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Abstract: Computer-aided diagnosis (CAD) models exploit artificial intelligence
(AI) for chest X-ray (CXR) examination to identify the presence of tuberculosis
(TB) and can improve the feasibility and performance of CXR for TB screening
and triage. At the same time, CXR interpretation is a time-consuming and subjec-
tive process. Furthermore, high resemblance among the radiological patterns of
TB and other lung diseases can result in misdiagnosis. Therefore, computer-aided
diagnosis (CAD) models using machine learning (ML) and deep learning (DL)
can be designed for screening TB accurately. With this motivation, this article
develops a Water Strider Optimization with Deep Transfer Learning Enabled
Tuberculosis Classification (WSODTL-TBC) model on Chest X-rays (CXR).
The presented WSODTL-TBC model aims to detect and classify TB on CXR
images. Primarily, the WSODTL-TBC model undergoes image filtering techni-
ques to discard the noise content and U-Net-based image segmentation. Besides,
a pre-trained residual network with a two-dimensional convolutional neural net-
work (2D-CNN) model is applied to extract feature vectors. In addition, the
WSO algorithm with long short-term memory (LSTM) model was employed
for identifying and classifying TB, where the WSO algorithm is applied as a
hyperparameter optimizer of the LSTM methodology, showing the novelty of
the work. The performance validation of the presented WSODTL-TBC model
is carried out on the benchmark dataset, and the outcomes were investigated in
many aspects. The experimental development pointed out the betterment of the
WSODTL-TBC model over existing algorithms.
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1 Introduction

Tuberculosis (TB) arises from the Mycobacterium bacteria that frequently affect the lungs and other
parts of their bodies (extrapulmonary). As a result of misdiagnosis, lack of appropriate treatments, and
diagnostic delay, many TB patients have lost their lives yearly. Even though TB is a global problem, the
mortality rate is increasingly common in lower and middle-income countries [1]. TB has certainly curable
when it is detected early for proper treatment. Earlier diagnoses are crucial for preventing more spread,
decreasing mortality rates, and successful treatment according to the World Health Organization (WHO)
End TB approach. The golden rule for TB screening is Sputum culture [2]. Nevertheless, posterior-
anterior chest X-rays (CXR) are a powerful method with moderately low and low-cost radiation dosages
for lung abnormality screening to accomplish prompt outcomes. Simultaneously, the application was
restricted from developed countries, whereas TB is more common [3]. The higher TB burden region
lacks the professional and skilled radiological experts to interpret CXR images adequately.

Computed tomography (CT) is regarded as the most standard TB recognition methodology [4]. For
many of the prior cases, TB prognosis can be confirmed through chest X-rays (CXRs) provided the
radiation dose, cost, accessibility, and the capability for revealing the unpredicted pathological changes
between TB recognition techniques [5]. For centuries, authors have concentrated on advancing a
computer-aided detection (CAD) module for the early prognosis of TB-based syndromes through medical
imaging. At the initial levels, CAD is a reliable rule-oriented system for selecting and extracting valuable
pathogenic characteristics in images to earn useful quantitative insight; still, these methodologies are
time-consuming and demand mainly the artificial abstraction of paradigms with helpful information [6].
As the appearance of numerous ailments mainly covers a very small section of the whole image, the
difficulty faced in the feature detection procedure is rapidly compounded. Additionally, with increasing
therapeutic image data and growing alterations of the syndrome, issues like lousy transferability between
distinct datasets and unbalanced execution regarding afresh produced data have halted the CAD method
from framing a reasonable decision having more accuracy [7].

With the advent of developments in deep learning (DL), the convolutional neural network (CNN) has
constantly exceeded classical recognition systems in attaining superordinate acts for image-related
categorization and identification issues [8—10]. The superlative capability to mechanically abstract
valuable features from the inherent features of data creates CNN the primary choice for complicated
medical problems resolving [11-13]. Theretofore, CAD systems entrenched with DL methods function
effectively for medical disease recognition by producing a variety of high-quality diagnostic resolutions
by underlining suspicious characteristics in different fields of medical imaging [14—16].

