
Portable and Efficient Implementation of CRYSTALS-Kyber Based on
WebAssembly

Seog Chung Seo1 and HeeSeok Kim2,*

1Department of Financial Information Security, Kookmin University, Seoul, 02707, Korea
2Department of Cyber Security, College of Science and Technology, Korea University, Sejong, 30019, Korea

*Corresponding Author: HeeSeok Kim. Email: 80khs@korea.ac.kr
Received: 05 August 2022; Accepted: 11 November 2022

Abstract: With the rapid development of quantum computers capable of realizing
Shor’s algorithm, existing public key-based algorithms face a significant security
risk. Crystals-Kyber has been selected as the only key encapsulation mechanism
(KEM) algorithm in the National Institute of Standards and Technology (NIST)
Post-Quantum Cryptography (PQC) competition. In this study, we present a por-
table and efficient implementation of a Crystals-Kyber post-quantum KEM based
on WebAssembly (Wasm), a recently released portable execution framework for
high-performance web applications. Until now, most Kyber implementations have
been developed with native programming languages such as C and Assembly.
Although there are a few previous Kyber implementations based on JavaScript
for portability, their performance is significantly lower than that of implementa-
tions based on native programming languages. Therefore, it is necessary to devel-
op a portable and efficient Kyber implementation to secure web applications in
the quantum computing era. Our Kyber software is based on JavaScript and Wasm
to provide portability and efficiency while ensuring quantum security. Namely, the
overall software is written in JavaScript, and the performance core parts (secure
hash algorithm-3-based operations and polynomial multiplication) are written in
Wasm. Furthermore, we parallelize the number theoretic transform (NTT)-based
polynomial multiplication using single instruction multiple data (SIMD) function-
ality, which is available in Wasm. The three steps in the NTT-based polynomial
multiplication have been parallelized with Wasm SIMD intrinsic functions. Our
software outperforms the latest reference implementation of Kyber developed in
JavaScript by ×4.02 (resp. ×4.32 and ×4.1), ×3.42 (resp. ×3.52 and ×3.44), and
×3.41 (resp. ×3.44 and ×3.38) in terms of key generation, encapsulation, and dec-
apsulation on Google Chrome (resp. Firefox, and Microsoft Edge). As far as we
know, this is the first software implementation of Kyber with Wasm technology in
the web environment.

Keywords: Crystals-kyber; post-quantum cryptosystem (PQC); javascript;
WebAssembly; SIMD; web application; internet of things (IoT); edge computing

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI: 10.32604/csse.2023.035064

Article

echT PressScience

mailto:80khs@korea.ac.kr
https://www.techscience.com/journal/CSSE
http://dx.doi.org/10.32604/csse.2023.035064
https://www.techscience.com/
https://www.techscience.com/doi/10.32604/csse.2023.035064

1 Introduction

As the Internet of Things (IoT) era dawns, several heterogeneous devices are now connected to the
Internet, and they need to protect transmitted secret information or privacy-sensitive data. Typically, an
encryption algorithm such as advanced encryption standard (AES), a block cipher, is used to protect
transmitted data from eavesdroppers. To share the key, used for encryption and decryption, between a
transmitter and a receiver, current public key-based key transport (e.g., Rivest–Shamir–Adleman (RSA)-
based key transport) or key agreement algorithm (e.g., Diffie–Hellman (DH) and elliptic curve DH
(ECDH)) are widely used. However, with the rapid advancement of quantum computers capable of
realizing Shor’s algorithm, currently used public key-based keying algorithms will no longer be secure.
Thus, currently, National Institute of Standards and Technology (NIST) is conducting a competition for
post-quantum cryptography (PQC) standard that is secure against quantum computers. NIST requires two
types of PQC: quantum-resistant key encapsulation mechanism (KEM) for key establishment and
quantum-resistant digital signature [1]. In July 2022, NIST selected the final standard algorithms:
Crystals-Kyber [2] for KEM and Crystals-Dilithium [3], Falcon [4], and Sphincs+ [5] for Digital
Signature Algorithm (DSA) and announced four round candidates. The reason for selecting Crystals-
Kyber is its efficiency in terms of computation and the size of ciphertext and keys. Because Crystals-
Kyber is the only algorithm for KEM standards, optimizing its performance in the web environment is
crucial. As aforementioned, because many heterogeneous devices are used in the IoT environment, it is
required to develop IoT applications that can efficiently run on any device. Therefore, the portability of
IoT applications is becoming more important. Web browsers are the most representative platform for web
applications running on IoT devices, and JavaScript, a cross-platform/browser language, is currently the
most popular language for portable web applications. Until now, some studies have been conducted for
developing portable Lattice-based PQC libraries based on Javascript for secure communication in the IoT
web environment [6–8]. Although Javascript-based crypto libraries can be executed on any IoT device
due to their portability, their performance is significantly lower than software based on native languages
such as C/C++ and Assembly.

WebAssembly (Wasm), released in 2017, is a portable execution framework for developing high-
performance web applications [9,10]. Wasm enables C/C++-based native codes to run on web
applications. Namely, Wasm modules implemented with native languages can be loaded and used by
Javascript applications in the web environment. Furthermore, with Wasm, multiple data of the same type
can be processed with single instruction multiple data (SIMD) instructions. Recently, BoSun Park et al.
presented a crypto library based on JavaScript and Wasm to provide portable, efficient, and secure
communication in web-based IoT systems [11]. However, to date, there is no Wasm-based PQC library;
thus, this study presents an optimized Crystals-Kyber-KEM library based on Wasm for both efficiency
and portability in the web environment.

The contribution of this study can be summarized as follows.

