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Abstract: In recent years, the development of deep learning has further improved
hash retrieval technology. Most of the existing hashing methods currently use
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)
to process image and text information, respectively. This makes images or texts
subject to local constraints, and inherent label matching cannot capture fine-
grained information, often leading to suboptimal results. Driven by the develop-
ment of the transformer model, we propose a framework called ViT2CMH mainly
based on the Vision Transformer to handle deep Cross-modal Hashing tasks rather
than CNNs or RNNs. Specifically, we use a BERT network to extract text features
and use the vision transformer as the image network of the model. Finally, the fea-
tures are transformed into hash codes for efficient and fast retrieval. We conduct
extensive experiments on Microsoft COCO (MS-COCO) and Flickr30K, compar-
ing with baselines of some hashing methods and image-text matching methods,
showing that our method has better performance.
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1 Introduction

In recent years, with the development of multimedia and big data, deep learning networks for processing
images and texts are also developing rapidly. The typical ones are Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) [1–3]. Various CNNs have been studied to target different
application scenarios, including object detection [4], classification [5], recognition [6], retrieval [7], etc.
Similarly, different text networks are used to handle tasks such as emotion classification [8], machine
translation [9], etc. In the field of deep hash retrieval, the early deep hash learning mostly used CNNs to
extract image features, and used Long Short-Term Memory (LSTM) or RNNs [1,10] to process text.
Although CNNs have achieved good development, CNNs are limited to extracting local features and
cannot achieve a better global representation of images in feature space. On the other hand, RNNs can
utilize the entire data represented by textual features, however, RNNs are sequence-constrained, and the
output of the previous time step can be obtained to determine the input of the current time step. With the
development of deep neural networks, the emergence of transformer [11] enables a high degree of
parallelization and can model the global representation of features at each step. So the transformer
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architecture has achieved good results in some tasks of natural language processing, such as translation and
sentence classification. Among them, BERT [12] demonstrates the powerful role of the attention mechanism
in accurately perceiving textual context. The transformer encoder can be used to process not only texts but
also images, and its attention mechanism can connect different image patches to capture important
relationships between objects. Vision Transformer (ViT) [13] performs well on image recognition tasks
using self-attention without convolution, achieving results comparable to current state-of-the-art
convolutional neural networks such as AlexNet [5] and VGGNet [14]. Recently, some researchers tried to
use ViT for image hash retrieval and achieved good results. Such as TransHash [15] and Vision
Transformer based Hashing (VTS) [16]. These methods are single-modal image hashing proposed with
the development of transformer. However, there are few transformer-based fine-grained deep hashing. We
believe that fine-grained cross-modal hashing with transformer as the backbone is worth a try.

Most existing deep image text hashing utilizes the shared label information of the input image text, for
example, MS-COCO [17] contains 80 labels. Fig. 1 shows several text queries with complex semantic
information. We can see that these methods convert cross-modal matching into label matching, but these
only use the rough label information, ignoring the fine-grained high-order semantic information, often
less than expected results. Fine-grained semantic information includes higher-order relationships and
numerical information between objects. Label-matching methods may often place too much importance
on the objects appearing in the query and fail to capture some important fine-grained information, for
example, the number of cats in the first example in Fig. 1 and the man standing next to horses in the
second example instead of riding a horse. Our work is devoted to exploiting the reasoning ability and
attention mechanism of transformer encoders to study efficient cross-modal retrieval of images and texts
with fine-grained semantics. Both of these methods are designed to study concept correlation between
different modalities and achieve effective cross-modal matching. But the two methods have different
degrees of refinement for the correlation of different modal concepts. Most existing hashing methods
simply rely on matching a pre-specified set of objects, resulting in missing semantic relationships
between objects and attributes or numeral information. Different from these methods, to accomplish these
tasks, we need to have a deep semantic understanding of images and texts and analyze high-level
semantic relationships between images and texts.