The researchers in [17] discover transfer learning (TL) ’s utility in medical imaging for TB recognition.
The researchers depict an enhanced methodology for TL on the general technique of utilizing ImageNet
weights. They found the lower-level features obtained by ImageNet weights were useless for imaging
tasking for modalities such as X-rays. They further suggest a brand-new methodology to acquire low-
level features by drilling the systems in a multiclass multilabel state. The research scholars in [18]
intended to leverage DL for detecting TB in chest radiograms in yearly health analysis facts of workers
and comparing the executions of CNNs depending on image (I-CNN) and CNN’s having demographic
variables (D-CNN). For TB, D-CNN and I-CNN methods are trained on 1,000 chest X-ray images,
negative and positive.

Hijazi et al. [19] grant a collaborative DL for TB recognition with the help of canny edge detected and
chest x-ray images. The abovementioned methodology presents a novel kind of feature for the TB
recognition classifiers raising the errors of base classifiers. The primary feature set can be derived from
the novel x-ray images, whereas the secondary feature sets are from the edge detection images. In [20],
the authors suggested a method for TB screening utilizing Chest X-ray images in which the decision to
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get through 3 base learners was merged with a type-1 Sugeno fuzzy integral related ensemble approach.
Fuzzy measures needed under this fuzzy integral-related ensembling methodology were fixed by
experimentation in numerous advanced works. To address this manual tuning, the researchers employed
meta-heuristic optimization systems to optimally improve the fuzzy measures during training.

In [21], the researchers suggest pre-processing and voting variations-related ensemble CNN methods for
TB recognition. The researchers use 40 diverse variations in finely tuned CNN methodologies based on
Xception and InceptionV3 through contrast-limited-adaptive-histogram-equalization (CLAHE) pre-
processing method [22] and ten different image transformations for data augmentation kinds. Later
examining all such grouping schemes, 3 or 5 best classifier systems were chosen as base learners for
voting functions. Hwa et al. [23] performed TB recognition utilizing DL, and contrast-enhanced-canny-
edge-detected (CEED-Canny) x-ray images are provided. The CEED-Canny generates pulmonary x-ray
edge-detected images of two procedures of features produced; the initial one is derived from the
Enhanced x-ray imageries, whereas another is from the edge-detected imageries. The presented feature
difference raised the variety of mistakes of the base classifiers and enhanced the TB recognition. The
authors in [24] proposed a novel hybrid method to classify TB on CXR images using the MobileNet
model. In addition, the Artificial Ecosystem-based Optimization (AEO) algorithm is a feature selector.

This article develops a Water Strider Optimization with Deep Transfer Learning Enabled Tuberculosis
Classification (WSODTL-TBC) model on CXRs. The presented WSODTL-TBC model undergoes image
filtering techniques to discard the noise content and U-Net-based image segmentation. Besides, a pre-
trained residual network with a two-dimensional convolutional neural network (2D-CNN) model is
applied to extract feature vectors. In addition, the WSO algorithm with long short-term memory (LSTM)
model was employed to identify and classify TB where the WSO algorithm is applied as a
hyperparameter optimizer of the LSTM algorithm. The performance validation of the presented
WSODTL-TBC model is carried out on the benchmark dataset, and the results are investigated in several
aspects.

The rest of the paper is arranged as follows. Section 2 elaborates on the presented WSODTL-TBC
model. Section 3 provides a detailed result analysis of the proposed model. Finally, Section 4 draws the
concluding remarks of the study.

2 The Proposed Model

This study established a novel WSODTL-TBC model to identify TB on CXR images. Fig. 1|
demonstrates the overall process of the WSODTL-TBC algorithm. Initially, the WSODTL-TBC model
receives CXR images as input. It undergoes an image filtering technique to remove the noise, and the U-
Net-based image segmentation technique is utilized to identify the affected regions in the CXR images.
Followed by the pre-trained ResNet with a 2D-CNN model applied to extract feature vectors. Then, the
extracted feature vectors are passed into the LSTM model for the recognition and classification of TB.
Since hyperparameters significantly affect the performance of the LSTM model, implementing the WSO
algorithm as a hyperparameter optimizer in the final stage determines a more efficient LSTM model.