� Optimizing NTT-based Polynomial Multiplication using SIMD instructions available on Wasm
Framework

We optimize number theoretic transform (NTT)-based polynomial multiplication, one of the most core
operations in the Kyber algorithm, with SIMD intrinsic instructions available in Wasm. With a 128-bit Wasm
SIMD register, it is possible to process eight coefficients because q is 3329, which is less than 212. Our
parallel implementations of NTT conversion, point-wise multiplication, and inverse NTT conversion
provide ×6.83, ×4.95, and ×7.99 of improved performance compared with the latest Javascript
implementation from [8]. As far as we know, this is the first work optimizing NTT-based polynomial
multiplication with Wasm SIMD functionality.

2092 CSSE, 2023, vol.46, no.2

� Presenting Efficient and Portable Crystals-Kyber Library based on Wasm Framework

We present the first optimized Crystals-Kyber library by fully utilizing theWasm framework for efficient
and portable secure communication in the web environment. We construct our Wasm module containing an
NTT-based polynomial multiplication function, which is the most time-consuming operation, except for the
secure has algorithm (SHA)-3-based hash function in Kyber. The rest of the Kyber operations are
implemented with Javascript. Thus, our Kyber library is also an efficient and portable PQC KEM library
in the web environment. On Google Chrome (resp. Firefox and Microsoft Edge), our Kyber library
provides approximately ×4.02 (resp. ×4.32 and ×4.1), ×3.42 (resp. ×3.52 and ×3.44), and ×3.41 (resp.
×3.44 and ×3.38) better performance than the latest Javascript Kyber implementation [8] in terms of key
generation, encapsulation, and decapsulation, respectively.

� Presenting Optimized Wasm module implementation for Kyber-768 parameter for
Representative three Browsers

We focus on optimizing Kyber-768, providing NIST security level 3. We measure the performance on
three representative web browsers: Google Chrome, Firefox, and Microsoft Edge. Our experimental results
on these three browsers can be useful when developing secure web applications using Crystals-Kyber on the
three browsers.

The remainder of this paper is organized as follows. Section 2 describes some preliminaries about
Crystals-Kyber, NTT-based polynomial multiplication, Kyber parameters, and Wasm. Section 3 describes
previous Kyber implementations in the web environment. Section 4 presents the proposed parallel
implementation methods for NTT-based polynomial multiplication. The experimental results are given in
Section 5, and the conclusion is drawn in Section 6.

2 Preliminaries

This section describes the preliminary background of our works: the introduction of Kyber, NTT-based
polynomial multiplication, Kyber parameters, Kyber operations, and Wasm/SIMD.

2.1 Crystals-Kyber

Crystals-Kyber (Kyber) is an indistinguishability under chosen-ciphertext attack-secure (IND-CCA2)
KEM, and its security is based on the Module Ring-LWE problem [2]. The Kyber-KEM is constructed
using the Kyber public key encryption (Kyber-PKE) using the Fujisaki–Okamoto (FO) transform. Kyber-
PKE consists of three algorithms: key generation, encryption, and decryption. Except for the random
sampling based on the hash function, the core operation of each Kyber-PKE algorithm is either matrix by
vector multiplication or vector by vector multiplication. Note that each element of the matrix and vector
is over Ring Rq = Zq[X]/(X

n+ 1), where n and q are 256 and 3329, respectively. In the following
algorithm description, bold upper-case letters (e.g., A) and bold lower-case letters (e.g., s) denote
matrixes and vectors, respectively.

2.2 NTT-based Polynomial Multiplication

The major operation of matrix by vector multiplication and vector by vector multiplication is the
polynomial multiplication over Rq. The naive polynomial multiplication method requires O(n2)
complexity, where n is 256 in the case of Kyber. To accelerate the speed of polynomial multiplication
over Rq, the NTT-based polynomial multiplication method is widely used in the context of LWE-based
cryptosystems, including Kyber, because its complexity is O(nlogn) [12,13]. NTT-based polynomial
multiplication consists of three steps: NTT conversion, component-wise (or point-wise) multiplication,

CSSE, 2023, vol.46, no.2 2093

and inverse NTT conversion. In other words, the multiplication of two polynomials f ¼P255
i¼0 fiX

i and
g ¼P255

i¼0 giX
i in Rq is conducted in three steps.

� Converting each polynomial into the NTT domain with Eq. (1):

f̂ NTT fð Þ and ĝ NTT gð Þ; whereNTT fð Þ ¼ bf0 þ bf1X ; bf0 þ bf3X ; . . . ; cf254 þ cf255X� �

with bf2i ¼X127

j¼0 f2jf
2iþ1ð Þj and df2iþ1 ¼X127

j¼0 f2jþ1f
2iþ1ð Þj ðf is the 256� root of unity and

f 2iþ1ð Þj values are precomputed:Þ:

(1)

� Conducting component-wise multiplication with Eq. (2):

ĥ¼ f̂ � ĝ wherech2iþ dh2iþ1X ¼ bf2i þ df2iþ1X� � cg2i þ dg2iþ1Xð Þmod X 2�z2iþ1
� �

for i¼ 0; . . . ; 127: (2)

� Applying inverse NTT conversion with Eq. (3):

fg ¼ NTT�1 ĥ
� �

(3)

For NTT conversion and inverse NTT conversion, typically the Cooley–Tukey (CT) method [14] and
Gentleman–Sande (GS) method [15] are used, respectively.

2.3 Kyber Parameters

Table 1 shows the parameters of the Kyber algorithm. The degree n and prime q are fixed as 256 and
3329, respectively, among all security levels. k represents a security scaling factor, and it is the dimension
of a matrix and vector such as A ∈ Rk�k

q and s ∈ Rk
q. g1 , g2, du, and dv represent parameters to balance

between the ciphertext size and failure probability in the process of central binomial distribution (CBDη),
Compress, and Decompress. Kyber provides parameters for security levels 1, 3, and 5, which correspond
to AES-128, AES-192, and AES-256 security levels, respectively.

