
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputer Systems Science & Engineering
DOI: 10.32604/csse.2023.035732

Article

Quantum Computing Based Neural Networks for Anomaly Classification
in Real-Time Surveillance Videos

MD. Yasar Arafath1,* and A. Niranjil Kumar2

1Department of Computer Science Engineering, Jairupaa College of Engineering Thottiapalayam,
Tirupur District, 641604, Tamilnadu, India

2Department of Electronics and Communications Engineering, Dhanalakshmi College of Engineering,
Chennai, 600015, Tamilnadu, India

*Corresponding Author: MD. Yasar Arafath. Email: yasar.annauni@gmail.com
Received: 01 September 2022; Accepted: 08 December 2022

Abstract: For intelligent surveillance videos, anomaly detection is extremely
important. Deep learning algorithms have been popular for evaluating real-
time surveillance recordings, like traffic accidents, and criminal or unlawful
incidents such as suicide attempts. Nevertheless, Deep learning methods for
classification, like convolutional neural networks, necessitate a lot of comput-
ing power. Quantum computing is a branch of technology that solves abnor-
mal and complex problems using quantum mechanics. As a result, the focus
of this research is on developing a hybrid quantum computing model which is
based on deep learning. This research develops a Quantum Computing-based
Convolutional Neural Network (QC-CNN) to extract features and classify
anomalies from surveillance footage. A Quantum-based Circuit, such as the
real amplitude circuit, is utilized to improve the performance of the model.
As far as my research, this is the first work to employ quantum deep learning
techniques to classify anomalous events in video surveillance applications.
There are 13 anomalies classified from the UCF-crime dataset. Based on
experimental results, the proposed model is capable of efficiently classifying
data concerning confusion matrix, Receiver Operating Characteristic (ROC),
accuracy, Area Under Curve (AUC), precision, recall as well as F1-score. The
proposed QC-CNN has attained the best accuracy of 95.65 percent which
is 5.37% greater when compared to other existing models. To measure the
efficiency of the proposed work, QC-CNN is also evaluated with classical and
quantum models.

Keywords: Deep learning; video surveillance; quantum computing; anomaly
detection; convolutional neural network

1 Introduction

Surveillance is quickly gaining popularity due to technological advancement that may be utilized
to safeguard life safety as well as break through security barriers. Closed-Circuit Television (CCTV)
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cameras were broadly utilized for monitoring and security events, as well as supplying proof to the
surveillance system [1].

These cameras continually create massive amounts of video data, necessitating manual monitoring
attempts which are both time-consuming and inaccurate, necessitating the use of automated monitor-
ing approaches. Because of the limited effectiveness of surveillance using humans, law enforcement
authorities had a difficult time catching or averting unusual situations. A computer vision-based
system that can successfully identify normal or anomalous occurrences without human intervention is
needed to identify anomalous activity. This automated system not only aids in monitoring, but it also
decreases the amount of human labor necessary to sustain 24-hour manual observation [2]. Anomalous
behavior identification is the process of detecting patterns as well as occurrences that differ from the
usual [3].

Researchers have developed a few new strategies for detecting anomalies in surveillance footage
[4–12]. These studies identify anomalies in surveillance recordings of populated spaces such as retail
malls and public areas. They primarily concentrate on binary categorization, such as aggressive or
disaster, and thus provide a partial answer for application in real-world circumstances. In real-life
circumstances, the efficiency of the algorithms was significantly inferior because the various and dense
form of monitoring data renders it difficult to identify all probable abnormal occurrences.

The majority of the above strategies struggle from a high false alarm rate. Moreover, while these
strategies function very effectively on simple datasets, their efficiency is restricted when dealing with
real-life events. Also, the computation process to detect and classify multiple anomaly types is higher.
The accuracy of anomaly detection should be further improved.

Quantum computing becomes a potential subject that may be able to assist to solve this issue
through drastically new structures. As a result, research and development of new deep learning
algorithms relying on quantum computers become critical to stay up with possible AI achievements.

