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Abstract: Interference signals recognition plays an important role in anti-jamming
communication. With the development of deep learning, many supervised inter-
ference signals recognition algorithms based on deep learning have emerged
recently and show better performance than traditional recognition algorithms.
However, there is no unsupervised interference signals recognition algorithm at
present. In this paper, an unsupervised interference signals recognition method
called double phases and double dimensions contrastive clustering (DDCC) is
proposed. Specifically, in the first phase, four data augmentation strategies for
interference signals are used in data-augmentation-based (DA-based) contrastive
learning. In the second phase, the original dataset’s k-nearest neighbor set
(KNNset) is designed in double dimensions contrastive learning. In addition, a
dynamic entropy parameter strategy is proposed. The simulation experiments of
9 types of interference signals show that random cropping is the best one of
the four data augmentation strategies; the feature dimensional contrastive learning
in the second phase can improve the clustering purity; the dynamic entropy para-
meter strategy can improve the stability of DDCC effectively. The unsupervised
interference signals recognition results of DDCC and five other deep clustering
algorithms show that the clustering performance of DDCC is superior to other
algorithms. In particular, the clustering purity of our method is above 92%,
SCAN’s is 81%, and the other three methods’ are below 71% when jamming-
noise-ratio (JNR) is −5 dB. In addition, our method is close to the supervised
learning algorithm.

Keywords: Interference signals recognition; unsupervised clustering; contrastive
learning; deep learning; k-nearest neighbor

1 Introduction

With the rapid development of wireless communication technology and increased electronic equipment,
the future communication system will face more kinds of interference. Adopting corresponding anti-
interference methods according to the identified interference signals can improve communication quality.
Therefore, interference signals recognition will be one of the critical technologies of intelligent anti-
interference communication in the future.
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Deep learning has achieved excellent performance in natural language processing [1,2] and computer
vision [3–5]. Therefore, many recognition algorithms based on deep learning for interference signals were
proposed to solve the problems of traditional interference signal recognition algorithms whose accuracy is
low and significantly affected by artificial feature selection [6–12]. However, most interference signals
recognition algorithms belong to supervised learning that requires labeled signals samples. Labeling each
signal sample requires a lot of labor costs, which limits the applications of these algorithms. Therefore,
unsupervised interference signals recognition should study urgently.

Clustering is one of the unsupervised learning methods which can classify data into different clusters
without any labeled samples. Traditional clustering methods include partition-based methods, density-
based methods, and hierarchy-based methods. In recent years, many unsupervised clustering methods of
radio frequency signals have been proposed [13–19]. However, these methods used traditional clustering
algorithms and manually selected features. Whether the feature selection is appropriate or not will directly
affect its performance. Therefore, without prior knowledge of an interference signal, it is impossible to
design artificial features in advance. In addition, the performance of traditional clustering algorithms is poor.

Recently, many deep clustering methods which solve the problems of traditional clustering algorithms
have been proposed [20–25], such as semantic clustering by adopting nearest neighbors (SCAN) [24] and
contrastive clustering (CC) [25]. Still, these algorithms were used to cluster images, and there is no
research on deep clustering for interference signals. On the one hand, the performance of the deep
clustering methods with contrastive learning is better than that without it in image clustering. On the
other hand, since the interference signal contains noise, the algorithms which used contrastive learning in
only one phase will lead to degradation of the noise-immunity caused by data augmentation. Therefore, a
method, DDCC, is proposed in this paper. The main contributions can be summarized as follows.

■ To achieve unsupervised interference signals recognition, we propose a method named double phases
and double dimensions contrastive clustering. Unlike traditional clustering algorithms, DDCC uses a
deep neural network to extract the feature of interference signals automatically.