2.4 Kyber-PKE and Kyber-KEM

Algorithms 1, 2, and 3 show the key generation, encryption, and decryption of Kyber-PKE, respectively.
In these algorithms, extendable-output function (XOF) and pseudo-random function (PRF) mean an
extendable output function and a pseudorandom function, respectively. The Kyber reference
implementation uses secure hash algorithm and keccak (SHAKE)-128 and SHAKE-256 as an
instantiation of XOF and PRF, respectively. Parse is a function used to convert randomly generated byte
streams to NTT representations. CBD is a centered binomial distribution function. Encode and Decode
are used for the serialization and deserialization of Kyber data, respectively. Compress and Decompress
are used to reduce the size of a ciphertext. The details of these functions can be found in the
specifications of Crystals-Kyber.

Table 1: Crystals-kyber parameters (SL denotes the security level)

Parameters NIST SL n q k ðg1; g2Þ ðdu; dvÞ
Kyber-512 1 (AES-128) 256 3329 2 (3, 2) (10, 3)

Kyber-768 3 (AES-192) 256 3329 3 (2, 2) (10, 4)

Kyber-1024 5 (AES-256) 256 3329 4 (2, 2) (11, 5)

2094 CSSE, 2023, vol.46, no.2

Algorithm 1 generates public and private key pairs (pk, sk). A public matrix A is generated based on the
seed value ρ, and the elements in the matrix are converted into the NTT domain in step 2. The secret key
vector s and error vector e are sampled through steps 4 to 5. Then, a public key vector is generated by
computing t̂ Â � ŝþ ê in step 8 (Note that the computation is conducted in the NTT domain for
efficiency).

Algorithm 1: Kyber-PKE Key Generation

Ensure: secret key and public key pair (pk, sk)

1. d B32 //generate 32-byte random seed

2. q; rð Þ G dð Þ //generate two seed values for matrix generation and noise generation

3. Â Parse XOF qð Þð Þ //generate matrix in NTT domain with rejection sampling

4. s CBDg1 PRF r; Nð Þð Þ //generate secret key vector s with CBD sampling

5. e CBDg1 PRF r; Nð Þð Þ //generate noise vector e with CBD sampling

6. ŝ NTT sð Þ //convert secret key vector into NTT domain

7. ê NTT eð Þ //convert noise vector into NTT domain

8. t̂ Â � ŝþ ê //compute matrix–vector multiplication with point-wise multiplication

9. pk Encode12 t̂ð Þjjq //encode public key with seed for generating the matrix

10. sk Encode12 ŝð Þ //encode secret key
11. Return ðpk; skÞ

Algorithm 2: Kyber-PKE Encryption

Require: public key pk, message m, random coins r 2 B32

Ensure: ciphertext c ¼ c1; c2ð Þ
1. t̂ Decode12 pkð Þ //decode and obtain public key and seed for matrix generation

2. q pk

3. Â Parse XOF qð Þð Þ //generate matrix in NTT domain

4. r CBDg1 PRF r; Nð Þð Þ //generate random vector with CBD sampling

5. e1 CBDg2 PRF r; Nð Þð Þ //generate random error vector with CBD sampling

6. e2 CBDg2 PRF r; Nð Þð Þ //generate random polynomial with CBD sampling

7. r̂ NTT rð Þ //convert random vector into NTT domain

8. u NTT�1 Â � r̂� �þ e1 //matrix and vector multiplication and then convert normal domain

9. c1 Encodedu Compressq u; duð Þ� �
//encode the first part of ciphertext

10. v NTT�1 t̂
T � r̂

� �
þ Decompressq Decode1 mð Þ; 1ð Þ //embedding message into the second part of

ciphertext

11. c2 Encodedv Compressq v; dvð Þ� �
//encode the second part of ciphertext

12. Return c = ðc1; c2Þ

CSSE, 2023, vol.46, no.2 2095

Algorithm 3: Kyber-PKE Decryption

Require: secret key sk, ciphertext c ¼ c1; c2ð Þ
Ensure: message m

1. u DecompressqðDecodedu c1; duð Þ //decode and decompress the first part of ciphertext

2. v Decompressq Decodedv c2; dvð Þð Þ //decode and decompress the second part of ciphertext

3. ŝ Decode12 skð Þ //decode the secret key vector

4. m Encode1ðCompressq v� NTT�1 ŝT � NTT uð Þ� �
; 1

� �
//decrypt the ciphertext

5. Return m

Finally, a public key pk and a secret key sk are generated using the encoding function in steps 9 and 10.
Note that to reduce the size of pk, q is appended in pk rather than containing the whole A. In other words, if a
recipient receives pk, he/she can compute A from the q value.

Algorithm 2 generates ciphertext c from a message m using the public key pk. The generated ciphertext
consists of two parts (c1, c2). Through steps 1–3, the public key factors t̂ and Â are recovered from pk. A
random vector r, a random error vector e1, and an error polynomial e2 are sampled through steps 4–6. c1,
the first part of the ciphertext, is generated through steps 8 to 9. Note that matrix by vector multiplication
is computed in the NTT domain in step 8. c2, the second part of the ciphertext, is computed in steps
10 and 11. Vector by vector multiplication is also computed in the NTT domain in step 10.

Algorithm 3 recovers the message m from the ciphertext with the secret key sk. The original message m
comes from c2 by computing step 4. In other words, the randomness is removed by subtracting
NTT�1 ŝT � NTT uð Þ� �

from v.

As aforementioned, Kyber-KEM is constructed using Kyber-PKE, which consists of key generation,
encapsulation, and decapsulation. For INC-CCA2 security, each algorithm of Kyber-KEM is different
from the corresponding algorithm of Kyber-PKE. The most different part is between the decapsulation of
Kyber-KEM and the decryption of Kyber-PKE. Namely, the decapsulation executes an additional process
that encrypts the recovered message to check whether the generated ciphertext is the same as the received
ciphertext. The detailed Kyber-KEM process can be found in the algorithm specification and supporting
document [2].