For these reasons, we decide to try to exploit the processing power of transformer encoder and propose a
fine-grained cross-modal hashing method based on transformer. The method first extracts image and text
features separately, converts them into binary codes after hashing, and then matches them to a common
Hamming space for efficient retrieval. The two branches of the model utilize the self-attention mechanism

Figure 1: Examples of text queries for most existing hashing methods
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of transformer to process images and texts separately. After obtaining compact image and text features, they
are jointly input to a modal interaction layer with shared weights, and finally, the hash codes are output. Our
contributions can be summarized as follows:

1. We point out the problem that most existing hashing methods focus on label matching, and such
coarse-grained methods often lead to suboptimal results. We are dedicated to exploring fine-
grained matching methods in the current field and propose a fine-grained semantic hashing
method, which is an early attempt in the field of cross-modal hashing.

2. We propose an end-to-end cross-modal hashing method entirely based on transformer encoder, which
is one of the pioneering works to solve the fine-grained deep cross-modal hashing problem without
using convolutional neural networks at al. We use evaluation metrics commonly used in the field of
image-text matching. Experiments show on MS-COCO and Flickr30K that our model can achieve
advanced results.

2 Related Work

2.1 Coarse-Grained Deep Hashing

Hash learning has the advantages of high efficiency and low storage and is widely used in large-scale
data retrieval. Cross-modal hashing of images and text maps the data in the original feature space of the
modality to a common Hamming space, which is stored in the form of binary codes. The similarity is
judged by sorting the Hamming distance between the binary code of the query data and the binary code
of the database data. The smaller the Hamming distance, the higher the similarity. We can summarize
hash learning methods into two types: shallow hashing method and deep learning based hashing method.
Shallow hashing methods extracted hand-made features through some shallow structures. The Collective
Matrix Factorization Hashing (CMFH) proposed by Ding et al. [18] assumed that the same sample in
different models generates the same hash code, and learns different hash codes in the shared potential
semantic space. The Semantic Preserving Hashing (SePH) method proposed by Lin et al. [19] converts
the semantic affinity of training data into a probability distribution, and it is similar to the hash code to be
learned in Hamming space by minimizing KL divergence (Kullback-Leibler Divergence).

In recent years, deep learning-based deep hashing methods have performed well in retrieval performance
and efficiency. Deep Supervised Hashing (DSH) [20] was one of the early attempts to use CNNs to quantify
image features into binary hash codes. Deep Cross-Modal Hashing (DCMH) [7] was the first to combine
deep learning and hash learning and propose an end-to-end learning framework for the cross-modal
hashing of images and texts. Self-Supervised Adversarial Hashing Networks for Cross-Modal Retrieval
(SSAH) [21] was an early attempt to incorporate adversarial learning into self-supervised methods for
deep cross-modal hashing. The fusion of early and late features of Self-constraining and attention-based
hashing network for bit-scalable cross-modal retrieval (SCAHN) [22] was based on attention mechanism,
which is integrated into hash representation and hash function learning together with early and late label
constraints. Unsupervised hashing methods achieve retrieval tasks by mining structural associations
between two modalities of data. Joint-modal Distribution-based Similarity Hashing for Large-scale
Unsupervised (DJSRH) [23] proposed a joint semantic affinity matrix for input multi-modal instances that
carefully integrates raw neighborhood relations from different modalities, thus being able to capture
potential inter-instance intrinsic semantic affinity. Deep Graph-neighbor Coherence Preserving Network
for Unsupervised Cross-modal Hashing (DGCPN) [24] is derived from a graph model and solves the
problem of insufficient accuracy by exploring the fixed nature of the data in the graph.
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2.2 Transformer-Based Fine-Grained Retrieval Method

Transformer encoder consists of L identical blocks stacked. Each transformer block contains two parts,
one is a multi-head self-attention layer, and the other is a feed-forward neural network. Transformer block
uses a self-attention layer to non-linearly transform the input features to capture the internal correlation of
features and reduce the dependence on external data. The attention function is described as a mapping
from a query to a series of Key-Value pairs. Attention filters and focuses important information from
large-scale information. The weight indicates the importance of the information, and the Value indicates
the information corresponding to the weight.