2.1 Noise Filtering

Initially, the median filtering (MF) technique is utilized to discard the noise present in the CXR images.
It works similarly to mean filtering by moving with the image on a pixel basis but substituting every pixel
value with the median value of the adjacent pixel values. Every pixel value in the pattern of neighboring
values is arranged numerically, and the pixel being treated is swapped with the median pixel value in the
neighboring pixel values previously organized. It reduces noise with no minimization of the sharpness of
the image.
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f(x7y> = median(u,v)ery{g(ua V)} (1)

where K,, relates to coordinate sets centered at the point (X,y) in a rectangular sub-image window.
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. Pre-processing Stage .

Feature Extraction Process
using
ResNet with 2D-CNN Model

Classification Process Performance Measures

using Accuracy
- Water Strider Optimization
Sensitivity
Hyperparameter Tuning
using E-Score
LSTM Model MCC

Figure 1: Overall process of WSODTL-TBC approach

2.2 U-Net-Based Image Segmentation

At this stage, the pre-processed images are fed into the U-Net model to segment the images. The
performance of the DL model was severely impacted by data quality. Inappropriate features might result
in a sub-optimal model and biased learning performance. As a result, it is essential to train the model and
segment the lung region on the lung ROI to assist them in learning appropriate features regarding normal
lungs or other indicators. The U-Net is the predominant CNN model that is utilized for accurate and
precise segmentation of medical images [25]. The main benefit of U-Net is that it could manage data
shortage and learn in smaller trained sets. It can be consist of a contracting or encoding path and an
expanding or decoding path, carrying out pixel-wise class segmentation. The feature map from the
different levels of the encoder is passed through the decoder to forecast features at different complexities
and scales.

2.3 Transfer Learning-Based Feature Extraction

Once the images are segmented, the pre-trained ResNet with the 2D-CNN model is applied to extract
feature vectors. In this study, we employed 2D-CNN models for classification problems. In the case of
2D images, / is the input, K represents a 2D kernel, and the mathematical expression of the convolutional
function is given in the following:

I K)(ij) =Y > 1(m,n)K (i —m,j—n) )

Further, to gain nonlinearity, ReLU and SoftMax functions are used. The activation function ReLU is
formulated by the following equation:



CSSE, 2023, vol.46, no.2 1341

ReLU(x) = max (0,x)x € R 3)

The gradients of ReLU(x) = 1 for x > 0 and ReLU~(x) = 0 for x < 0. The ReLU convergence ability
is better than sigmoid nonlinearity. Next, the SoftMax operation is mathematically formulated in the
following expression [26]. The softmax nonlinearity function is applicable once the output needs to be
added in one or two classes.

e“
<K
SE e

where ¢ denotes softmax, Z implies the input vector, e represents the input vector’s exponential function, K
indicates the number of classes, and ¢% represents the exponential function for the output vector.

Softmax ¢ (Z);

“4)

The CNN model pooling layer is applied to output statistical analyses of the input and resizes the output
shape with no data loss. There are various pooling layers, and we use the maximal pooling layer that creates
the maximal value in an independently rectangular neighborhood of single point (i, j) for 2D datasets of
input features, correspondingly. An FC layer is a final layer with n and m inputs, and the output size is
defined in the following. The the weight matrixes W € M,,, formulate the output layer parameter. While
n columns, m rows, and a bias vector b € R”. Given that an input vector x € R", the FC layer PC output
with £ activation function is arithmetically formulated as follows:

FC(x) = f(Wx+b) € R" (5)