Quantum computing could be a whole new computing model which uses quantum physics rather
than conventional physics. Rather than traditional bits, quantum computing employs quantum bits,
also qubits, which work with the superposition as well as uncertainty inherent in quantum physics [13].
Researchers investigated and presented the viability of expanding machine learning systems into the
quantum domain to attain considerably enhanced results. Previous research has shown that quantum
machine learning techniques possess a high potential for solving traditional tasks [14].

Some works used quantum machine learning for image classification tasks [14–17]. Inspired by
this, an anomaly event detection and classification model are proposed for detecting anomalous events
in surveillance videos. To the best of our understanding, this is the first work to use quantum deep
learning for anomalous event classification.

The key contributions can be summarized as follows.

• To propose a Quantum deep learning-based model named Quantum Computing based Convo-
lutional Neural Network (QC-CNN) for anomaly detection and classification in surveillance
videos. To obtain better performance through the quantum-based circuit, such as an absolute
amplitude circuit.

• The results of testing the proposed models using the benchmark dataset UCF-Crime show
better performances than existing works. Concerning accuracy, ROC, AUC, precision, recall,
and F1-score, the proposed QC-CNN surpasses existing techniques.
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The rest of this work is organized as follows. Section 2 summarises the associated research
on anomalous behavior recognition techniques. Section 3 introduces the proposed abnormal event
detection approach, as well as the Quantum Computing-based deep learning approach. Section 4
contains the experimental outcomes. Section 5 ends with the conclusion.

2 Related Works

Deep learning using a homomorphic encryption technique has been introduced in [18] to secure
data privacy whenever customers utilize the cloud-based deep learning approach. However, the
complexity is high when the depth of the networks is increased. The detection rate was tested in [19]
by feeding adversarial data into the Autoencoder as well as Convolution Neural Network (CNN). But
other parameters to verify the model were not discussed.

A new anomaly detection technique is proposed in [20] to find anomalies in surveillance videos.
CNN and two prominent customized approaches were used for feature extraction from videos. This
method fails to recognize some anomalous frames due to their similarity to regular ones.

In [21], a new two-stream-based convolutional network method for identifying anomalies from
surveillance footage was suggested. Nevertheless, considering new inputs, the suggested anomalous
event detection approach requires development.

To detect unusual occurrences in the surveillance camera, a novel structure combining ResNet50
and ConvLSTM was proposed in [22]. But, the accuracy is not improved by the designed method.

The authors of [23] presented a Quantum Generative Adversarial Network (QGAN) design for
a cloud-based human-centered approach. The synthetic dataset is utilized in this work for traditional
data categorization problems. The authors of [24] suggested a Hybrid classical-quantum Autoencoder
(HAE) model with four datasets for monitoring gas power stations. The anomaly is detected and the
performance is evaluated here.

For medical image classification, two models, Quantum orthogonal neural Networks (QONN)
and Quantum-assisted Neural Networks (QANN) were proposed in [25]. All of the existing methods
are based on quantum machine learning and serve different purposes. There are no existing quantum
machine learning models in video surveillance applications, as far as we know.

Variational quantum circuits with deep reinforcement learning were researched by Chen et al. (2020)
[26]. To describe variational quantum circuits, they rebuilt classical deep reinforcement learning
methods like experience replay as well as target network. Also, they adopted a quantum information
encoding approach to reduce the number of model parameters when compared to traditional neural
networks. Yano et al. (2021) [27] suggested a quantum classifier based on Quantum Random-
Access Coding (QRAC) for a discrete-featured dataset. The system’s major benefit is that it offers
a mechanism for encoding an input bitstring to a quantum state with fewer quantum bits.

3 Methodology

This section describes the proposed work in detail. Using a Quantum machine learning model,
anomalies in real-time surveillance videos are detected and classified. Quantum Computing based
Convolutional Neural Network (QC-CNN) is proposed, detailed in the subsections below.
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3.1 Overview of the Work
The flow of the proposed work is given in Fig. 1. The very first step involves dividing the dataset

to test data and training data according to the input videos in the dataset. The next step is to pre-
process the original video, where the video frames are extracted and resized. From the pre-processed
training data, the spatiotemporal features are removed, and then anomaly detection and classification
are performed. Using the test dataset, the anomaly detection from the video frames is evaluated. 13
real-world anomalies are classified from the surveillance videos.

