing the Quasi Opposition-Based Learning (QOBL) approach to resolve this
problem. It is executed as follows:

Xij tð Þ ¼
aj þ aj � Xij tð Þ

� �� b if Xij tð Þ, aj
� �

aj � Xij tð Þ � aj
� �� b if Xij tð Þ � aj

� �
(

(17)

i 2 1; I½ �; j 2 1; J½ �; k 2 1; K½ � (18)

aj ¼ 1

2
� �X þ Xð Þ (19)

Whereas ymij describes the j
th count of ith quasi-opposition solution at kth iteration, J refers to the variables

number, b implies the arbitrary amount from the range of zero and one, and X and �X signify the minimal and
maximal of a jth variable.

The fitness function (FF) of the IAOA-FS technique is developed to have a balance between the
classification accuracy (maximum) and the number of selected features in every solution (minimum)
attained by utilizing this selected feature, Eq. (20) denotes the FF to estimate solution.

Fitness ¼ acR Dð Þ þ b
Rj j
Cj j (20)

From the expression, cR Dð Þ refers to the K-nearest neighbour (KNN) classification’s classification error
rate. Rj j exhibits the cardinality of the selected subset, and Cj j shows the overall number of features in the
data, a; and b indicate two variables equivalent to the significance of subset length and classification quality.
∈ [1, 0] and b ¼ 1� a:

3.3 ANFIS Classification

At this stage, the chosen features are passed into the ANFIS model and are utilized for the recognition of
anomalies in the CPS environment. Generally, ANFIS produces a mapping among outputs and inputs by
applying “IF-THEN rules” (otherwise called as “Takagi-Sugeno inference model”) [19]. As shown, the
input of Layer 1 is characterized as x and y, whereby the output of the ith node is signified as O1i, as
follows:

O1i ¼ lAi
xð Þ; i ¼ 1; 2; O1i ¼ lBi�2

yð Þ; i ¼ 3; 4 (21)

l xð Þ ¼ e�ðx�qi
ai

Þ2
; (22)

From the expression, l refers to the generalized Gaussian membership function. The membership value
of l is characterized as Ai and Bi. The premise parameter set is characterized as ai and qi. Furthermore,
Eq. (23) determines the output of Layer 2:
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O2i ¼ lAi
xð Þ � lBi�2

yð Þ (23)

Eq. (24) describes the output of Layer 3:

O3i ¼ �wi ¼ xi

�2
i¼1ð Þxi

; (24)

In Eq. (24), wi represents the i-th node output from the preceding layer.

The output of Layer 4 is characterized as follows:

O4;i ¼ �wifi ¼ �wi pixþ qiyþ rið Þ (25)

In Eq. (25), f represents a function that integrates the input and parameter of the network. The resulting
parameter of node i is denoted as ri; qi, and pi:

At last, the output of Layer 5 is characterized as follows:

O5 ¼
X

i
�wi fi (26)

3.4 Parameter Tuning Using ChOA

At the final stage, the ChOA is applied for optimal adjustment of the membership function (MF)
involved in the ANFIS method. The ChoA is inspired by chimps’ social status relationship and hunting
behaviour. The four individual groups searched the problem space locally and globally, utilizing its
unique pattern [20]. The drive and chase are provided as the subsequent formulas.

d ¼ c:xprey tð Þ � m:xchimp tð Þ�� �� (27)

xchimp t þ 1ð Þ ¼ xprey tð Þ � a:d (28)

The present iteration number was determined with the symbol t, and a, m, and c were the co-efficient
vectors, xprey signifies the prey vector place, and xchimp provides the chimp vector place. a, m, and c are
demonstrated by the calculation that follows.

a ¼ 2:f :a1 � f (29)

c ¼ 2:r2 (30)

m ¼ Choatic�value (31)

The nonlinear reduction of f was completed, from 2.5 to 0, in both stages. The arbitrary vectors were
created from all the iterations, 2 arbitrary sets were allocated to r1 and r2, and the m value was created in
several chaotic maps.