The self-attention mechanism is a variant of the attention mechanism, which reduces the dependence on
external information and is better at capturing the internal correlation of data or features. The attention
mechanism can be more formally expressed as:

AttðQ; K; V Þ ¼ softmax
QKTffiffiffiffiffi
dk

p
� �

V (1)

Among Q 2 Rt�dk ; K 2 Rs�dk ; V 2 Rs�dv , s and t are the length of the input sequence and adjustment
sequence, respectively.

ffiffiffiffiffi
dk

p
is used to ease the disappearance of the softmax gradient. When Q; K; V are all

calculated from the same input set, self-attention is derived from the general attention mechanism. Under the
circumstances, t ¼ s and QKT is a square matrix, which encodes the correlation between each element in the
set and all other elements in the set. After the multi-head self-attention, the feed-forward neural network is
essentially two fully connected layers, which can be expressed as follows:

FFNðX Þ ¼ ReluðxW1 þ b1ÞW2 þ b2 (2)

It is used to further process the vector generated by the self-attention mechanism, where
x 2 R1�dx ; W1 2 Rdx�dx ; W2 2 Rdx�dx ; b1 2 R1�dx ; b2 2 R1�dx . Whether it is visual or textual, the
transformer encoder self-attention mechanism can discover the hidden relationship between vector entities.

In transformer-based fine-grained deep hashing, TransHash [15] builds a Siamese model based on vision
transformer for image hash learning. Vision Transformer Hashing (VTS) [16] uses the ViT pretrained model
to extract real-valued features, and adds a hashing module to improve the objective function by using recently
studied image hashing methods. HashFormer [25] utilized the Vision Transformer as the backbone and
binary code as an intermediate representation for the surrogate task. There are also some fine-grained but
non-hashing methods. Learning Fragment Self-Attention Embeddings for Image-Text Matching (SAEM)
[26] extracts salient image regions by bottom-up attention and labels the headwords as sentence
fragments. Build self-attention layers to model fine-grained and fine-grained segment relationships in
images and text, respectively. Transformer Reasoning Network for Image-Text Matching and Retrieval
(TERN) [27] infers two different modalities separately and enforces the final common abstract concept
space by sharing the weights of deeper transformer layers.

3 Proposed Method

3.1 Problem Formulation

Our purpose is to encode input images and text instances into hash codes and preserve the original
similarity information. Suppose we have a dataset X ¼ xif gNi¼1. It contains a set of images I and
description text T, and image-text pair information provided by annotations to supervise the learning
process. The Hamming distance of the converted binary code is used to judge whether they are similar,
and the Hamming distance of the same pair of image-text pairs should be smaller.
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3.2 Model Overview

Our model architecture is shown in Fig. 2. Our work is based on the transformer encoder structure, we
take the patches of the images as the input of the visual pipeline and the words in the text as the input of the
language pipeline. Transformer encoder can reason about these entities without considering their essence.

Image And Text Embeddings:We take the original image of size H �W � 3 as input, and then divide
each image into N patches of fixed size, each patch is P � P � 3. The number of patches N ¼ H �W=P2.
The patches of the image are represented as the set I ¼ i1; i2; . . . ; inf g as the input of the image pipeline.
The sliced patches are then linearly mapped into a 1D vector and input to the embedding layer, which then
converts the input image format to the standard transformer input format. The words of the text are
represented as the sequence C ¼ w1; w2; . . . ; wmf g as the input of the text pipeline. The embedding
process can be written as:

Z ¼ xcls; x1W ; x2W ; . . . ; xnW½ � (3)

W represents the linear transformation of the input, then add the location information of each token:

X ¼ posþ Z (4)

Transformer: The backbone of ViT and BERT is L transformer encoders. Each transformer encoder
consists of a multi-head self-attention layer and a Multi layer Perceptron (MLP). Layer Norm (LN) before
each layer, residual connections after each layer. The computation of each transformer encode block can
be expressed as:

zl ¼ Fa Fln zl�1ð Þð Þ þ zl�1

zl ¼ Fm Fln zlð Þð Þ þ zl
(5)

where l ¼ 1; 2; . . . ; L; Fa stands for multi-headed self-attention layer and Fm stands for MLP layer.