■We design four data augmentation strategies for interference signals to carry out DA-based contrastive
learning, which is used to pre-train the deep neural network in the first phase of DDCC. In the second
phase of DDCC, the KNNset of original data through the pre-trained network is obtained, and the
KNNset-based double dimensions contrastive learning is designed to cluster the samples according
to their category features. In addition, the stability of DDCC is improved by using a dynamic
entropy parameter strategy for regularization.

■We analyze the performance of the different parts of DDCC through extensive simulation experiments.
DDCC, deep embedded clustering (DEC), DeepCluster, deep adaptive clustering (DAC), SCAN, and
CC are applied to unsupervised interference signals recognition and compared in experiments. The
results show that DDCC outperforms others on unsupervised interference signals recognition under
various JNR.

The rest of this paper is organized as follows. Section 2 describes recent work in interference signal
recognition based on deep learning and deep clustering. Section 3 discusses the proposed method in
detail. Section 4 gives the simulation results and analyzes the performance of different methods in detail.
Lastly, Section 5 concludes this paper.

2 Related Work

2.1 Interference Signal Recognition Based on Deep Learning

With the development of deep learning technology, there have been recognition algorithms based on
deep learning. The singular value of the signal matrix was used as the input of the multi-layer perceptron
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(MLP) in [6], and short-time Fourier transform data of jamming signals was used as the input of the
convolutional neural network (CNN) in [7,8]. Jamming recognition network [9] based on power spectrum
features was proposed to recognize ten kinds of suppression jamming signals. Siamese-CNN [10] and
auxiliary classifier variational auto-encoding generative adversarial network [11] were proposed to solve
the performance deterioration of the interference signals recognition method in the case of a small sample
set. The Auto-Encoder network, which was built by stacking long short-term memory, separated the
interference signal from the transmitted signal, and another recurrent neural network realized interference
signals recognition [12]. But the above algorithms are supervised, which requires a lot of the labeled
signals samples. Deep clustering is one of the unsupervised learning methods.

2.2 Deep Clustering

Deep clustering methods can be divided into two groups. The first group of methods combined
traditional clustering algorithms with deep neural networks, such as DEC [20], DeepCluster [21], etc.
DEC pre-trained a stacking auto-encoder to obtain the features and used the Kullback-Leibler divergence
to jointly train the network and the clustering center obtained by k-means. DeepCluster carried out
network training process and k-means clustering alternately. However, their performance can be
compromised by the errors accumulated during the traditional clustering. The second group of methods
used representation learning and the idea of “label as representation” to solve the problem of the first
group of methods, such as DAC [22], invariant information clustering (IIC) [23], SCAN [24], CC [25],
etc. DAC used the binary classification with the pseudo label as the pretext task, while IIC used mutual
information maximization to realize representation learning. But sometimes, their category features are
insufficient to reflect the category relationship between samples. Recently, unsupervised contrastive
learning (CL) has achieved state-of-the-art performance in representation learning [26–29]. SCAN and
CC that applied contrastive learning to clustering have better clustering performance than DAC and IIC.
Because of the high intra-class compactness and inter-class separability of sample features obtained by
contrastive learning methods such as simple framework for contrastive learning of visual representations
(SIMCLR) [29], SCAN obtained embedding space by using SIMCLR and used the SCAN-loss [24] to
make adjacent samples have similar category features. CC performed the instance-level and clustering-
level contrastive learning to improve the feature extraction ability of the network and to cluster following
the idea of “label as representation”. But SCAN and CC algorithms used contrastive learning only in one
phase so that the features extraction network cannot finetune. Moreover, SCAN ignored the inter-class
separability of category features, and CC did not utilize the feature distribution explicitly. Therefore the
performance of deep clustering for interference signals with noise will deteriorate. Therefore, double
phases and double dimensions contrastive clustering for interference signals recognition is proposed to
cope with these problems.