Let Wx be the product of the matrix, where the function f is employed element-wise. The FC layer is
employed for the classification problem. To enhance the 2D-CNN prediction ability, we applied transfer
learning (TL) ResNet-50 models. The TL technique is extensively applied in COVID-19 subtype
recognition [27], medical image filtering, and image classification tasks. Now, we integrated the TL-
ResNet-50 CNN pre-train methods to improve the presented algorithm’s prediction accuracy. The ResNet-
50 pre-trained model is trainable on the imageNet dataset and transports the weight of the trainable
parameter to the 2D-CNN models. It fine-tunes the model with chest X-ray images for the last
classification of 2D-CNN models. The architecture of ResNet-50 comprises five steps, and every step
with identity and convolution blocks. Every convolution block has three layers of identity and
convolution blocks. Additionally, ResNets-50 is a variant of ResNet architecture with one average pool
layer, forty-eight convolutional layers, and 1max-pool. The ResNet-50 architecture has above
74,917,380 trained parameters.

2.4 TB Classification Model

Next to the feature extraction process, the LSTM model is utilized to identify and classify TB. LSTM is a
special kind of RNN that is planned for handling the vanishing or exploding problems dealt with by RNN.
The LSTM, like other types of RNNSs, creates its outcome dependent upon the input in the present timestep
and the outcome of the initial timestep and sends the current output to the next timestep [28]. All the LSTM
units contain memory cell ¢, that preserved their state over arbitrary time intervals and three nonlinear gates
containing an input gate #,, forget gate f; and output gate 0,. These gates were planned to regulate data flow to
and from memory cells. Fig. 2 depicts the framework of LSTM.

Assume ©, a(.), and tanh(.) represent the product, elementwise sigmoid function, and hyperbolic
tangent function correspondingly. x, and /4, denote the input vector, and the hidden state (HS) vector at
time ¢. U and W depict the weighted matrices of gate or cell to input x,, HS 4,, and b implies the bias
vector. The forget gate resolves that data requires that forgotten with outputting a number from zero and
one, based on the following formula.
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f, = U(VV}h;,] + fot + bf) (6)
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Figure 2: Architecture of LSTM (x,: input vector, 4,: hidden vector; ¢;: output vector)

An input gate resolves that novel data is stored by calculating i, and ¢, and integrating them based on the
following formulas.

i = a(Wih;_1 + Ux; + b;) (7

¢; = tanh (W h;—y + Uyx; + b.) )

a=r0c1+iO¢ 9
The output gate chooses that parts of cell states are outputted based on the succeeding formulas.

0; = a(Wohi—1 + Uyx, + b,) (10)

hy = 0, ® tanh(¢;) (11)

For capturing the future context and the previous context, BILSTM integrates forward h as well as
backward #, HS. These outcomes from the temporal data flow from both ways and optimum learning
from the networks. The GRU has been easier than LSTM, which contains two gates, update gate r, which
integrates the forget and input gates, and reset gate z. Related to LSTM, the update, as well as reset, was
calculated as:

I’t = 5(tht71 + Ur.xt + b}’) (12)
ze = 0(Wzhi—1 + U.x; + by) (13)

In which 6(.) refers to the logistic sigmoid function and b, W, and U are previously. The reset gate
chooses if the preceding HS is ignored, and the update gate selects the data count approved to the present
state. The HS was calculated as follows:

he=(1—2z)Oh_1+2zOh (14)

h, = tanh (Wiz,(hf*1 Or) + Uﬁ,x’) (15)

2.5 Hyperparameter Optimization

In this study, the WSO algorithm is applied as a hyperparameter optimizer of the LSTM model. The
WSO algorithm is a metaheuristic approach, and the inspiration comes from the mating style, nature of
territorial, progression of water strider (WS) bugs, feeding, and intellectual ripple interaction [29]. The
mathematically modeling of the WSO algorithm has been represented as follows. The WS or candidate
solution is produced arbitrarily in the searching region:
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WS? = Lb + rand.(Ub — Lb);i = 1,2,... nws (16)