Figure 1: Flow diagram of proposed work

3.2 Dataset
The dataset from which the proposed method was evaluated [28]. It comprises uncut surveillance

recordings which include 13 real-life anomalies, involving Explosion, Robbery, Abuse, Shooting,
Arson, Shoplifting, Assault, Vandalism, Fighting, and Burglary. These anomalies were chosen because
they pose a serious threat to public safety. The dataset is 128 h long, with an average of 7247 frames in
1900 videos.

Training and test data: The dataset is divided into two sections: a training set with 800 normal
videos and 810 anomalous videos (described in Table 1). A testing set comprises 150 normal videos
and 140 abnormal videos. The 13 anomalies from the videos across various temporal positions are
present in both the training and testing sets. In Table 1, the numbers in brackets denote the training
set’s number of videos.

Table 1: The total number of videos of each anomaly in the dataset

No. of videos Anomaly

50 (48) Abuse
150 (127) Road accidents
50 (45) Arrest
50 (41) Arson
150 (145) Robbery
50 (47) Assault
50 (27) Shooting
100 (87) Burglary
50 (29) Shoplifting
50 (29) Explosion

(Continued)
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Table 1: Continued
No. of videos Anomaly

100 (95) Stealing
50 (45) Vandalism
50 (45) Fighting
950 (800) Normal events

3.3 Pre-processing
It includes extracting frames from a video sequence. Following that, each obtained video frame

is resized according to the input size of the model which is utilized in the subsequent steps of feature
extraction. To be compatible with the proposed procedure, the UCF-crime dataset is split into many
video frames. After that, each video frame size is standardized to 224 × 224 × 64. The pre-processing
of an image enables it to be fed into a Classification model. An identical set of procedures were used
in the testing phase of this research. The proposed model was tested on videos; therefore, the frames
of the videos were looped while testing and all of the frames were treated to the same pre-processing
as the training images.

3.4 Basic Notations on Quantum Computing
3.4.1 Qubits

In quantum computers, qubits [29] seem to be the basic units of data. A physical qubit resides in
a state that is a superposition of two others, |0〉| and |1〉.

The state |ψ〉 of the qubit represents the state’s probability distribution which can be written as,

|ψ〉 = α| 0〉 + β| 1〉 (1)

3.4.2 Quantum Measurement

Quantum measurement seems to be an irreversible process, where data regarding a one qubit’s
state is obtained while superposition gets destroyed. In terms of Hilbert Space, ψ〉 can be seen as a
vector in (1). (i.e., it denotes a vector space provided along an inner product process),

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
(2)

where α, β ∈ C indicates the likelihood of detecting the states |0〉 and |1〉, with the restriction
∣∣α2

∣∣ +∣∣β2
∣∣ = 1.

3.4.3 Quantum Gates

Quantum gates, indicated using the letter Z and it is the fundamental quantum circuits that operate
with a finite amount of qubits. It serves as a foundation for quantum circuits in the same way that
classical logic gates serve as the foundation for ordinary digital circuits. Quantum gates were known
as unitary operators, and it can be denoted as Z† Z = ZZ† = I, whereas Z seems to be a unitary matrix
with respect to a certain basis, and the character † represents the conjugate transpose. Z is used to
preserve the inner product of the Hilbert space. In Bloch sphere, the quantum state vector during
rotation is used to represent qubit gate operations.

The typical quantum gates utilized here were discussed further below.
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1) Hadamard gate, which seems to be a one-qubit gate can be defined as,

Hg = 1√
2

(
1 1
1 −1

)
(3)

This gate provides the superposition principle of two states, particularly plus state, beginning with
the single state qubit |0〉.