3 Double Phases and Double Dimensions Contrastive Clustering

3.1 Data-Augmentation-Based Contrastive Learning

In supervised learning, the feature extraction network training can be guided by sample labels. In
contrast, unsupervised learning requires designing pretext-task for network training to enable the network
to obtain feature extraction ability, such as rotation prediction [30] and puzzles [31] in image
classification. As a promising paradigm of representation learning, contrastive learning is to make the
similarity between positive pairs as high as possible and the similarity between negative pairs as low as
possible. However, unsupervised learning has no available label to obtain information on positive and
negative pairs. Although positive pairs can be obtained by data augmentation that IIC did, the lack of
information on negative pairs makes it difficult for features to have inter-class separability.
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It is a solution that data augmentation samples from the same sample were considered positive pairs, and
that from the different samples were considered negative pairs. Then, the network parameters were updated
using the respective contrastive loss functions in [26,27]. Momentum contrast [28] proposed a momentum
training approach based on [26], which improves performance in the case of insufficient resources but
requires a massive dataset for network training. SIMCLR [29] used a larger batch size, more complex
data augmentation strategies, and projection head based on [27], improving the performance without
restricting resources. Following SIMCLR, the DA-based contrastive learning is designed in the first phase
of DDCC, and the process is shown in Fig. 1.

Given the unlabeled interference signals dataset D ¼ fsigNi¼1, where N is the number of samples,
si ¼ ðsi½0�; si½1�; si½2�; . . .Þ is the sequence of an interference signal. The data augmentation dataset

Dnew ¼ fT1ðsiÞ; T2ðsiÞgNi¼1 is obtained by applying two data augmentation T 1 and T2 to all the samples
from D. One shared feature extraction network wð�Þ is used to extract the features of the sample from
Dnew, and a projection head hð�Þ embeds the features into the Kf dimensional embedding space to get
zmn ¼ hðwðTmðsnÞÞÞ.

The cosine distance between sample features is used to measure the similarity between samples, as
shown in Eq. (1),

simðx; yÞ ¼ xTy
xk k yk k (1)

The normalized temperature-scaled cross entropy (NT-Xent) [32] is used as the loss function of DA-based
contrastive learning to maximize the similarity of the positive pair while minimizing the similarity of the
negative pair, as shown in Eq. (2),

L1 ¼ 1

2N

XN
n¼1

½lðz1n; z2nÞ þ lðz2n; z1nÞ� (2)

where lðx; yÞ ¼ � log
essimðx;yÞ

P2
m¼1

PN
k¼1

essimðx;z
m
k Þ � 1

, s is the temperature parameter and we let s ¼ 0:5.

Figure 1: The process of DA-based contrastive learning
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3.2 KNNset-Based Contrastive Learning

In most cases, the nearest neighbors in the embedding space obtained by SIMCLR belong to the same
class [24]. Therefore, to enable the network to mine more meaningful semantic information and get better
clustering performance, the second phase of DDCC constructs positive and negative pairs according to
the KNNset, and performs double dimensions contrastive learning in the feature and the clustering
dimension.

3.2.1 Construction of Positive and Negative Pairs
Original samples can provide more meaningful semantic information, so the second phase of DDCC

uses KNNset to construct positive and negative pairs while not using data augmentation.

According to the embedding space obtained from contrastive learning in the first phase and cosine
distance between samples, KNNset Dk ¼ fgkðsiÞgNi¼1 is obtained from the dataset D, where gkðsiÞ denotes
the set of k-nearest neighbors of sample si.

In the training phase, given a batch of samples fsigMi¼1, two samples are randomly selected from gkðsÞ
and two new batches fsai gMi¼1 and fsbi gMi¼1 are obtained, where s

a
i and s

b
i are selected from gkðsiÞ, andM is the

size of a batch. sai and s
b
i are considered as positive pairs, s

a
i and s

b
j are considered negative pair, where i 6¼ j.