2.5 WebAssembly and SIMD Programming

Since its release in 2017, Wasm has provided a portable execution framework for developing high-
performance web applications [9,10]. Because Wasm enables C/C++-based native codes to run on web
applications, Wasm modules with Javascript applications provide not only portability but also high
performance in the web environment. Regarding the secure execution of Wasm-based modules, because
Wasm provides a memory-safe, sandboxed execution environment inside JavaScript virtual machines, the
used browser’s security policies are applied to them. Furthermore, with Wasm, it is possible to process
multiple data in parallel in an SIMD manner. Namely, SIMD instructions in Wasm process several data
units packed in a 128-bit register in parallel. When the element size is 8-bit, sixteen elements can be
packed in a register. Similarly, eight (resp. four) and 16-bit (resp. 32-bit) data can be packed in a register.
However, currently, Wasm supports only 128-bit SIMD instructions, whereas AVX2 [16] in typical CPUs
provides a set of 256-bit registers. wasm_simd128.h defines several SIMD intrinsic functions.

Fig. 1 shows the process of building a Wasm module and using it in a web application. First, native code
modules developed in C/C++ are compiled with Emscripten SDK, producing a Wasm module (.wasm
extension). The Wasm module is a binary bytecode and consists of several standard sections such as type,

2096 CSSE, 2023, vol.46, no.2

import, and function. When the module is loaded into a web browser supportingWasm, it verifies whether the
module is valid, and the virtual bytecode is compiled into a machine code of the device (x86 or ARM) the
browser is running on.

Regarding crypto optimization using Wasm, in 2021, Bosun Park et al. presented a crypto library based
on Wasm and Javascript for providing portable, efficient, and secure communication in Web-based IoT
applications [11]. However, there is no research on optimizing the PQC algorithm using Wasm yet. Thus,
we present an optimized Crystals-Kyber-KEM library based on Wasm for efficient and secure key
establishment in the quantum computing era.

3 Related Works

Thus far, research on Kyber performance optimization has been focused on general-purpose CPUs (with
AVX2 instructions) and ARM-based embedded processors (Cortex-M4, ARMv8-A series). However, there
is little research on developing portable Lattice-based PQC libraries based on Javascript for secure web
communication. Their goal has been to prove the feasibility of using Lattice-based cryptography in the
web environment.

As a first step, in 2016, Yuan et al. presented a portable implementation of several Lattice-based
cryptosystems (NTRU, NTRU-IEEE07, Regev’s LWE, LPR10-LWE, LP10 Ring-LWE, and LP11) based
on Javascript on several web browsers (Google Chrome, Firefox, Opera, and Internet Explorer; Android
and Tessel) [6]. They optimized the core parts of Lattice-based cryptosystems such as polynomial
multiplication and discrete Gaussian sampling and measured the performance of key generation,
encryption, and decryption on their target web browsers. Furthermore, notably, they analyzed the
proportion of sub-operations constituting each key generation, encryption, and decryption. However, their
target algorithms do not belong to the NIST PQC Round 3 finalist (Parameters used by NTRU
implementation in [6] differ from those of NTRU in NIST PQC Round 3 finalist).

In 2019, Ye Yuan et al. presented Javascript implementations of five Lattice-based cryptosystems
(Lizard [17], Ring-Lizard [18], Kyber [2], FrodoKem [19], and NewHope [20]) for providing a portable
key exchange protocol in the web environment. They measured their Javascript implementations on
several web browsers and analyzed the proportion of sub-operations (matrix multiplication, error
sampling, NTT-based polynomial multiplication, and so on). In their implementation, Kyber and
NewHope outperformed Lizard, Ring-Lizard, and Frodo. Among their target algorithms, only Kyber
belongs to the NIST PQC Round 3 finalist. However, the Kyber parameters used in their implementation
are not the same as those presented in Kyber’s final round specification.

In 2021, Anton Tutoveanu presented a Kyber implementation using the parameter presented in the NIST
PQC Round 3 finalist based on Javascript and benchmarked the performance of the key establishment
process using Kyber when a client received 150,000 bytes of encrypted data from a server [8]. They
stated that the key establishment process using Kyber accounted for approximately 23% of the total
transaction time.

Until now, several Lattice-based cryptosystems have been implemented using Javascript for portability.
There is no research utilizing the latest Wasm technology. Thus, we use Wasm and take full advantage of
SIMD instructions available with Wasm for not only portability but also high performance.

Figure 1: Wasm conversion process

CSSE, 2023, vol.46, no.2 2097

Regarding Lattice-based cryptosystems, several studies have been conducted for constructing
cryptographic protocols or secure applications such as medical big data management systems [21], blind
signature schemes for blockchain-enabled systems [22], and secure distributed healthcare service design
[23].

4 Proposed Optimization Strategies of Crystals-Kyber

Our Kyber implementation is based on Wasm and takes full advantage of SIMD functionality in Wasm.
First, we profile the performance of the latest Kyber Javascript implementation [8]. Our strategy is to identify
the time-consuming parts of the Kyber Javascript implementation and then replace them with our proposed
Wasm modules for both portability and high performance. In other words, our Kyber library is implemented
with Javascript language for portability, and the time-consuming parts are implemented with Wasm modules
for efficiency.

4.1 Performance Profiling

We have profiled each key generation, encryption, and decryption of the latest Kyber Javascript
implementation. We have measured sub-operations constituting each key generation, encryption, and
decryption using the performance.now() method, which can measure time by milliseconds. Fig. 2 shows
the profiling results for Kyber key generation, encapsulation, and decapsulation. From the figure, the first
two time-consuming parts are the generation of matrix A and hash functions (SHA-3-224, SHA-3-512,
and SHAKE). Note that the matrix generation significantly uses SHA-3-related functions. Although the
ratio of A ◦ s, the multiplication between a matrix and a vector, seems to be smaller than that of matrix
generation and hash functions, the main reason for this is that the codes used for SHA-3 and its variants
(SHAKE-128 and SHAKE-256) in [8] are not optimized. Profiling results from the other literature [24]
show that the overhead of A ◦ s is larger than that of matrix generation. Furthermore, several CPUs and
ARM-based MCUs (Cortex-A53) support a hardware accelerator of SHA hash function (SHA-1 and
SHA-256) with a dedicated instruction set. Although SHA-3 is not currently supported yet, it is expected
that upcoming CPUs/MCUs will support an SHA-3 hardware accelerator. Thus, in our implementation,
we aim at optimizing the performance of NTT-based polynomial multiplication, which is the core
operation when computing matrix by vector multiplication and vector by vector multiplication with
SIMD intrinsic functions available in Wasm. Algorithms 1, 2, and 3 show the execution of NTT
conversions, point-wise multiplication, and inverse NTT conversion.