2) Rotation gates,

RGl (θ) , RGm (θ) , RGn (θ), which are one-qubit gates represented by rotation matrices along the
l̂, m̂, and n̂ axes of the Bloch sphere, accordingly. The gate RGm (θ), that can be utilized below, has the
following shape:

RGm (θ) =
⎛
⎜⎝cos

θ

2
−sin

θ

2

sin
θ

2
cos

θ

2

⎞
⎟⎠ (4)

3) CNOT gate, which is a two-qubit gate can be defined as,

Z =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ (5)

Whenever the input consists of the fundamental states |0〉 and |1〉, this gate alters the state,

α00 |00〉+α01 |01〉+α10 |10〉+α11 |11〉 into α00 |00〉+α01 |01〉+α10 |11〉+α11 |10〉. (6)

That is, it switches the second qubit (which is the targeted qubit) only when the first qubit
(controlled) is |1〉.

3.5 Data Embedding
A quantum circuit that is parameterized is generally utilized as a hidden layer to construct a hybrid

QNN in the neural network. However, in the case of classical network topologies, realizing a quantum
representation of classical data which is high higher dimensional while building the hybrid model is
crucial for incorporating the quantum element into the classical design. A basic discussion of how to
create a quantum state at this point is provided in this work.

A unitary operator is used to process a feature mapping first. This is given to a group of N|0〉
quantum nodes as a method for encoding classical data in the new N-qubit space. Before actually
applying this to the quantum circuit, a unitary matrix should be traditionally constructed. The
previous classical node values at the moment of insertion define its parameters. The previous classical
activation can be reflected by the associated amplitude probability for estimating |1〉 in this process in
the quantum state, which is known as data embedding.

The parameterized quantum circuit has been used after the classical encoding process. A param-
eterized quantum circuit is one in which the rotation angles of every gate are defined with the help
of elements in a classical vector (input). The output from a prior layer in the neural network can
be gathered and utilized as input for the parameterized circuit. The measured data from the quantum
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circuit is gathered and given to the next hidden layer. Fig. 2 depicts the configuration between classical
and quantum layers as an illustration [29].

Figure 2: The interface between classical and quantum layers

3.6 Quantum Circuit for Anomaly Detection and Classification
A real amplitude circuit (Quantum circuit) is selected to be used in the proposed QC-CNN [29].

This will give us a better understanding of how the final output is affected by gates and assist in
speeding the key computing procedures.

As seen in Fig. 3, every qubit travels via Hadamard gate. Then, experience gate rotation having
parameters θ (θ can be obtained from the output of the previous classical node). This procedure
can be used for converting classical information into quantum data. The qubits would then be
progressively entangled with the use of CNOT gates. The second parameter θ is utilized as “quantum
weights” translating toward the subsequent nodes in the classically fully connected layer throughout
the validation as well as testing procedure.

3.7 Deep Learning-Based QC-CNN Classifier
This section describes how the anomaly is classified using the proposed QC-CNN. Initially, the

pre-processed input data is given as input to CNN layers. Three convolutional and pooling layers are
responsible for extracting the spatio-temporal features from video frames. The output from the max-
pooling layers (pooled feature maps) is then flattened into a vector given which is given to the quantum
circuit. This is shown in Fig. 4.
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Figure 3: Real amplitudes circuit

Figure 4: Architecture of the proposed QC-CNN model

• Convolutional layer

The most significant component of a CNN seems to be the convolution layer. This is the initial
layer of a CNN that extracts features with a help of a convolution filter (also called the kernel) from
the input (X × Y). From the input image, Kernels derive learnable parameters (such as weights) by
employing forward propagation as well as backward propagation. To accomplish this task, a filter with
size 3 × 3 has been dragged across the input matrix with stride 1. Element-wise matrix multiplication
is performed and total the results at each step. A feature map is created as a result at the end.

The neuron value concerning position (x, y) in the jth feature map for layer i can be given as,

Duv
rs = f

(
brs +

∑
t

∑Xr−1

a=0

∑Yr−1

b=0
wab

rst D(u+a)(v+b)

(r−1)t

)
(7)

where t indexes the feature map in the (r − 1)th layer connected to the current (sth) feature map, wab
rst is

the weight of position (a, b) connected to the tth feature map, Xr and Yr Are the height and the width
of the convolution kernel, and brs Is the bias of the sth feature map in the rth layer.