Global Fine-grained Feature: We set a special token at the beginning of the image collection and text
sequence of the model, which are called I � CLS and T � CLS respectively. T � CLS is in BERT and
I � CLS is initially a zero vector. During training and learning, the transformer encoder’s self-attention

Figure 2: Our model framework (ViT2CMH). Pictures are processed by ViT. Words are extracted using
BERT. I � CLS and T � CLS are used to carry global information along the pipeline respectively. Global
approximate hash codes for images and text are generated by a hash layer after a cross-modal transformer
encoder with shared weights, finally, the hash layer outputs to calculate the loss
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mechanism updates this information. After passing through the last layer of transformer encoder, T � CLS
and I � CLS carry the global information of text and images and are output by the hash layer, and then
calculate the loss. These two tokens carry global information and are transmitted along two pipelines.
Therefore, the number of image patches set becomes n + 1, and the number of text word sequences
becomes m + 1. The model shares the weight before calculating the loss, which can enhance the
comparability of the image and the visual abstract representation.

Hash: The I � CLS and T � CLS carrying the global fine-grained information go through the last layer
of transformer encoders and then input to the hash layer. During the training phase, the hash layer is
processed using the tanhðÞ function, and we obtain a hash vector of length b as follows:

B ¼ tanh out �medianðsoftmaxðoutÞÞð Þ (6)

3.3 Loss Function

We use a hinge-based triplet ranking loss [1]. In order to match images and texts in the same space, we
define a scoring function with the inner product s, scoring function s i; jð Þ equivalent to the cosine similarity
between image and text features. Therefore, our triplet loss function is expressed as:

Ltriplet i; cð Þ ¼ max 0; m� s i; cð Þ þ s i; c0ð Þ½ � þmax 0; m� s i; cð Þ þ s i0; cð Þ½ � (7)

Among m represents the margin parameter in triplet loss, i; cð Þ represents a positive pair, c0 represents a
negative sentence of image I, i0 represents a negative image of text C. c0 and i0 calculated by the following:

c0 ¼ argmax
d 6¼c

s i; dð Þ

i0 ¼ argmax
j 6¼i

s j; cð Þ (8)

The relationship of anchor, positive and negative can be expressed as Fig. 3:

The effect of the margin parameter is that it widens the gap between Anchor and Positive pair and
Anchor and Negative pair. For example: The distance between Anchor and Positive can be expressed as
d f ðAÞ; f ðPÞð Þ, The distance between Anchor and Negative can be expressed as d f Að Þ; f Nð Þð Þ, after
learning, d f ðAÞ; f ðPÞð Þ should be less than or equal to d f Að Þ; f Nð Þð Þ as:
d f Að Þ; f Pð Þð Þ � d f Að Þ; f Nð Þð Þ � 0 (9)

But one factor to consider is if

d f Að Þ; f Pð Þð Þ ¼ d f Að Þ; f Nð Þð Þ (10)

it is very likely that after the learning is over, all f will be learned as 0 vectors, so although the equation can
always be satisfied, it is not the result we want. So in order to ensure that the network does not always output
0 for all codes, and to ensure that it does not set all codes to be equal to each other, we need to modify this
goal, that is, this cannot be exactly less than or equal to 0, it should be less than 0, so this should be less than a
value of �m, which is the margin parameter.

Figure 3: The relationship change of anchor, positive and negative after learning
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Here, considering the performance, we only select hard negatives from one mini-batch, which can obtain
better retrieval performance and computational efficiency than all.

In addition, in order to improve the robustness, we also introduce an angular loss [28]. Angular loss adds
the triplet geometric constraint and captures the additional local structure of triplet triangles. Angular loss
encodes the triplet relationship within triplet triangles by constraining the angle at the negative point of
triplet triangles. Given the same triples, it provides additional constraints to ensure that dissimilar points
can be separated. Angle is a measure of invariant rotation and scaling, which makes the target more
robust to the large changes of feature mapping in real data. In the original paper on angular loss, the
author integrated angular loss and N-pair loss [29]. N-pair loss allows only one positive sample pair for
each class. N-pair loss uses all negative samples in batch to guide gradient update, thereby accelerating
convergence. We optimize bi-directional angular loss, using the following formula:

F a; p; nð Þ ¼ 4 tan2 a aþ pð ÞnT � 2 1þ tan2a
� �

apT (11)

Langular i; cð Þ ¼ log 1þ exp F i; c; c0ð Þð Þ½ �
þ log 1þ exp F c; i; i0ð Þð Þ½ � (12)