Figure 2: Timing profile of kyber operation

2098 CSSE, 2023, vol.46, no.2

4.2 SIMD Intrinsics on Wasm

Table 2 introduces Wasm intrinsic functions used to implement our parallel NTT-based polynomial
multiplication. Wasm SIMD Intrinsic functions provide 128-bit vector registers and related arithmetic
functionalities similar to Intel’s streaming SIMD extensions (SSE). However, Wasm SIMD is under
development, so its support for SIMD is incomplete. Thus, a Wasm SIMD library to directly convert
crypto software implemented with SSE extension intrinsic to a module using Wasm SIMD intrinsics is
currently unavailable. Refer to [10] for the current limitations of Wasm SIMD.

4.3 Optimization of NTT-Based Polynomial Multiplication with Wasm SIMD

NTT-based polynomial multiplication consists of three steps: NTT conversion, component-wise (point-
wise) multiplication, and inverse NTT conversion. NTT conversion step converts a polynomial a over Rq =
Zq[X]/(X

256 + 1) to 128 sub-polynomials over X2 − ζ. Two polynomials a and b over Rq need to be converted
into the NTT domain. Point-wise multiplication computes multiplications between 128 sub-polynomials
constituting a and 128 sub-polynomials constituting b. Finally, the sub-polynomials from point-wise
multiplications are converted to a polynomial c over Rq. Because each coefficient in Kyber is stored in a
16-bit integer value, eight coefficients can be loaded in a 128-bit vector. Thus, our parallel version of
each NTT conversion, point-wise multiplication, and inverse NTT conversion processes eight coefficients
in parallel. In the following subsections, we describe the target codes (NTT conversion, point-wise
multiplication, and inverse NTT conversion) and how to convert them to parallel codes with Wasm
intrinsic functions.

4.3.1 Proposed Parallel NTT Conversion
Listing 1 shows the original ntt function that converts a polynomial over Rq to the NTT domain.

Because a polynomial contains 256 coefficients, and each coefficient is less than q (=3329),
int16_t r[256] is used to express a polynomial. This ntt function is an in-place version, which

Table 2: SIMD intrinsic functions on wasm

Intrinsics Description

v ← wasm_v128_load(addr) Load 16-byte data from the addr memory address to vector v

wasm_v128_store(addr, X) Store 16-byte data in vector x to the addr memory location

v ← wasm_i16x8_splat(X) Construct a vector v with 16-bit x replicated to 8 lanes

v ←
wasm_i32x4_extmul_low_i16x8
(X, Y)

Multiply low parts of 16-bit lane-wise integer extended multiplication
(namely, it multiplies lower 16-bit four lanes)

v ←
wasm_i32x4_extmul_high_i16x8
(X, Y)

Multiply high parts of 16-bit lane-wise integer extended multiplication
(namely, it multiplies higher 16-bit four lanes)

v ← wasm_i16x8_mul(X, Y) Computes 16-bit lane-wise wrapping integer multiplication (namely,
higher 16-bit of each 32-bit multiplication results is discarded)

v ← wasm_i16x8_shuffle(X, Y,
imm)

Returns a new vector with 16-bit lanes selected from the lanes of the
two input vectors x and y specified in the 16-byte wide immediate
mode operand imm

v ← wasm_i32x4_add(X, Y) Compute 32-bit lane-wise wrapping integer addition

v ← wasm_i32x4_shr(X, scalar) Shift the bits in each lane to the right by scalar bits

CSSE, 2023, vol.46, no.2 2099

means that the intermediate results are updated to the input array r. In the ntt function, the zeta values are
precomputed and stored in the global memory area (zetas is an array containing twiddle factor values over
Rq = Zq[X]/(X

256 + 1). Steps 12–14 are called Butterfly operations because the symmetric computations are
related such as r[j + len] = r[j] − t and r[j] = r[j] + t. First, r[j + len] is multiplied by a
twiddle factor zeta. Because two 16-bit words are multiplied, the result needs to be reduced over q. This
reduction is conducted with Montgomery-based reduction. Note that fqmul(x, y) in the function
multiplies x and y and then reduces the result of multiplication with the Montgomery reduction described
in Listing 2. Then, t, the result of the reduction, is either added to or subtracted from r[j].

We parallelize the internal computation of ntt with Wasm SIMD intrinsic functions (Wasm SIMD
supports only 128-bit wide vector registers). Because each coefficient in a polynomial is less than q,
which is approximately 12-bit, eight coefficients can be loaded in a vector register of Wasm SIMD.
Namely, we process eight execution of for-loop simultaneously with Wasm SIMD. For efficiency, we
unroll the nested for-loops in ntt for easy application of the SIMD technique.

Fig. 3 shows the overall structure of the proposed parallel NTT conversion process. For simplicity, we
use a polynomial with 32 coefficients rather than 256 coefficients. First, eight coefficients are loaded into a
vector with the wasm_v128_load() function. Note that the related twiddle factors are also loaded into a
vector. Then, vector by vector multiplication is performed using two intrinsic functions: wasm_i32 ×
4_extmul_low_i16 × 8() and wasm_i32 × 4_extmul_high_i16 × 8(). In other words, wasm_i32 ×
4_extmul_low_i16 × 8() multiplies the lower 16-bit four lanes in the blue-colored vector and lower 16-bit
four lanes in the green-colored vector, and the 32-bit four results are stored in the yellow-colored vector
(low parts). Higher part multiplications are executed in the same way using wasm_i32 ×
4_extmul_high_i16 × 8(), and the results are stored in the yellow-colored vector (high parts). Because
each of the eight 32-bit results held in the two vectors is larger than q, it needs to be reduced. For
efficient reduction, Montgomery reduction is applied.