In Eq. (16), the starting location of i-th WS in the lake (search region) is denoted as WS? . Lb and Ub
indicate minimal and maximal limits of parameters. rand means an arbitrary value ranging from 0 to 1, and
nws represents the population size. The objective function defines the starting location of WSs to calculate

the fitness value (FV). In order to generate a set of nt regions, the WS get sorted to depend on the FV and n_w;s
n
group count is arranged. The j-th member of each group is allotted to the j-th area, where = 1,2,..., nt.
Consequently, the WS, count alive in all the regions correspond to n—M;S The location in each region with
n

the minimal and maximal FV are processed as male and female. The male WS transmits the ripple to the
females during the process. Because the reply of female WS remains unidentified, a (p) likelihood is
defined for identifying repulsive or attractive responses. The position of male WS gets upgraded by the
following equation:

WSt = WS! + R.rand; if mating occurs (with p probability ) a7)
WS = WS + R.(1 + rand); or else
The length of R is calculated by:
R= WS — st (18)

From the above expression, the male and female WSs in the (¢ — 1)”’ cycle are represented as WS!~! and

WSi-!. Mating expends considerable energy for WS and the male starts the foraging procedure. The
objective function is evaluated to check the presence of food. Once the FV exceeds the early FV, the male
WS has recognized food in a novel position. Next, the male WS starts to move toward the optimum WS
of the lake for defining the food as follows:

WSt = WSt + 2rand* (WSy, — WS!) 19)

Once the WS is present in a recently created position, the male WS can’t recognize the food, they will
die, and a novel WS gets substituted with the following equation:

WS = Lb + rand” (Ub; - Lb!) (20)

Let Ubj’. and Lb; be the upper and lower limits of the WS position inside the j-th region. Once the ending
condition is not satisfied, the WSO algorithm returns the mating procedure for a novel loop, and the
maximum amount of FV is processed as the termination condition.

The WSO algorithm develops a fitness function (FF) for achieving higher classifier efficacy. It solves a
positive integer for demonstrating the optimal effectiveness of candidate results. The reduced classifier error
rate FF is providing in Eq. (21) has been treated during this work.

number of misclassified samples

fitness(x;) = ClassifierErrorRate(x;) = * 100 (1)

Total number of samples

3 Results and Discussion

The experimental validation of the WSODTL-TBC model is tested using a CXR dataset from the Kaggle
repository (available at https://www.kaggle.com/datasets/tawsifurrahman/tuberculosis-tb-chest-xray-datase).
The dataset holds a total of 4200 images, with 3500 images under the Normal class and 700 images under the
TB class, as illustrated in Table 1. Fig. 3 shows the sample set of images produced by the different stages of
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the proposed model. The figures indicated that the proposed model effectually segmented and classified the
images.

Table 1: Dataset details

Class name No. of images
Normal 3500
Tuberculosis 0700

Total no. of instances 4200

§ - ~e——,

(©) (d)

Figure 3: Sample results of WSODTL-TBC model (a) Input image, (b) Pre-processed image, (c) Segmented
image, and (d) Classified image

Fig. 4 depicts the confusion matrix created by the WSODTL-TBC model on the test data. The figure
implied that the WSODTL-TBC model had recognized CXR images proficiently under all epochs. For
instance, with 100 epochs, the WSODTL-TBC model has categorized 3479 and 661 samples under the
normal and TB classes, respectively. Moreover, with 600 epochs, it has classified 3423 and 605 samples
under the the normal and TB classes, correspondingly. Moreover, with 1200 epochs, its approach has
individually classified 3486 and 668 samples under the normal and the TB class.

Table 2 presents detailed TB classification outcomes of the WSODTL-TBC model under distinct epoch
counts. Complementary, Fig. 5 offers a thorough average accu, investigation of the WSODTL-TBC model
on the test data implying an improvement in average accu, values under each epoch. For example, with
100 epochs, the WSODTL-TBC approach has given an average accu, of 98.57%. Simultaneously, with
400 epochs, it has offered an average accu, of 98.90%. In addition, with 1000 epochs, it has presented an
average accu,, of 98.38%.
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Figure 4: Confusion matrices of WSODTL-TBC approach (a) epoch 100, (b) epoch 200, (c) epoch 300,
(d) epoch 400, (e) epoch 500, (f) epoch 600, (g) epoch 700, (h) epoch 800, (i) epoch 900, (j) epoch 1000,