3.2.2 Double Dimensions Contrastive Learning
As shown in Fig. 2, DDCC performs contrastive learning in the second phase at the feature and

clustering dimensions, respectively. The feature dimensional contrastive learning enables the network to
extract more meaningful semantic features. In contrast, the clustering dimensional contrastive learning
clusters signals through considering category features as the soft assignment probabilities of clusters.
Note that, the parameters of wð�Þ and hFð�Þ in the KNNset-based contrastive learning are initialized by the
parameters of wð�Þ and hð�Þ in the DA-based contrastive learning, and the parameters of hCð�Þ are
initialized randomly.

In the feature dimension, let the feature dimensional outputs of signals san and s
b
n be f

a
n ¼ hFðwðsanÞÞ and

f bn ¼ hFðwðsbnÞÞ, respectively, and define the output matrices as Fa ¼ ½f a1; f a2; � � � ; f aM �T 2 RM�Kf and

Fb ¼ ½f b1; f b2; � � � ; f bM �T 2 RM�Kf , where Kf is feature dimension. And we also utilize the NT-Xent as
the loss function of feature dimensional contrastive learning, as shown in Eq. (3),

Figure 2: The process of KNNset-based contrastive learning
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LF ¼ 1

2M

XM
n¼1

½lFðf an; f bnÞ þ lFðf bn; f anÞ� (3)

where lFðx; yÞ ¼ � log
esFsimðx;yÞ

PM
n¼1

esFsimðx;f anÞ þ PM
n¼1

esFsimðx;f bnÞ � 1

, sF is the temperature parameter and we let
sF ¼ 0:5.

In the clustering dimension, a SoftMax layer is added to the end of hCð�Þ to satisfy the probability’s non-
negative and sum-to-one properties. Therefore, can ¼ hCðwðsanÞÞ can be defined the soft assignment
probabilities of each cluster of sample san. The inference process is formulated as:

s 2 class arg max
Kc

i¼1
hCðwðsÞÞ (4)

where Kc is the output dimension of the clustering dimensional projection head, i.e., the number of clusters.

Ca ¼ ½ca1; ca2; � � � ; caM �T 2 RM�Kc and Cb ¼ ½cb1; cb2; � � � ; cbM �T 2 RM�Kc are the clustering
dimensional output matrices. yai and ybi are the i

th column of Ca and the ith column of Cb, respectively. So
yai and ybi can be considered as two representations of the ith cluster. Ideally, yai is equal to ybi , and yai is
orthogonal to ybj when i 6¼ j. Similar to the feature dimensional contrastive learning, the representations of

the same cluster should be similar enough, while the representations of different clusters should be
different as much as possible, so the clustering dimensional contrastive learning still uses NT-Xent as loss
function:

LC ¼ 1

2Kc

XKc

k¼1

½lCðyak ; ybkÞ þ lCðybk ; yakÞ� (5)

where lCðx; yÞ ¼ � log
esCsimðx;yÞ

PKc

k¼1
esCsimðx;y

a
kÞ þ PKc

k¼1
esCsimðx;y

b
kÞ � 1

, sC is the temperature parameter and we let
sC ¼ 1.

To avoid the trivial solution caused by assigning nearly all samples to one cluster, we add the entropy
term as shown in Eq. (6) for regularization:

LH ¼ �
XKc

n¼1

½PðyanÞ logPðyanÞ þ PðybnÞ logPðybnÞ� (6)

where PðyanÞ ¼ yan
�� ��

1
= Cak k1, PðybnÞ ¼ ybn

�� ��
1
= Cb
�� ��

1
.

Finally, to realize the end-to-end training, that is, to update the parameters of the feature extraction
network wð�Þ, those of the feature dimensional projection head hFð�Þ and those of the clustering
dimensional projection head hCð�Þ at the same time, the hybrid loss function of KNNset-based contrastive
learning is defined as:

L2 ¼ LF þ LC þ kLH (7)

where k is the entropy parameter. A small k leads to a trivial solution; a large k can avoid trivial solution but
ignores the clustering task of the clustering dimension. Since different datasets may require different k, we
propose a dynamic entropy parameter strategy as shown in Eq. (8):

k ¼ kmax 0:1� 10� e

emax

� �� �
(8)
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where kmax and emax are the maximum entropy parameter and the maximum number of iterations,
respectively. e is the current epoch, �d e denote ceiling operation.