In which a; p; n respectively represent images or texts, a represents the angle boundary parameter. The
angle parameter limits the angle of triplet triangles in the angular loss. c0 and i0 are hard negatives selected
from a mini-batch, which are calculated by the following formulas:

c0 ¼ argmax
c6¼d

F i; c; dð Þ

i0 ¼ argmax
i 6¼j

F c; i; jð Þ (13)

Finally, the angular loss is combined with hard-negative-based triple loss, which is our formula:

L i; cð Þ ¼ Ltriplet i; cð Þ þ gLangular i; cð Þ (14)

In the following part, we will introduce our experiments and compare the influence of different value
settings of hyperparameter g on the model.

4 Experiments

Datasets: After training the model, we made a comparison with some previous work on the two public
datasets, Microsoft COCO [17] and the Flickr30K [30], and we also did some comparative experiments on
our model.

Microsoft COCO: The 2014 edition of Microsoft COCO contains 82,783 training images,
40,504 verification images and 40,775 test images (about 1/2 training, 1/4 verification and 1/4 test). Each
picture has 5 captions. We followed the allocation method in [10], using 113,287 pictures for training,
5,000 pictures for validation and 5,000 pictures for testing. The test result is reported by the average of
1,000 test images converted 5 times.

Flickr30K: Flickr30K collected 31,783 pictures on the Flickr website, among which each picture has
5 descriptions corresponding to it. Following the segmentation method disclosed in [1,10], we used
1,000 images for validating, 1,000 for testing and the rest for training.

Evaluation Metrics: For the evaluation metrics, we believe that the mean of Average Precision (MAP)
used in the hash retrieval field is based on a multi-label matching scheme. As a fine-grained matching
method, we believe that the Recall@topK method in the image-text matching field may be more suitable.
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Recall@topK refers to the ratio of the number of relevant results retrieved in the topK results to the number of
all relevant results in the database. Recall@topK is calculated as follows:

R@K ¼ TP@K

N
(15)

where TP@K represents the number of retrieved relevant results appearing in the top K positions, and N
represents the number of positive samples. K is set to 1, 5 and 10, indicating the percentage of matching
items appearing in the first, top 5, and top 10 positions respectively. The larger the R@K, the greater the
probability that the retrieved matching results are ranked in the front.

4.1 Implementation Details

In the image reasoning part, our model is a reimplementation of Google’s repository for the ViT model. We
use the version of the ViT-B-16 pre-trained model, which uses the patch sizes of 16. For the text, we use the
BERT model pre-trained in the covering language task of English sentences implemented by HuggingFace.
After the image and text pipes, we use two transformer encoder layers with shared weights to connect.

Because the image and text pipelines have to pass through the transformer encoder layer with shared
weight, their output is set to 1024 dimensions, and the output dimension of the transformer encoder layer
with shared weight is 1024 dimensions. We set the batch size to 30 and trained 30 epochs using the
Adam optimizer with a learning rate of 0.00001. The values of m and a are based on some experience
and experiments. From experience, most researchers like to set m to 0.2. For a, in its original paper, the
model performs better when a = 45°.

4.2 Performance Comparison

We first compare with some state-of-the-art and open source cross-modal hashing methods on the two
datasets in Table 1. Some data in Table 1 come from [31]. Due to the poor performance of previous methods,
we only report the test results on 100 samples. For a fair comparison, we conduct the experiments with the
hash code set to 128 bits compared to the previous hashing method. It is obvious that our model can achieve
much better results than previous hashing methods. Compared to the State-Of-The-Art (SOTA), our method
outperforms in most cases. Then we make a comparison with [31], which is also a fine-grained cross-modal
hashing method, but their method is a two-step strategy, the first step is coarse-grained primary screening,
and the second is fine-grained reranking. For a fair comparison, we only compare with their proposed
fine-grained Full-Reranking method. We do the same settings as their original paper, and the comparison
results are as Table 2. As can be seen from the table, the performance of our model is somewhat higher
than the current baseline performance.