In the above equation, t denotes the feature map in the (r − 1)th layer linked to the present (sth)
feature map, wab

rst denotes the weight of position (a, b) linked to the tth feature map, Xr represents
the height of the kernel in the convolutional layer. and Yr denotes the width of the kernel in these
convolutional layers. Also, brs represents the bias of the sth feature map in the rth layer.

• Activation function

Because most data in the actual world is nonlinear, activation functions are utilized to perform
nonlinear data transformations. It ensures that the input space representation is mapped to a separate
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output space that meets the requirements. CNN uses a nonlinear activation function called the ReLU.
This activation function’s result appears to be a continuous variable. When the input was negative, the
output equals 0; else, the output is the same as the input. The ReLU function [30] is mathematically
denoted as follows:

f (x) = max (o, x) (8)

where x is the neuron’s input.

Another prominent consideration to utilize ReLU during the training of CNN is that it is much
quicker than its competitors (sigmoid and tanh). All negative inputs are set to zero in ReLU, meaning
that many nodes are ignored and will never be evaluated in future training.

• Pooling layer

A pooling layer is added between successive convolutional layers and is not trainable. The goal
of introducing a pooling layer appears to be to lower the number of parameters and the network’s
computing cost. This layer works independently on each input slice to resize it spatially. A filter with
a size of 2 × 2 as well as a stride of 2 has been the most common sort of pooling layer. Every input
depth slice, as well as the height and breadth, is down-sampled by two in each step. Pooling processes
include max-pooling, average pooling, and min-pooling, among others. The CNN model employs the
max-pooling, computed over every 2 × 2 tiny region in a depth slice.

To determine the output dimension of the max-pooling operation, the below mathematical
expression can be utilized [31]:

mo = floor
(

mi − f
s

)
+ 1 (9)

where mi represent the dimension of the input image. f and s denote the filter size and the stride size
respectively.

• Fully connected layer and Quantum circuit

The suggested model includes two fully connected layers, one of which is put before the quantum
layer and the other placed after it. These layers can be used to modify the quantum layer’s input and
output sizes so that they correspond to the number of classes needed by the chosen dataset. To put
it differently, the purpose of these two classical neural layers is to provide the coexistence of classical
and quantum layers in the structure of the model. Also, it enables data embedding from the image
space to the quantum capacity. In fully connected layers, all nodes of a layer engage and are linked
to all other nodes of succeeding levels to make choices (classification, feature extraction). This help to
determine the general connection of the characteristics. We add two fully linked non-linear layers to
guarantee that these nodes communicate smoothly and account for all potential dependencies at the
feature level.

In terms of the quantum component, the quantum layer (Quantum Circuit) seeks to profit from
the qualities of probabilistic QC. This will detect and classify the anomaly types from the extracted
feature vector. The classified anomaly types are Burglary, Fighting, Abuse, Robbery, Arson, Shooting,
Assault, Shoplifting, Explosion, and Vandalism.
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4 Result and Discussion

The performance standards as well as the empirical results of the proposed QC-CNN are discussed
in this section. The proposed model’s effectiveness is quantitatively assessed via well-quality metrics
such as the recall, confusion matrix, F1-score, precision, accuracy, ROC, and AUC.

The models were trained on Google Colaboratory using Python’s sklearn package (version 1.0.2),
and each user may expect: 1) a GPU Tesla 82 with 2498 CUDA cores, compute 3.7, 12-G GDDR5
VRAM; 2) a CPU single-core hyper threaded, i.e., (one core, two threads) Xeon Processors @2.20 GHz
(No Turbo Boost); 3) 45-MB Cache; 4) 12.4 GB of accessible RAM; as well as 5) 320 GB of storage
available. Every QCNN classifier, independent of the circuit used, was given training for 100 epochs
with the Adam optimizer and a learning rate of 0.0001 using cross-entropy as the loss function. The
CNNs were trained in the same manner, but it took 150 epochs for them to converge. The simulation
parameters are provided in Table 2.