In summary, the entire process of DDCC is shown in Algorithm 1.

Algorithm 1: DDCC

Input: Dataset D, feature extraction network wð�Þ, projection head hð�Þ, feature dimensional projection head
hFð�Þ, cluster dimensional projection head hCð�Þ, update strategy of entropy term parameter, batch size M,
maximum iterations emax and other training hyperparameters.

First Contrastive Learning:

For e ¼ 1; 2; . . . ; emax do

For t ¼ 1; 2; . . . ; Dj j=M do

Sample mini-batch fskgMk¼1 from D;

Perform two augmentations to fskgMk¼1 to get fT 1ðskÞ; T2ðskÞgMk¼1;

Compute NT-Xent loss L1 through Eq. (2) and update wð�Þ and hð�Þ to minimize L1;

End for

End for

Second Contrastive Learning:

Get KNNset Dk ¼ fgkðsiÞgNi¼1 using wð�Þ and hð�Þ;
For e ¼ 1; 2; . . . ; emax do

For t ¼ 1; 2; . . . ; Dj j=M do

Sample mini-batch fskgMk¼1 from D;

Get fsakgMk¼1 and fsbkgMk¼1 according to Dk and fskgMk¼1;

Compute feature contrastive loss LF , cluster contrastive loss LC and the entropy term LH through
Eqs. (3), (5) and (6);

Compute hybrid loss L2 through Eq. (7) and update wð�Þ, hFð�Þ and hCð�Þ to minimize L2;

Update k according to Eq. (8);

End for

End for

Output: Kc clusters of samples from D.

4 Performance Analysis

4.1 The Setting of the Experiment

4.1.1 Datasets
Nine kinds of interference signals, which include single-tone jamming, multi-tone jamming, periodic

Gaussian pulse jamming, frequency hopping jamming, linear sweeping frequency jamming, sinusoidal
sweeping frequency jamming, binary phase shift keying (BPSK) modulation jamming, noise frequency
modulation jamming and quadrature phase shift keying (QPSK) modulation jamming, are generated by
matlabR2020a. The details of the parameters of each interference signal are shown in Table 1. The
sampling frequency is 10 MHz, and the number of sampling points is 1024. The added noise is additive
white Gaussian noise, JNR is −5, 0, 5 and 10 dB, respectively. The number of samples for each category
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under a JNR is 1000, so there are four datasets with different JNR, and each dataset contains 9000 samples of
interference signals.

4.1.2 Network Architecture
We use 1-dimensional densely connected convolutional network [33] as a feature extraction network

wð�Þ, and the network used in the first and second phase of DDCC is shown in Fig. 3a. The convolution
layer parameter meanings are the convolution kernel’s size, type, number, and stride. For example,
{7 conv1d, 32, /2} means the convolution layer uses one-dimensional convolution with 32 convolution
kernels whose size is 7 × 1 and stride is 2. For simplicity, we do not draw the batch-normalization layer
and rectified linear unit layer before each convolution layer in Fig. 3a. The pooling layer parameter
meanings are the pooling kernel’s type, size, and stride. For example, {1dAvgPool, 4, /2} means the
pooling layer uses one-dimensional average pooling with a pooling kernel whose size is 4 × 1, and the
stride is 2. The fully-connected (FC) layer parameter is the number of the output dimension.
The DenseBlock module is shown in Fig. 3b, bn and gr are its parameters of the bottleneck structure and
the growth rate, respectively. We set bn ¼ 4, gr ¼ 48. The structure of the transition layer is shown in
Fig. 3c, Dimin is the input dimension of the transition layer, and cr is the compression rate of the
transition layer which is set to 0.5.