During the exploitation stage, the chimp’s performance was modelled by formulas as follows.

dattacker ¼ c1:xattacker � m1:xj j (32)

dbarrierr ¼ c2:xbarrier � m2:xj j (33)

dchaser ¼ c3:xchaser � m3:xj j (34)

ddriver ¼ c4:xdriver � m4:xj j (35)

x1 ¼ xattacker � dattacker:a1 (36)
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x2 ¼ xbarrier � dbarrier:a2 (37)

x3 ¼ xchaser � dchaser:a3 (38)

x4 ¼ xdriver � ddriver:a4 (39)

x t þ 1ð Þ ¼ x1 þ x2 þ x3 þ x4
4

(40)

xchimp t þ 1ð Þ ¼ xprey tð Þ � a:d if l < 0:5
Chaotic�value if l � 0:5

	
(41)

In the above formulas, c implies the arbitrary vector range from zero to two (i.e., O; 2½ �), and a refers to
the arbitrary variable range in [−2f, 2f]. During this case, the chaotic map, a primary value, is fixed to
0.7 from image thresholding optimized problems.

The original ChOA technique integrates 6 distinct chaos maps and 2 distinct sets of formulas for
upgrading dynamic approaches. The dynamic model was utilized to define the coefficients c1; c2; c3, and c4:

For the simplicity of this work, only one group of dynamic models and one chaos map are utilized. The
chaos map was recognized as Gauss or Mouse. It can be determined as:

xiþ1 ¼
1 xi ¼ 0
1

mod xi; 1ð Þ otherwise

8<
: (42)

During the final phase, chimps relinquish their hunting responsibility and then obtain meet and
succeeding social drive (sex and grooming). It can strive to gather meat chaotically during the outcome.
For great dimensional problems, ChOA is developed to address two problems of slow convergence speed
and traps from local optima. This chaotic performance in the final step supports chimps in overcoming
the two problems of entrapment in local optimum and sluggish convergence rate from higher dimension
problems resolving.

The ChoA method extracts the fitness function (FF) to obtain improvised classifier outcomes. It fixes a
positive integer to denote the superior performance of the candidate solutions. In this work, the reduction of
the classifier error rate can be regarded as the FF, as presented below in Eq. (43). The optimum solution
comprises a minimum error rate, and the poor solution receives a higher error rate.

fitness xið Þ ¼ ClassifierErrorRate xið Þ ¼ number of misclassified samples

total number of samples
� 100 (43)

4 Results and Discussion

The experimental validation of the presented model is tested using the SWaT dataset [21]. It offers real
data from a simpler form of the real-world water treatment plant. The datasets enable authors to devise and
evaluate defence mechanisms for CPSs and comprise both network traffic as well as data concerning the
physical property of a system. The dataset holds 100713 samples with seven class labels, as depicted in
Table 1.
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The confusion matrices generated by the AOPTML-ADmodel on distinct training (TR) and testing (TS)
datasets are shown in Fig. 3. On 70% of TR data, the AOPTML-AD model has identified 9695 samples into
class0, 5354 samples into class1, 6476 samples into class2, 12598 samples into class3, 6158 samples into
class4, 13512 samples into class5, 6628 samples into class6, and 7974 samples into class 7. Also, on
30% of TS data, the AOPTML-AD method has identified 4241 samples into class 0, 2266 samples into
class1, 2807 samples into class2, 5475 samples into class3, 2582 samples into class4, 5748 samples into
class5, 2880 samples into class6, and 3363 samples into class7. In addition, on 80% of TR data, the
AOPTML-AD technique has identified 11122 samples into class 0, 6164 samples into class 1,
7405 samples into class2, 14449 samples into class3, 7142 samples into class4, 15561 samples into
class5, 7462 samples into class6, and 9164 samples into class7.

Table 2 and Fig. 4 provide the overall classification outcomes of the AOPTML-ADmodel on 70% of TR
data and 30% of TS data. The experimental values implied that the AOPTML-ADmodel had gained effectual
outcomes under all classes. For instance, on 70% of TR data, the AOPTML-AD model has attained an
average accuy of 99.25%, precn of 96.43%, recal of 96.87%, Fscore of 96.80%, and MCC of 96.37%.

Next to that, on 30% of TS data, the AOPTML-AD approach has acquired an average accuy of 99.30%,
precn of 96.92%, recal of 97.01%, Fscore of 96.96%, and MCC of 96.56%.

Table 3 and Fig. 5 offer the overall classification outcomes of the AOPTML-AD technique on 80% of
TR data and 20% of TS data. The experimental values implied that the AOPTML-AD approach had obtained
effectual outcomes under all classes. For example, on 80% of TR data, the AOPTML-AD algorithm has
reached an average accuy of 99.35%, precn of 97.23%, recal of 97.22%, Fscore of 96.80%, and MCC of
96.37%. Next, on 20% of TS data, the AOPTML-AD methodology has acquired an average accuy of
99.37%, precn of 97.27%, recal of 97.30%, Fscore of 97.28%, and MCC of 96.92%.