Table 2: Hyper-parameters

Parameter Value

Epoch 150
Learning rate 0.0001
Optimizer Adam
Activation function ReLu
Number of layers 10
Number of neurons 1000

4.1 Confusion Matrix
The confusion matrix has been regarded to be excellent, nevertheless, a straightforward objective

metric that might be helpful when using any classification scheme. That measure provides a detailed
understanding of how fine the classifier has been doing. And it is crucial to keep track of this while
evaluating any classifier. As a result, this section gives an efficiency assessment of the proposed QC-
CNN classifier using confusion matrix evaluation.

The confusion matrices derived from the dataset using the proposed technique are shown in
Fig. 5. The suggested approach could only accurately identify every class, and also that anomalous
classes are appropriately identified. For example, class vandalism is completely recognized, while class
shoplifting is detected with 98% respectively. Unfortunately, the performance drops when the arson
class is classified; nonetheless, considering that it achieves maximum accuracy with this dataset, the
performance is appropriate.

4.2 Accuracy Comparison of the Proposed Model with Classical Models
In classifying tasks accurately, the following factors are taken into account: true positives (TP),

which are the correct inferences and actual results; false positives (FP), which are the correct inferences
but are incorrect in reality; false negatives (FN) are incorrect inferred results, but the actual results are
correct; and true negatives (TN), which are incorrect inferred and actual results.
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Figure 5: Confusion matrix for proposed QC-CNN

Accuracy can be formulated as,

Accuracy = TP + TN
TP + TN + FP + FN

(10)

The proposed QC-CNN model is compared with classical models such as CNN [19], Autoencoder
[19], GoogleNet with One-Class Support Vector Machines (OCSVM) [20], Histogram of Oriented
Gradients (HOG) with One-Class Support Vector Machines (OCSVM) [20] and RGB and Flow two-
stream networks [21]. When compared to these models in terms of accuracy, precision, recall, and F1
score, QC-CNN produces better results, which is shown in Table 3. All these models were evaluated
on the UCF-crime dataset.

Table 3: Performance comparison of proposed and classical models on the UCF crime dataset

Models Accuracy Precision Recall F1-score

Proposed QC-CNN 95.65 0.86 0.98 0.92
CNN [19] 85.12 0.84 0.85 0.84
AutoEncoder [19] 83.84 0.79 0.72 0.75

(Continued)
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Table 3: Continued
Models Accuracy Precision Recall F1-score

GoogleNet with OCSVM [20] 81.75 0.82 0.78 0.79
HOG with OCSVM [20] 78.15 0.75 0.83 0.78
RGB and flow two-stream networks [21] 86.41 0.85 0.76 0.80

The hybrid QC-CNN has the ability to learn finer information to class images from the dataset
with less complexity. The quantum gates can influence the final results and help speed up certain
computational processes. The accuracy of QC-CNN is 10%, 11.81%, 13.9%, 17.5%, and 9.24% higher
than CNN, autoencoder, GoogleNet with OCSVM, HOG with OCSVM and RGB, and Flow two-
stream networks respectively. Also, the F1-score of the proposed QC-CNN is high which shows the
efficiency of the model in classifying anomaly types from the surveillance video.

As the complexity of the problem grows, the speed requirements also increase in machine learning
models. When compared to classical models, the proposed quantum machine learning models provide
a more complex solution faster (huge volumes of data). This is because quantum superposition states
allow for the manipulation of all possible combinations of a set of bits in a single operation, which
speeds up the process of the models when compared to classical models. The proposed QC-CNN uses
quantum properties of the quantum circuit to reduce model training time. Entanglement in quantum
computing also aids in the automatic determination of hyperparameters. When compared to other
models, quantum circuits perform faster and produce more accurate results. In a noisy environment,
it also produces accurate results with a fixed memory dimension.

4.3 Accuracy Comparison of the Proposed Model with Quantum Models
In this work, the proposed QC-CNN and existing models such as Quantum Generative

Adversarial Network (QGAN) [23], Hybrid classical-quantum Autoencoder (HAE) model [24],
Quantum-assisted Neural Networks (QANN) [25], Quantum orthogonal neural network (QONN)
[25] are compared. The dataset and application used in these existing models are different from the
proposed work.