Listing 2 shows the reduction algorithms used for NTT-based polynomial multiplication.
montgomery_reduce() reduces 32-bit data to a value less than q with simple arithmetics (two-word
multiplications, one right shift, and one subtraction). Note that QINV and KYBER_Q are predefined
values for the Montgomery reduction. In our parallel implementation, eight 32-bit results are reduced

Listing 1: ntt Function for NTT domain conversion

2100 CSSE, 2023, vol.46, no.2

with our parallel implementation of the montgomery_reduce() function. It uses wasm_i16 × 8_mul() for eight
computations of a ∗ QINV in step 5 and uses wasm_i32 × 4_extmul_low_i16 × 8() and wasm_i32 ×
4_extmul_high_i16 × 8() for eight computations of t ∗ KYBER_Q in step 6. The subtraction and right
shift in step 6 are executed with wasm_i32 × 4_sub() and wasm_i32 × 4_shr(). Finally, each of the
reduced results held in the two vector registers is either added or subtracted with r[j] and then stored in r
[j] and r[j + len], respectively. As the result of NTT conversion, a 255-th degree polynomial over Rq

is converted into 128 1-th degree sub-polynomials.

Figure 3: The structure of proposed parallel NTT conversion

Listing 2: ntt function for NTT domain conversion

CSSE, 2023, vol.46, no.2 2101

4.3.2 Proposed Parallel Point-Wise Multiplication
Listing 3 shows the original poly_basemul_montgomery function that multiplies two polynomials (a

and b) in the NTT domain in a point-wise multiplication manner. Each of a and b consists of 128 1-th
degree sub-polynomials such as a = a255X þ a254; . . . ; a3X þ a2; a1X þ a0ð Þ and b = b255Xþð
b254; . . . ; b3X þ b2; b1X þ b0Þ. Point-wise multiplication computes c = c255X þ c254; . . . ;ð
c3X þ c2; c1X þ c0Þ, where c2iþ1X þ c2ið Þ ¼ a2iþ1X þ a2ið Þ � b2iþ1X þ b2ið Þ. Note that one point-wise

multiplication calls five fqmul functions because c2iþ1X ¼ a1 � b0 þ a0 � b1ð ÞX ; c2i ¼ a0 � b0þð
a1 � b1 � f2iþ1Þ, where X 2 ¼ f2iþ1.

Fig. 4 shows the overall structure of the proposed parallel point-wise multiplication process. For
simplicity, we use a polynomial with 32 coefficients rather than 256 coefficients. The proposed method
computes eight point-wise multiplications in parallel. First, eight sub-polynomials of a (resp. b) are
loaded into two vector registers v1 and v0 (resp. v3 and v2). Furthermore, coefficients with (resp. without)
X are loaded into v3 and v1 (resp. v2 and v0) vector registers. Twiddle factors are also loaded into a
temporary vector register vt. Then, v1, v3, and vt are multiplied with two fqmul executions and stored in a
temporary register vlower. v0 and v2 are also multiplied with one fqmul execution, and the result is
accumulated to vlower register. The coefficients in vlower are (e.g., (c14, c12, . . ., c2, c0)) without X. The
accumulation of two vector multiplication results (e.g., (v1 and v2, and v0 and v3)) with two fqmul
executions constructs coefficient c2iþ1 (e.g., c15, c13, . . ., c3, c1)) with X. The main computation in the
proposed parallel point-wise multiplication is fqmul. In our parallel fqmul implementation, first, eight
coefficients of two vectors are multiplied with wasm_i32 × 4_extmul_low_i16 × 8() and wasm_i32 ×
4_extmul_high_i16 × 8(). Then, the results of multiplications are reduced with Montgomery reduction,
which is described in the proposed parallel NTT conversion.

4.3.3 Proposed Parallel Inverse NTT Conversion
Listing 4 shows the original invntt function, which converts a polynomial (consisting of 128 1-th

degree sub-polynomials) in the NTT domain to a polynomial over Rq. The structure of invntt is similar
to that of ntt, except for its sequence of operations. The execution of addition and subtraction precedes
multiplication with fqmul (the zeta value used in the multiplication is the inverse value of zeta in the ntt

Listing 3: poly_basemul_montgomery function for point-wise multiplication

2102 CSSE, 2023, vol.46, no.2

function). Because the result of addition may become larger than q, it needs to be reduced using the Barrett
reduction method. The function for Barrett reduction is given in Listing 2, and it is related to two-word
multiplications, one addition, one subtraction, and one right shift (v value is the precomputed value (1 <<
26) and is determined at compile time). The result of Barrett reduction and the result of fqmul are stored
in r[j] and r[j + len], respectively. Note that the final 256 coefficients (steps 17–21) need to be
multiplied by f value (2−7 mod q) with fqmul because coefficients are doubled at each layer as the result
of addition and subtraction.

Figure 4: The structure of proposed parallel point-wise multiplication

Listing 4: invntt function for inverse NTT conversion

CSSE, 2023, vol.46, no.2 2103

Fig. 5 shows the overall structure of the proposed parallel inverse NTT conversion process. For
simplicity, we use a polynomial with 32 coefficients rather than 256 coefficients. Eight r[j] values and
eight r[j + len] values are loaded into two vectors (vector1 and vector2), respectively. Then,
vector1 and vector2 are added using wasm_i16 × 8_add(), and the results are reduced by our parallel
Barrett reduction method. Our parallel implementation of Barrett reduction uses wasm_i32 ×
4_extmul_low_i16 × 8() and wasm_i32 × 4_extmul_high_i16 × 8() to compute eight multiplications of
v*a. Eight multiplications of t * = KYBER_Q are computed with wasm_i16 × 8_mul_low_i16 × 8(). The
results of Barrett reduction are stored in their original memory locations r[j]. The results of (vector1–
vector2) are multiplied with twiddle factors and then reduced by Montgomery reduction. The final results
of the reduction are stored in their memory addresses r[j + len].