The training accuracy (TA) and validation accuracy (VA) acquired by the AOPTML-AD algorithm on
the test dataset is demonstrated in Fig. 6. The experimental outcome denoted that the AOPTML-AD
approach has achieved maximum values of TA and VA. In Particular, the VA is greater than TA.

The training loss (TL) and validation loss (VL) gained by the AOPTML-AD approach on the test dataset
are established in Fig. 7. The experimental outcome represented that the AOPTML-AD methodology has
accomplished the least values of TL and VL. Specifically, the VL is lesser than TL.

Table 1: Dataset details

Class No. of instances

0 14300

1 7920

2 9563

3 18370

4 9085

5 19876

6 9828

7 11771

Total number of instances 100713
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Figure 3: Confusion matrices of AOPTML-AD approach (a) 70% of TR data, (b) 30% of TS data, (c) 80%
of TR data, and (d) 20% of TS data
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Table 2: Result analysis of AOPTML-AD approach under 70% of TR and 30% of TS data

Labels Accuracy Precision Recall F-score MCC

Training phase (70%)

0 99.13 96.43 97.47 96.95 96.44

1 99.35 95.59 96.26 95.92 95.57

2 99.33 96.05 96.90 96.48 96.11

3 99.23 97.49 98.31 97.90 97.43

4 99.30 96.07 96.19 96.13 95.74

5 99.13 98.73 96.84 97.77 97.24

6 99.34 96.53 96.66 96.60 96.23

7 99.22 97.04 96.29 96.67 96.23

Average 99.25 96.74 96.87 96.80 96.37

Testing phase (30%)

0 99.15 96.69 97.43 97.06 96.56

1 99.36 95.73 96.10 95.92 95.57

2 99.37 96.00 97.47 96.73 96.38

3 99.32 97.77 98.54 98.15 97.74

4 99.33 96.27 96.24 96.25 95.89

5 99.16 98.63 97.05 97.83 97.31

6 99.41 97.04 96.94 96.99 96.66

7 99.26 97.22 96.36 96.79 96.38

Average 99.30 96.92 97.01 96.96 96.56

Figure 4: Average analysis of AOPTML-AD approach under 70% of TR and 30% of TS data
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Table 3: Result analysis of AOPTML-AD approach under 70% of TR and 30% of TS data

Labels Accuracy Precision Recall F-score MCC

Training phase (80%)

0 99.12 96.86 96.97 96.92 96.41

1 99.57 97.32 97.24 97.28 97.05

2 99.33 96.27 96.75 96.51 96.14

3 99.30 98.05 98.14 98.09 97.67

4 99.39 95.34 98.09 96.70 96.37

5 99.30 98.13 98.33 98.23 97.80

6 99.29 97.82 94.82 96.30 95.92

7 99.47 98.03 97.40 97.71 97.41

Average 99.35 97.23 97.22 97.22 96.84

Testing phase (20%)

0 99.24 97.48 97.07 97.27 96.83

1 99.61 97.23 97.79 97.51 97.30

2 99.33 96.29 96.65 96.47 96.10

3 99.28 97.87 98.16 98.02 97.58

4 99.35 94.85 98.06 96.43 96.09

5 99.33 98.27 98.40 98.33 97.92

6 99.31 97.89 94.94 96.40 96.03

7 99.48 98.25 97.33 97.79 97.50

Average 99.37 97.27 97.30 97.28 96.92

Figure 5: Average analysis of AOPTML-AD approach under 80% of TR and 20% of TS data
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A clear precision-recall analysis of the AOPTML-AD technique on the test dataset is depicted in Fig. 8.
The figure denoted the AOPTML-AD approach has resulted in enhanced values of precision-recall values
under all classes.

A brief ROC investigation of the AOPTML-AD approach to the test dataset is portrayed in Fig. 9. The
results exhibited the AOPTML-AD approach has shown its ability to categorize distinct classes on the test
dataset.