4.1.3 Training Parameter Setting
During training, the whole network is trained for 120 epochs using the adaptive moment estimate

algorithm with 0.0003 learning rate as the optimizer and batch gradient descent with a batch size of
512 as the optimization algorithm. The kmax of dynamic entropy parameter strategy is 0.5.

Table 1: Interference signal and their parameters setting

Interference types Parameter setting

Single-tone The center frequency fc is between [100, 500] kHz, and the phase u is between
[0, 2π].

Multi-tone The number N of audio is [2,10], and fc, u are the same as single-tone jamming.

Periodic Gaussian
pulse

The pulse period T is 2.5∼10 μs, and the duty cycle is 1/8∼1/2.

Frequency hopping N = 20, {fc} is between [100, 500] kHz, the frequency hopping period Th is
between 3.2∼6.4 μs, and the phase u is between [0, 2π].

Linear sweeping
frequency

The starting frequency fc1 is [50, 100] kHz, and the ending frequency fc2 is [300,
1000] kHz.

Sinusoidal sweeping
frequency

The frequency varies sinusoidally, and other parameters are the same as linear
sweeping frequency jamming.

BPSK modulation The information symbol is a 32-bits 0, 1 random sequence, the symbol period is
3.2 μs, and the modulation signal is sinusoidal.

Noise frequency The frequency modulation coefficient is between [0.125, 0.933], and the carrier
signal parameters are the same as single-tone jamming.

QPSK modulation The information symbol is a 32-bit 0, 1 random sequence, and the symbol period
is 3.2 μs, the I-channel modulation signal is sinusoidal, Q-channel modulation
signal is cosine.
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4.2 Performance Analysis of Data Augmentation Strategies

Four data augmentation strategies, including random cropping, multipath synthesis, down-sampling,
and noise injection, to implement DA-based contrastive learning of interference signals, are used and
analyzed in this section.

The performance of the data augmentation strategy of the interference signal is measured by the label
matching degree (LMD), as shown in Eq. (9):

LMD ¼ 1

N

XN
n¼1

�ðgkðenÞ; enÞ
k

(9)

where �ðgkðenÞ; enÞ denotes the number of samples in gkðenÞ with labels consistent with en.

The length of random cropping is 256, the number of paths of multipath synthesis is 3, the down-
sampling rate is 4, and additive white Gaussian noise with half the power of the original signal is used in
noise injection. When k = 20, Kf = 8 and JNR = −5, 0, 5, and 10 dB, the LMD of different data
augmentation strategies are shown in Fig. 4. It can be seen that the LMD of all four strategies increase
with the increase of JNR. The LMD of the random cropping strategy is optimal at different JNR.
Therefore, random cropping is used as the data augmentation in the following experiments.

(a)

(b)

(c)

Figure 3: The architectures (a) The network of DDCC; (b) The DenseBlock; (c) The Transition Layer
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When JNR is 10 dB, and the random cropping strategy is used with Kf ¼ 3, the 3D scatter plot of the
features of the interference signals obtained from the first phase of DDCC is shown in Fig. 5. Note that,
because of the normalization, all the samples are projected onto the unit circle. It can be seen that the
different types of interference signals have different intra-class compactness and high inter-class
separation. So the pre-training method, SIMCLR, can also be applied to the interference signal.

4.3 Effect of the KNNset Selection and Feature Dimensional Contrastive Learning

The data augmented and original samples are fed into the pre-training network to obtain the
corresponding KNNset. When k = 20, the LMD of two KNNsets with different JNR is shown in Table 2.
It can be seen that the LMD of the KNNset obtained according to data augmentation samples decreases
significantly when the JNR decreases. In contrast, the LMD of the KNNset obtained according to original
samples remains above 95% when JNR is −5 dB. It indicates that although random cropping can obtain

Figure 4: The LMD comparison of contrastive learning using different data augmentation strategies

Figure 5: The 3D scatter of signal features in the embedding space
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excellent LMD of KNNset, it may also lead to losing important information. Since the interference signal
contains noise, the data augmentation also affects the noise immunity performance of the algorithm.
Therefore, the KNNset is constructed according to original samples and data augmentation is not
performed on the KNNset in the second phase.