5 Performance Analysis

In this section, we analyze our proposed implementations and compare them with those of previous
studies. For efficiency comparison, we measure the execution times and compare them with those of
previous studies. Because our software is a web-based cryptographic library, it will run on web browsers
on personal computers or smartphones. Thus, the code size is not a meaningful comparison factor. For
performance analysis and comparison, we use three browsers: Google Chrome, Firefox, and Microsoft
Edge. Table 3 shows the experimental environment for performance analysis.

First, we analyze the performance of the proposed parallel implementation of NTT-based polynomial
multiplication and compare it with the previous implementations. Table 4 compares the performance of
the proposed implementation with the latest Crystals-Kyber Javascript implementation from [8]. In
Table 4, Wasm means NTT-based polynomial multiplication steps implemented with only the C language
using the Wasm framework. This Works means that each step in NTT-based multiplication is
implemented with Wasm SIMD functionality. From the table, the proposed SIMD implementation
outperforms the latest Javascript implementation from [8] by ×6.83, ×4.95, and ×7.99 in terms of NTT
conversion, point-wise multiplication, and inverse NTT conversion. Compared with our naive Wasm

Figure 5: The structure of proposed parallel inverse NTT conversion

2104 CSSE, 2023, vol.46, no.2

implementation, our SIMD implementation provides ×2.24, ×2.344, and ×2.113 superior performance in
terms of NTT conversion, point-wise multiplication, and inverse NTT conversion. Although we
parallelize the internal process of NTT-based multiplication by eight data units, the performance
improvement is less than eight times. This is because the overhead of data conversion between the
Javascript and Wasm data types is large, as well as loading data to SIMD registers and storing them in
memory, is significant.

We integrate the proposed parallel implementation of NTT-based polynomial multiplication into
Crystals-Kyber software. Tables 5–7 compare our Kyber software with the latest Kyber Javascript
implementation from [8] on Google Chrome, Firefox, and Microsoft Edge in terms of key generation,
encapsulation, and decapsulation. For key generation (resp. encapsulation and decapsulation), our
software provides ×4.02 (resp. ×3.42 and ×3.41), ×4.32 (resp. ×3.52 and ×3.44), and ×4.1 (resp.
×3.44 and ×3.38) improved performance on the three browsers, respectively. The proposed Kyber
implementation based on Wasm SIMD outperformed the previous work.

Table 3: Performance measurement environment

Operating system Windows 10 Pro 64-bit/Ubuntu Linux 16.04

CPU/RAM Intel i9-10900 K 3.70 GHz/32 GB

SW Chrome

Firefox

Microsoft Edge

Language Javascript

WebAssembly

Table 4: Performance of NTT-based polynomial multiplication (Measured by milliseconds. The performance
improvement ratio was obtained by comparison with JS [8].)

Methods NTT Point-wise multiplication InvNTT

JS [8] 0.01914 0.0262 0.02717

Wasm 0.0065 0.012 0.0082

This Work 0.0028 0.0053 0.0034

(×6.83) (×4.95) (×7.99)

Table 5: Performance measurement results with google chrome (Measured by milliseconds)

Methods KeyGen Encapsulation Decapsulation

JS [8] 1.975 2.3319 2.2709

This Work 0.491 0.6817 0.6661

(×4.02) (×3.42) (×3.41)

CSSE, 2023, vol.46, no.2 2105

6 Conclusion

In this study, we present the first implementation of Crystals-Kyber with Wasm in the web environment.
Using the SIMD functionality of the Wasm framework, we parallelize NTT-based polynomial multiplication
with intrinsic functions. Our optimized parallel implementation of NTT-based polynomial multiplication
outperforms the previous Javascript NTT implementation by ×6.83, ×4.95, and ×7.99 in terms of NTT
conversion, point-wise multiplication, and inverse NTT conversion, respectively. Based on the proposed
parallel NTT-based multiplication, we propose a Crystals-Kyber Wasm module for providing security
levels 1, 3, and 5. The proposed Crystals-Kyber module can be used by various web applications for key
establishment processes in TLS v1.3, SSH (Secure Shell), IPSec IKE (Internet Key Exchange), and so on.
Our future work is to design and implement a hybrid key exchange mode using Crystals-Kyber and
classical ECDH, which are described in NIST 800-56C rev2 [25].

Funding Statement: This work was supported by Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2022-0-01019,
Development of eSIM security platform technology for edge devices to expand the eSIM ecosystem).
This was partly supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC
(Information Technology Research Center) support program (IITP-2022-RS-2022-00164800) supervised
by the IITP (Institute for Information & Communications Technology Planning & Evaluation).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] NIST, “Nist post-quantum cryptography,” 2022. [Online]. Available: https://csrc.nist.gov/Projects/post-quantum-

cryptography.

[2] P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz et al., “Crystals-kyber,” 2021. [Online]. Available: https://pq-
crystals.org/kyber/index.shtml.

[3] V. Lyubashevsky, L. Ducas, E. Kiltz, T. Lepoint, P. Schwabe et al., “Crystals-dillithium,” 2021. [Online].
Available: https://pq-crystals.org/dilithium/index.shtml.