The authors of [23] proposed a QGAN model for a human-centered paradigm that is implemented
in the cloud for the synthetic dataset. The authors of [24] suggested an HAE approach as well as four
datasets to monitor gas power stations. For medical image classification, two models, QONN and
QANN, were proposed in [25]. All of the existing methods are based on quantum machine learning and
serve different purposes. There are no existing quantum machine learning models in video surveillance
applications, as far as we know. So, using the UCF-crime dataset, this work evaluated and compared
the proposed work with these existing methods. As a result, the comparison is provided in Tables 3–9,
as well as Figs. 6–9.

Table 4: Comparison of accuracy of proposed QC-CNN with other models

Models Accuracy (%)

Proposed QC-CNN 95.65
QGAN 93.39

(Continued)
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Table 4: Continued
Models Accuracy (%)

HAE 91.06
QANN 89.10
QONN 87.54

Table 5: Accuracy, precision, and F1-Score analysis

Models Precision Recall F1-score

Proposed QC-CNN 0.86 0.98 0.92
QGAN 0.85 0.92 0.88
HAE 0.83 0.93 0.87
QANN 0.84 0.87 0.85
QONN 0.81 0.83 0.81

Table 6: Performance of the proposed QC-CNN at different layer levels

No. of layers Accuracy Precision Recall F1 score

1 Convolutional 92.67 0.68 0.74 0.79
2 Convolutional 93.78 0.73 0.82 0.85
3 Convolutional 94.56 0.89 0.87 0.89
4 Convolutional 93.17 0.79 0.73 0.81
1 Max pooling 89.48 0.71 0.72 0.78
2 Max pooling 91.36 0.75 0.74 0.82
3 Max pooling 92.97 0.82 0.79 0.87
4 Max pooling 91.58 0.78 0.73 0.84
1 Average pooling 83.68 0.68 0.69 0.73
2 Average pooling 85.37 0.71 0.71 0.79
3 Average pooling 86.58 0.76 0.76 0.82
4 Average pooling 84.47 0.72 0.70 0.80

Table 7: Performance comparison with different quantum models

Models Precision Recall F1-score

Proposed QC-CNN 0.86 0.98 0.92
Quantum circuit 1 + CNN 0.63 0.70 0.66
Quantum circuit 2 + CNN 0.62 0.65 0.63
Quantum circuit 3 + CNN 0.70 0.63 0.66
Quantum circuit 4 + CNN 0.67 0.74 0.70

(Continued)
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Table 7: Continued
Models Precision Recall F1-score

Quantum circuit 1 + AutoEncoder 0.41 0.58 0.48
Quantum circuit 2 + AutoEncoder 0.46 0.52 0.47
Quantum circuit 3 + AutoEncoder 0.50 0.55 0.52
Quantum circuit 4 + AutoEncoder 0.58 0.62 0.59

Table 8: AUC results of different models

Method AUC (%)

Proposed QC-CNN 96.63
QGAN 95.32
HAE 94.45
QANN 92.18
QONN 86.89

Table 9: RMSE for different methods

Method RMSE

Old dataset (UCF crime) [28] Unseen dataset (ShanghaiTech) [32]

Proposed QC-CNN 0.61 0.57
QGAN 0.75 0.78
HAE 0.83 0.81
QANN 0.89 0.93
QONN 0.92 0.91

Figure 6: Comparison of accuracy with other models
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Figure 7: Results obtained for the precision, recall, and F1-score for various methods

(a) (b)

(c) (d)

Figure 8: Quantum circuits (a) Quantum circuit 1 (b) Quantum circuit 2 (c) Quantum circuit 3
(d) Quantum circuit 4

Figure 9: ROC curves of different models
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From Fig. 6, it is clear that QC-CNN achieved the highest accuracy of 95.65%, which is 2.26%,
4.59%, 6.55%, and 8.11% higher than QGAN, HAE, QANN, and QONN, respectively. This is because
the data is first pre-processed, then deep spatio-temporal features are extracted during training. Also,
the proposed method eliminates the overfitting problem, which further increases the model’s accuracy.
It is important to note that the architecture described in this research is far less complicated than other
approaches.