Figure 6: TA and VA analysis of the AOPTML-AD approach

Figure 7: TL and VL analysis of the AOPTML-AD approach
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Table 4 offers a comparative accuy examination of the AOPTML-AD model with recent models [22,23].
The experimental values indicated that the neural network (NN) and TABOR techniques have resulted in
reduced accuy values of 95.71% and 95%, respectively. Followed by the stacked denoising autoencoder with
1D CNN with long short-term memory (SDA-1D CNN-LSTM) model has accomplished a slightly improved
accuy of 98.64%. Then, the SDA-1D CNN-gated recurrent unit (GRU) model resulted in a reasonable accuy
of 98.78%. However, the AOPTML-AD model has resulted in a maximum accuy of 99.37%.

Figure 8: Precision-recall curve analysis of the AOPTML-AD approach

Figure 9: ROC curve analysis of the AOPTML-AD approach
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Finally, a comparative analysis of the AOPTML-AD model with the recent state-of-the-art models is
portrayed in Table 5. The obtained values highlighted that the AOPTML-AD model had reported better
results than other models. Fig. 10 renders a brief precn scrutiny of the AOPTML-AD method with recent
models. The experimental values signified that the NN and SVM techniques had reduced precn values of
94.62% and 93.33%, respectively. Then, the STAE-AD, LSTM, and 1D CNN techniques accomplished
slightly improved precn of 94.71%, 95.22%, and 95.83%, correspondingly. Then, the SDA-1D CNN-
LSTM and SDA-1D CNN-GRU models have resulted in reasonable precn of 96.09% and 96.25%
correspondingly. But, the AOPTML-AD model has resulted in a maximal accuy of 97.27%.

Table 4: Accuracy analysis of AOPTML-AD approach with existing methodologies

Methods Accuracy

AOPTML-AD 99.37

NN Model 95.71

TABOR 95.00

SDA-1D CNN-LSTM 98.64

SDA-1D CNN-GRU 98.78

Table 5: Comparative analysis of AOPTML-AD approach with existing methodologies

Methods Precision Recall F1 score

AOPTML-AD 97.27 97.30 97.28

NN model 94.62 94.80 95.19

SVM 93.33 69.80 79.07

1D CNN 95.83 80.47 86.77

STAE-AD 94.71 82.33 87.93

LSTM 95.22 68.32 88.16

SDA-1D CNN-LSTM 96.09 85.08 91.15

SDA-1D CNN-GRU 96.25 85.35 91.84

Figure 10: Precn analysis of AOPTML-AD approach with existing methodologies
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Fig. 11 provides recent models’ comparative recal inspection of the AOPTML-AD algorithm. The
experimental values show that the NN and SVM techniques have resulted in reduced recal values of
94.80% and 69.80%, respectively. Followed by the STAE-AD, LSTM, and 1D CNN approach has
accomplished slightly improved recal of 82.33%, 68.32%, and 80.47%, correspondingly. Then, the SDA-
1D CNN-LSTM and SDA-1D CNN-GRU models have resulted in a reasonable recal of 85.08% and
85.35% correspondingly. But, the AOPTML-AD algorithm has resulted in maximum recal of 97.30%.

Fig. 12 grants a detailed F1score scrutiny of the AOPTML-AD technique with recent models. The
experimental values denoted that the NN and SVM techniques have reduced F1score values of 95.19%
and 79.07%, respectively. Simultaneously, the STAE-AD, LSTM, and 1D CNN models have
accomplished slightly improved F1score of 87.93%, 88.16%, and 86.77%, respectively. Afterwards, the
SDA-1D CNN-LSTM and SDA-1D CNN-GRU models resulted in a reasonable F1score of 91.15% and
91.84%, respectively. But, the AOPTML-AD methodology has resulted in a maximum F1score of 97.28%.

The detailed results and discussion assume that the AOPTML-AD model has accomplished maximum
performance over other models.

5 Conclusion

In this study, a new AOPTML-AD model intends to recognize and detect anomalous behaviour in the
CPS environment. The presented AOPTML-AD framework initially pre-processed the network data by
converting them into a compatible format. Followed by the IAOA-FS approach is designed to choose an
optimal subset of features. Then, the ChOA with ANFIS model is utilized for the recognition of

Figure 11: Recal analysis of AOPTML-AD approach with existing methodologies

Figure 12: F1score analysis of AOPTML-AD approach with existing methodologies
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anomalies in the CPS environment. The ChOA can be applied for optimal adjustment of the MF involved in
the ANFIS model. The performance validation of the AOPTML-ADmethodology is executed by making use
of the benchmark dataset. A detailed result analysis assured the supremacy of the AOPTML-AD approach
compared to recent models with an accuracy of 99.37%. In the future, hybrid DL classification models can
improve the performance of the proposed model.
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