(k) epoch 1100, and (1) epoch 1200

Table 2: Result analysis of WSODTL-TBC algorithm with various measures and epochs

Class labels Accuracy Sensitivity Specificity F-score MCC
Epoch-100

Normal 98.57 99.40 94.43 99.15 94.82
Tuberculosis 98.57 94.43 99.40 95.66 94.82
Average 98.57 96.91 96.91 97.40 94.82
Epoch-200

Normal 97.95 98.63 94.57 98.77 92.67
Tuberculosis 97.95 94.57 98.63 93.90 92.67
Average 97.95 96.60 96.60 96.34 92.67
Epoch-300

Normal 98.79 99.57 94.86 99.27 95.59
Tuberculosis 98.79 94.86 99.57 96.30 95.59
Average 98.79 97.21 97.21 97.79 95.59
Epoch-400

Normal 98.90 99.60 95.43 99.34 96.03
Tuberculosis 98.90 95.43 99.60 96.67 96.03
Average 98.90 97.51 97.51 98.01 96.03
Epoch-500

Normal 98.24 98.77 95.57 98.94 93.71
Tuberculosis 98.24 95.57 98.77 94.76 93.71
Average 98.24 97.17 97.17 96.85 93.71
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Table 2 (continued)

Class labels Accuracy Sensitivity Specificity F-score MCC
Epoch-600

Normal 98.86 99.43 96.00 99.32 95.87
Tuberculosis 98.86 96.00 99.43 96.55 95.87
Average 98.86 97.71 97.71 97.93 95.87
Epoch-700

Normal 98.57 99.23 95.29 99.14 94.84
Tuberculosis 98.57 95.29 99.23 95.70 94.84
Average 98.57 97.26 97.26 97.42 94.84
Epoch-800

Normal 98.69 99.49 94.71 99.22 95.25
Tuberculosis 98.69 94.71 99.49 96.02 95.25
Average 98.69 97.10 97.10 97.62 95.25
Epoch-900

Normal 95.90 97.80 86.43 97.55 85.11
Tuberculosis 95.90 86.43 97.80 87.55 85.11
Average 95.90 92.11 92.11 92.55 85.11
Epoch-1000

Normal 98.38 99.49 92.86 99.03 94.10
Tuberculosis 98.38 92.86 99.49 95.03 94.10
Average 98.38 96.17 96.17 97.03 94.10
Epoch-1000

Normal 98.67 99.46 94.71 99.20 95.16
Tuberculosis 98.67 94.71 99.46 95.95 95.16
Average 98.67 97.09 97.09 97.57 95.16
Epoch-1200

Normal 95.86 97.46 87.86 97.51 85.12
Tuberculosis 95.86 87.86 97.46 87.61 85.12
Average 95.86 92.66 92.66 92.56 85.12

Fig. 6 presents a brief average sens, examination of the WSODTL-TBC methodology on the testing
dataset, pointing toward improving average sens, values under each epoch. For example, with
100 epochs, the WSODTL-TBC algorithm has given an average sens, of 96.91%. Meanwhile, with
400 epochs, it has offered average sens, of 97.51%. Besides, with 1000 epochs, it has presented average
sens,, of 96.17%.



1348 CSSE, 2023, vol.46, no.2

Epoch-100 Epoch-700

3 ‘ °
} ! ® Epoch-200 ® Epoch-800
1 [ ® Epoch-300 Epoch-900
| ; ® Epoch-400 ® Epoch-1000
| ‘ @® Epoch-500 @® Epoch-1100
Epoch-600 Epoch-1200

-~ 100.0 e 2 s p‘  E—

S / \ | ‘

>

v

T

-

H 95.0

v

<

o

>

< 90.0 1 . e

85.0
80.0 - T T

1 2 3 4 5 6 7 8
No. of Epochs

Figure 5: Average accu, analysis of WSODTL-TBC technique with various epochs
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Figure 6: Average sens, analysis of WSODTL-TBC technique with various epochs