Table 6: Performance measurement results with firefox (Measured by milliseconds)

Methods KeyGen Encapsulation Decapsulation

JS [8] 4.7037 5.9620 6.1148

This Work 1.0888 1.6938 1.7776

(×4.32) (×3.52) (×3.44)

Table 7: Performance measurement results with microsoft edge (Measured by milliseconds)

Methods KeyGen Encapsulation Decapsulation

JS [8] 1.9639 2.3402 2.2163

This Work 0.479 0.6803 0.6557

(×4.1) (×3.44) (×3.38)

2106 CSSE, 2023, vol.46, no.2

https://csrc.nist.gov/Projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://pq-crystals.org/kyber/index.shtml
https://pq-crystals.org/kyber/index.shtml
https://pq-crystals.org/dilithium/index.shtml

[4] T. Prest, P. -A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky et al., “Falcon,” 2021. [Online]. Available:
https://falcon-sign.info.

[5] J. -P. Aumasson, D. J. Bernstein, W. Beullens, C. Dobraunig, M. Eichlseder et al., “Sphincs+,” 2021. [Online].
Available: https://sphincs.org/index.html.

[6] Y. Yuan, C. -M. Cheng, S. Kiyomoto, Y. Miyake and T. Takagi, “Portable implementation of lattice-based
cryptography using javascript,” International Journal of Networking and Computing, vol. 6, no. 2, pp. 309–
327, 2016.

[7] Y. Yuan, J. Xiao, K. Fukushima, S. Kiyomoto and T. Takagi, “Portable implementation of lattice-based
cryptography using javascript,” Security and Communication Networks, vol. 2018, pp. 9846168:1–
9846168:14, 2018.

[8] A. Tutoveanu, “Active implementation of end-to-end post-quantum encryption,” Cryptology ePrint Archive,
Report 2021/356, 2021. [Online]. Available: https://eprint.iacr.org/2021/356.

[9] WebAssembly Community Group, “Webassembly,” 2022. [Online]. Available: https://webassembly.org.

[10] WebAssembly Community Group, “Porting simd code targeting webassembly,” 2022. [Online]. Available:
https://emscripten.org/docs/porting/simd.html.

[11] J. S. BoSun Park and S. C. Seo, “Efficient implementation of a crypto library using web assembly,” MDPI
Electronics, vol. 9, no. 11–1839, pp. 1–23, 2020.

[12] C. Agarwal and R. Burrus, “Fast convolution using fermat number transforms with applications to digital
filtering,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 2, no. 22, pp. 87–97, 1974.

[13] G. Seiler, “Faster avx2 optimized ntt multiplication for ring-lwe lattice cryptography,” IACR Cryptol. ePrint Arch,
2021. [Online]. Available: https://eprint.iacr.org/2021/356.

[14] T. J. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Mathematic
of Computation, vol. 19, no. 90, pp. 297–301, 1965.

[15] W. M. Gentleman and G. Sande, “Fast fourier transforms: For fun and profit,” in Proc. AFIPS’66, New York, NY,
USA: Association for Computing Machinery, pp. 563–578, 1966.

[16] Intel, “Intel haswell new instruction descriptions,” 2012. [Online]. Available: https://www.intel.com/content/www/
us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-
for-avx2.html.

[17] J. H. Cheon, D. H. Kim and Y. Song, “Lizard: Cut off the tail! practical post-quantum public-key encryption from
lwe and lwr,” IACR Cryptol. ePrint Arch, 2016. [Online]. Available: https://eprint.iacr.org/2016/1126.pdf.

[18] J. H. Lee, D. Kim, H. Lee, Y. Lee and J. H. Cheon, “RLizard: Post-quantum key encapsulation mechanism for IoT
devices,” IEEE ACCESS, vol. 7, pp. 2080–2091, 2018.

[19] E. Alkim, J. W. Bos, L. Ducas, P. Longa, I. Mironov et al., “Frodokem,” 2021. [Online]. Available: https://
frodokem.org.

[20] E. Alkim, R. Avanzi, J. W. Bos, L. Ducas, A. d. l. Piedra et al., “Newhope,” 2021. [Online]. Available: https://
newhopecrypto.org.

[21] C. Li, M. Dong, J. Li, G. Xu, X. -B. Chen et al., “Efficient medical big data management with keyword-searchable
encryption in healthchain,” IEEE Systems Journal, vol. 16, no. 4. pp. 1–12, 2022.

[22] C. Li, Y. Tian, X. Chen, and J. Li, “An efficient anti-quantum lattice-based blind signature for blockchain-enabled
systems,” Information Sciences, vol. 546, no. 6, pp. 253–264, 2021.

[23] C. Li, M. Dong, J. Li, G. Xu, X. Chen et al., “Healthchain: Secure EMRs management and trading in distributed
healthcare service system,” IEEE Internet of Things Journal, vol. 8, no. 9, pp. 7192–7202, 2020.

[24] P. Sanal, E. Karagoz, H. J. Seo, R. Azarderakhsh and M. Mozaffari-Kermani, “Kyber on arm64: Compact
implementations of kyber on 64-bit arm cortex-A processors,” IACR Cryptol. ePrint Arch, 2021. [Online].
Available: https://eprint.iacr.org/2021/561.

[25] NIST, “Recommendation for key-derivation methods in key establishment schemes,” 2020. [Online]. Available:
https://csrc.nist.gov/publications/detail/sp/800-56c/rev-2/final.

CSSE, 2023, vol.46, no.2 2107

https://falcon-sign.info
https://sphincs.org/index.html
https://eprint.iacr.org/2021/356
https://webassembly.org
https://emscripten.org/docs/porting/simd.html
https://eprint.iacr.org/2021/356
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2.html
https://eprint.iacr.org/2016/1126.pdf
https://frodokem.org
https://frodokem.org
https://newhopecrypto.org
https://newhopecrypto.org
https://eprint.iacr.org/2021/561
https://csrc.nist.gov/publications/detail/sp/800-56c/rev-2/final

	Portable and Efficient Implementation of CRYSTALS-Kyber Based on WebAssembly
	Introduction
	Preliminaries
	Related Works
	Proposed Optimization Strategies of Crystals-Kyber
	Performance Analysis
	Conclusion
	References