DDCC without using feature dimensional contrastive learning is abbreviated as DCC, and DDCC using
data-augmented KNNset is abbreviated as DDCC(DA). The clustering performance of these algorithms is
measured using purity, which is defined as Eq. (10):

Purity ¼ 1

N

XKc

i¼1

max
j

pi \ qj
�� �� (10)

where N is the number of samples, pi is the set of samples predicted to belong to the ith cluster, qj is the set of
samples that belong to the jth class, and pi \ qj

�� �� denotes the total number of samples in the intersection of pi
and qj.

The clustering purity of DDCC, DCC, and DDCC(DA) at different JNR is shown in Table 3. We can see
that: (1) the purity of DDCC is the highest; the purity of DDCC is higher than that of DCC, indicating that
feature dimensional contrastive learning can improve the clustering performance; the purity of DDCC is
higher than that of DDCC(DA), indicating that data augmentation to KNNset impairs the noise immunity
of DDCC. (2) The purity of DCC is lower than that of DDCC(DA) under 5 dB and 10 dB JNR, and the
purity of DCC is better than that of DDCC(DA) under −5 dB and 0 dB JNR, indicating that larger noise
power is, more severe degradation of noise immunity performance caused by data augmentation is.

4.4 Effect of Dynamic Entropy Parameter Strategy

Since datasets under various JNR are different and different pre-training networks obtained from the first
phase of DDCC lead to different KNNsets, this section analyzes the effect of the dynamic entropy parameter
strategy of DDCC.

When the entropy parameter is fixed, the purity curves of DDCC with different pre-training networks
under different entropy parameters and JNR are shown in Fig. 6. It can be seen that the optimal
parameters are related to the JNR and the pretrained network. When JNR = −5 dB, the optimal entropy
parameters of different pretrained networks are 0.15, 0.35 and 0.45, respectively. When JNR = 0 dB, the

Table 2: The LMD of different KNNsets under various JNR

KNNset\JNR −5 dB 0 dB 5 dB 10 dB

Augment data 85.45 96.52 99.35 99.81

Original data 95.58 98.97 99.94 99.98

Table 3: The purity of DDCC, DCC and DDCC(DA) under different JNR

Method\JNR −5 dB 0 dB 5 dB 10 dB

DDCC 93.06 96.07 98.78 99.98

DDCC(DA) 84.76 90.72 95.16 99.78

DCC 87.29 93.56 94.16 97.94
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optimal entropy parameters are 0.1, 0.2 and 0.5, respectively. When JNR = 5 dB, the optimal entropy
parameters are 0.15, 0.2 and 0.25, respectively. When JNR = 10 dB, the optimal entropy parameters is
0.05 and 0.15, respectively.

When using the dynamic entropy parameter strategy, the purity curves of DDCC with different pre-
trained networks under different training epoch and JNR are shown in Fig. 7. It can be seen that with the
training, the increase of entropy parameter does not cause a significant decrease of purity, and the optimal
purity of DDCC with dynamic entropy parameter is higher than that with fixed entropy parameter. In
summary, the dynamic entropy parameter strategy proposed in this paper can effectively improve the
stability of DDCC.