Fig. 7 offers an average spec, examination of the WSODTL-TBC methodology on the testing dataset,
denoting a remarkable improvement in average spec, values under each epoch. For example, with
100 epochs, the WSODTL-TBC algorithm has presented average spec, of 96.91%. Simultaneously, with
400 epochs, it has offered an average spec, of 97.51%. In addition, with 1000 epochs, it has presented an
average spec, of 96.17%.
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Fig. 8 gives a comprehensive average Fi..,. examination of the WSODTL-TBC approach on the testing
dataset, pointing to enhancing the average F'.,,. values under each epoch. For example, with 100 epochs, the
WSODTL-TBC algorithm has presented an average Fi.,,. of 97.40%. Concurrently, with 400 epochs, it has
offered an average Fi.,. of 98.01%. In addition, with 1000 epochs, it has given anaverage Fj..,. 0f 97.03%.
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Figure 8: Average Fy.,. analysis of WSODTL-TBC technique with various epochs

The training accuracy (TA) and validation accuracy (VA) achieved by the WSODTL-TBC method on
testing data is established in Fig. 9. The experimental result inferred that the WSODTL-TBC approach
had accomplished maximal values of TA and VA. In particular, the VA appeared to be greater than TA.
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Figure 9: TA and VA analysis of the WSODTL-TBC technique
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The training loss (TL) and validation loss (VL) attained by the WSODTL-TBC technique on testing data
are demonstrated in Fig. 10. The experimental result implied that the WSODTL-TBC algorithm had gained
minimum values of TL and VL. Specifically, the VL seems lesser than TL.
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Figure 10: TA and VA analysis of the WSODTL-TBC technique
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A detailed precision-recall inspection of the WSODTL-TBC approach to testing data is represented in
Fig. 11. By noticing the figure, it is observed that the WSODTL-TBC algorithm has obtained maximal
precision-recall performance under each class.
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Figure 11: Precision-recall analysis of the WSODTL-TBC technique

Finally, a detailed comparative study of the WSODTL-TBC model with existing models is demonstrated
in Table 3 [24]. The results implied that the WSODTL-TBC model showcased effectual outcomes over all the
current models. Concerning sens,, the WSODTL-TBC model has provided a higher sens, of 97.51%,
whereas the VGG-16, VGG-19, Inception-v3, Xception model, and AlexNet models have attained lower
sens,, of 86.93%, 89.49%, 91.29%, 87.46%, and 91.19% respectively.

Table 3: Comparative analysis of WSODTL-TBC approach with existing algorithms

Methods Sensitivity Specificity Accuracy F-score
VGG-16 86.93 92.28 86.26 87.53
VGG-19 89.49 88.23 92.39 84.94
Inception-V3 91.29 91.57 91.06 85.96
Xception model 87.46 87.81 87.65 85.89
AlexNet model 91.19 92.80 92.30 95.16
WSODTL-TBC 97.51 97.51 98.9 98.01

4 Conclusion

In this study, a novel WSODTL-TBC algorithm was proposed for the recognition of TB on CXR images.
At the initial stage, the WSODTL-TBC model undergoes image filtering techniques for noise removal and U-
Net-based image segmentation. The pre-trained ResNet with the 2D-CNN model is applied to extract feature
vectors. Moreover, the WSO algorithm with the LSTM model is utilized for identifying and classifying TB,
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where the WSO algorithm is applied as a hyperparameter optimizer of the LSTM approach. The performance
validation of the presented WSODTL-TBC algorithm is carried out on the benchmark dataset, and the
outcomes are investigated in many prospects. The experimental results pointed out the betterment of the
WSODTL-TBC model over existing algorithms with a maximum sensitivity of 97.51%, specificity of
97.51%, the accuracy of 98.9%, and F-score of 98.01%. Thus, the WSODTL-TBC model was applied as
an effectual tool for TB categorization. In the future, the hybrid U-Net segmentation technique will
enhance the WSODTL-TBC model’s overall performance. In addition, the proposed model can be
implemented in a real-time healthcare environment.
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