Table 1: Comparison with other classical methods under two datasets (MS-COCO, Flickr30K)

MS-COCO Flickr30K

Task Method R@1 R@5 R@10 R@1 R@5 R@10

ViT2CMH(128) 53.3 84.6 93.7 54.9 81.5 90.3

DCMH [7] 4.0 17.0 29.0 2.0 6.0 12.0

I->T CMHH [32] 5.0 8.0 24.0 2.0 6.0 12.0

SCAHN [22] 19.0 47.0 67.0 3.0 13.0 24.0

DJSRH [23] 51.0 86.0 93.0 25.0 57.0 68.0

ViT2CMH(128) 44.5 80.3 89.9 40.8 72.7 81.2
(Continued)
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We also compare the performance of the models under different hash code lengths in Table 3. We set the
hash code to different lengths commonly used in the hash field for comparison. Experimental results show that
the performance of our fine-grained model is sensitive to hash code length. The hash code length of most of the
current hashing methods does not have a great impact on performance, because they cannot capture more fine-
grained semantic information, and shorter hash codes can already satisfy such methods as tag matching. For
fine-grained methods, longer hash codes are required to represent more and finer semantic information.

We compare not only with hashing methods but also with some image-text matching methods based on
continuous embeddings on the 1 k test set in Table 4. Some results come from [33]. The results tell that our
model is in no way inferior to these powerful image-text matching methods.

Table 1 (continued)

MS-COCO Flickr30K

Task Method R@1 R@5 R@10 R@1 R@5 R@10

DCMH [7] 4.0 14.0 27.0 2.0 8.0 9.0

T->I CMHH [32] 4.0 15.0 20.0 3.0 9.0 17.0

SCAHN [22] 17.0 48.0 68.0 3.0 11.0 21.0

DJSRH [23] 41.0 85.0 93.0 28.0 55.0 66.0

Table 2: Comparison with the current baseline method

Flickr30K Image-to-Text Text-to-Image

Method R@1 R@5 R@10 R@1 R@5 R@10

ViT2CMH(1024) 66.4 90.2 94.0 52.8 82.7 89.8

FullRerank(1024) 62.3 86.7 93.4 43.1 74.0 83.4

Table 3: Comparison of different code lengths of our method under two datasets (MS-COCO, Flickr30K)

MS-COCO Flickr30K

Task Method R@1 R@5 R@10 R@1 R@5 R@10

ViT2CMH(64) 45.9 79.7 90.4 45.5 75.4 82.6

ViT2CMH(128) 53.3 84.6 93.7 54.9 81.5 90.3

I->T ViT2CMH(256) 58.4 86.5 94.2 59.6 86.1 92.0

ViT2CMH(512) 61.3 88.4 95.3 62.5 87.9 93.8

ViT2CMH(1024) 67.9 91.7 96.9 66.4 90.2 94.0

ViT2CMH(64) 38.9 74.7 84.9 33.5 63.4 73.2

ViT2CMH(128) 44.5 80.3 89.9 40.8 72.7 81.2

T->I ViT2CMH(256) 48.0 83.2 91.9 46.3 77.9 85.8

ViT2CMH(512) 50.7 85.4 93.3 49.7 80.8 87.6

ViT2CMH(1024) 59.6 88.2 94.9 52.8 82.7 89.8
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4.3 Ablation Experiment

Our loss function consists of triplet loss and angular loss. In order to study the impact of angular loss on
the model, we compared the performance of the model on MS-COCO with different values of g. The
experimental results are shown in Table 5.

From the experimental data, we can see that only using triplet loss, the performance of the model is not
as good as using triplet loss and angular loss. And the model can perform best when g is set to 0.1.

To verify the improvement of the robustness of the model by angular loss, we conduct experiments on up
to 3,000 retrieval samples, and the experimental results are shown in Fig. 4. As can be seen from the figure, as
the number of retrieved samples increases, using angular loss will improve the robustness of the model, and
the gap between using angular loss and without angular loss will become larger and larger. With the increase
of retrieval samples, the performance of the model without AN loss will decrease more. Whether it is image
retrieval or text retrieval, angular loss has a positive effect on the improvement of model performance in both
tasks.