4.5 Clustering Performance of Different Methods for Interference Signals

This section applies DDCC, DEC, DeepCluster, DAC, SCAN, and CC to interference signals
unsupervised clustering under various JNR. The encoder of DEC, the feature extraction network of
DeepCluster, and DAC are the same as the feature extraction network of DDCC. The decoder of DEC
reconstructs the original signal through a two-layer FC layer. The network structure of SCAN is the same
as the pre-training network of DDCC. The clustering heads of DeepCluster, DAC and SCAN have the
same structure as the clustering dimensional projection head of DDCC. The network structure of CC is
identical to that of the second phase of DDCC. SCAN, CC, and DDCC all use random cropping as data
augmentation. In addition, the performance of the supervised learning method using the cross-entropy
loss function is also given. The training set of the unsupervised methods is the test set, and the supervised
learning method needs to use an additional test set to evaluate the performance. The purity curves of the
seven algorithms under different JNR are shown in Fig. 8. The purity of all methods is the average of the
results of 10 random experiments.

Figure 6: The purity of different pre-trained networks under different JNR using fixed parameter
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As can be seen from Fig. 8, the purity of all the algorithms increases with the increase of JNR, and
DDCC is the best among the six unsupervised algorithms under different JNR, especially in the low JNR
scenario. Under JNR = −5 dB, the purity of DDCC is 12% higher than that of SCAN, which is the
suboptimal method. And the purity of DDCC is close to the supervised algorithm when JNR is in the
range of −5 to 10 dB. SCAN used SCAN-loss to maintain the intra-class compactness of category
features in the second phase, but the loss function ignored their inter-class separability. Unlike SCAN,
DDCC uses double dimensional contrastive learning based on KNNset in the second phase, which
improves intra-class compactness and inter-class separability of category features and achieves better

Figure 7: The purity of different pre-trained networks under different JNR using dynamic parameter

Figure 8: The purity comparison of seven algorithms under different JNR
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clustering performance. In addition, the use of the original KNNset makes DDCC have stronger noise
immunity. CC used data augmentation samples for double level contrastive learning, which did not
explicitly utilize the feature distribution in embedding space obtained by instance-level contrastive
learning, and DA-based contrastive learning was not sufficient for obtaining good noise immunity. Unlike
CC, DDCC uses KNNset-based contrastive learning, which improves the network feature extraction
ability and avoids the problems of information loss and noise immunity degradation caused by data
augmentation, as mentioned in Section 4.3. The purity of CC is close to 100% under 10 dB JNR, which
is higher than SCAN, but its performance decreases significantly with the decline of JNR.

It also can be seen from Fig. 8 that the purity of the unsupervised algorithms which used contrastive
learning is higher than that did not use contrastive learning. The purity of DEC is the worst. DeepCluster
performs slightly better than DEC. Still, its clustering purity remains unsatisfactory, while DAC has
improved the purity in the JNR range of 0 to 10 dB compared to DeepCluster.

5 Conclusions and Discussion

An unsupervised recognition algorithm of interference signals, double phases and double dimensions
contrastive clustering was proposed in this paper. In the first phase, DA-based contrastive learnin was
used to pre-train the features extraction network. KNNset-based contrastive learning in the second phase
was proposed that used the positive and negative pairs from the KNNset obtained using the distribution
of the original signals in the feature space of the pre-trained network. In the second phase, the feature
dimensional contrastive learning improved the feature extraction ability of the network by learning the
information between the original signals, and the clustering dimensional contrastive learning achieved
clustering. Extensive simulation experiments have verified the effectiveness of DDCC. In summary,
DDCC has the following characteristics.

DDCC can unsupervised extract more meaningful semantic features and more accurate category
features. Simulation results showed the unsupervised recognition performance of DDCC for nine
interference signals is better than the other unsupervised clustering algorithms and close to the supervised
learning algorithm in the JNR range of −5 to 10 dB.

Random cropping is the best strategy among the four data augmentation strategies in the first phase of
DDCC. The double dimensions contrastive learning in the second phase, which uses the KNNset and hybrid
loss function, can fine-tune the feature extraction network and cluster more accurately and steadily.
Simulation results validated the high clustering purity of DDCC under low JNR and the stability of
DDCC. But DDCC needs to know the cluster number in advance like the other deep clustering method.

In future work, open-world recognition of interference signals will be achieved by combining open-set
recognition and incremental learning.
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