Table 4: Comparison with image-text matching methods under two datasets (MS-COCO, Flickr30K)

MS-COCO Flickr30K

Task Method R@1 R@5 R@10 R@1 R@5 R@10

ViT2CMH 67.9 91.7 96.9 66.4 90.2 94.0

TERN [27] 63.7 90.5 96.2 53.2 79.4 86.0

I->T VSE++ [1] 64.6 90.0 95.7 52.9 80.5 87.2

SMAN [34] 68.4 91.3 96.6 57.3 85.3 92.2

M3A-Net [35] 70.4 91.7 96.8 58.1 82.8 90.1

ViT2CMH 59.6 88.2 94.9 52.8 82.7 89.8

TERN [27] 51.9 84.9 93.6 41.1 71.9 81.2

T->I VSE++ [1] 52.0 84.3 92.0 39.6 70.1 79.5

SMAN [34] 58.8 87.4 92.0 43.4 73.7 83.4

M3A-Net [35] 58.4 87.1 94.0 44.7 72.4 81.1

Table 5: The effect of hyperparameter g on model retrieval performance

MS-COCO Image-to-text Text-to-image

Method R@1 R@5 R@10 R@1 R@5 R@10

g ¼ 1 65.3 90.6 96.8 57.5 87.4 93.5

g ¼ 0:5 67.4 90.9 96.3 56.7 87.4 94.4

g ¼ 0:1 67.9 91.7 96.9 59.6 88.2 94.9

g ¼ 0 53.8 83.0 90.5 46.4 79.7 88.5
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Figure 4: Recall@topK curves on MS-COCO. The effect of ANloss on the model is relatively obvious
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In addition, to verify the improvement of our method over convolutional neural networks, we compare it
with the Resnet-101 pretrained model for extracting raw image features. Other than that, all the settings of the
two methods are the same. We conduct experiments on MS-COCO to verify the performance comparison of
the shorter hash code (64 bits) and the longer hash code (1024 bits). We present the experimental results in
Table 6. ViT2CMH-f stands for our fine-grained feature extraction method and ViT2CMH-c stands for the
Convolutional Neural Network feature extraction method. As can be seen from the reported results, adopting
the ViT to extract the vision feature is very effective. The Resnet101 pretrained model already has excellent
performance, but for fine-grained hashing, our model performs better.

4.4 Examples of Retrieval

In Fig. 5, we show examples of results of text query images using our model. The displayed results are
generated on the Flickr30K dataset. Each image has five sentence descriptions corresponding to it, and each
sentence description has only one pair of pictures. Three examples of text query images are shown. We use
green to identify the pairs of images.

Table 6: The impact of different feature extraction methods

MS-COCO Image-to-Text Text-to-Image

Method R@1 R@5 R@10 R@1 R@5 R@10

ViT2CMH-f(64) 45.9 79.7 90.4 38.9 74.7 84.9

ViT2CMH-c(64) 35.4 63.0 73.6 27.1 50.7 59.1

ViT2CMH-f(1024) 67.9 91.7 96.9 59.6 88.2 94.9

ViT2CMH-c(1024) 53.5 81.9 90.8 43.2 76.3 84.2

Query: A group of people standing on the lawn in front of a building.

Query: Three people sit at an outdoor table in front of a building painted like the Union Jack.

Query: A security officer with a tiny face and big glasses leans on a metal gate looking into the 
camera.

in front of a build

Q y p p

Figure 5: Examples of the first four images found by text query on the Flickr30K dataset
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Through the query examples, we can see that our method can find the corresponding information
effectively and accurately. In Fig. 4, our method can ensure that semantic matching images are retrieved.
In the first four locations, except for the ground truth image, the other images retrieved are also images
with similar semantics.

5 Conclusion

In this paper, we first discuss the limitations of multi-label matching in most current hashing methods
when faced with complex semantic queries. We propose a method for extracting global fine-grained
features of images and texts based on a transformer encoder, which is a cross-modal hashing network that
completely abandons CNN. We embed fine-grained image-text features into a low-dimensional space by
minimizing a hard-negative-based triplet loss. The advantages of this method are shown by comparing
with hashing and non-hashing methods on two large datasets. We have made early attempts in the field of
fine-grained hash retrieval, but there are still some shortcomings that need to be improved, such as the
retrieval accuracy of shorter hash codes. In future work, we will learn more advanced techniques,
focusing on using shorter hash codes for more efficient and accurate retrieval.
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