4.4 Precision, Recall, and F1-Score
The recall can be defined as the proportion of entire outcomes categorized properly with the help

of a model. But, precision addresses the issue of how frequently a model is true if it forecasts yes. To
completely evaluate the model’s performance, it is necessary to examine the accuracy as well as recall.
In this instance, the F1-score, which seems to be the harmonic mean of recall as well as precision,
might be employed. The greater the score, the better the model. The percentage of correct predictions
generated by the model is denoted as accuracy.

Recall, precision, and F1-can be formulated in Eqs. (11)–(13) as,

Recall = TP
(TP + FN)

(11)

Precision = TP
(TP + FP)

(12)

F1 − score = 2 ∗ (Precision ∗ Recall)
(Precision + Recall)

(13)

Table 5 depicts the performance of proposed and existing models in terms of precision, recall, and
F1 score.

Fig. 7 illustrated the results obtained for proposed and existing methods with respect to precision,
recall, and F1-score. The proposed model reached precision, recall, and F-score of 81%, 83%, and 81%
respectively. It achieves continuously better results when compared to other techniques like QGAN,
HAE, QANN, and QONN, indicating that the proposed QC-CNN can acquire finer features to
identify comparable images with constant complexity on a real-world dataset. Also, the proposed QC-
CNN is less complex and has few parameters.

4.5 Performance Comparison with Different Numbers of Layers
The following are the experiments made for the proposed QC-CNN with a different number of

convolutional and pooling layers which is shown in Table 6.

Adding more layers will aid in the extraction of deeper features. However, it is possible to do
so to a certain extent. There is a limit. Instead of extracting features, it then tends to ‘overfit’ the
data. Overfitting can result in errors of various types, such as false positives. We tested the proposed
system’s performance by increasing the number of layers from one to four. While adding layers, the
performance gradually improves. When three layers are used, the proposed QC-CNN produces the
best results. Following that, adding layers reduces performance due to the overfitting issue. As a result,
the model is fitted to three layers. Since the average pooling approach smoothes down the image, the
sharp features may be lost. Max pooling chooses the brightest pixels in the image. It is helpful when the
backdrop of the image is dark and we are only interested in the image’s lighter pixels. Average pooling
cannot always extract the important features because it considers everything and returns an average
value that may or may not be significant. Max pooling concentrates on the most important features.
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Even though max-pooling is a non-linear operation, it is primarily used to decrease the dimensionality
of the input, thereby reducing overfitting and computation. As a result, in our proposed algorithm,
max pooling outperforms average pooling.

4.6 Performance Comparison with Different Quantum Models
Table 7 shows the comparison of different quantum circuit models with classical network struc-

tures. The performance of four quantum circuits such as quantum circuits 1, 2, 3, and 4 with CNN
and autoencoder are compared and evaluated in terms of precision, recall and F1-score. Table 7
demonstrates that the proposed QC-CNN using a real amplitude circuit had the maximum recall and
precision of the circuits evaluated. The suggested QC-CNN showed high performance on the evaluated
dataset. This shows that the proposed QC-CNN with a real amplitude circuit outperforms the other
existing model. Fig. 8 shows the different quantum circuits used for comparison.

4.7 Receiver Operating Characteristic (ROC) and Area Under Curve (AUC)
The ROC curve seems to be a probability graph that represents a classification model’s accuracy

across all classification criteria. This graph compares the true positive rate with the false positive rate.
The higher the true positive rate, the better the detection efficiency. The lower the false positive rate,
the steeper the ROC curve.

The AUC is a classification strategy measure. After accuracy, it is the second most common
statistic. Fig. 9 illustrates the ROC curve for various models. QC-CNN outperforms better when
compared to other models such as QANN, HAE, QONN, and QGAN. The actual positive and false
positive rates were computed to evaluate the model’s performance. The proposed method, as shown
in Fig. 9, achieves a good balance between the actual positive rate and false positive rate, making it
more suitable for anomaly detection surveillance systems.

Table 8 shows AUC’s performance results, in which the proposed QC-CNN achieves the highest
value of 96.63% compared to other models. This additionally gives a quantitative performance analysis
of the proposed model.

4.8 Reliability Assessment
A trustworthy analysis should provide an appropriate prediction (prediction with the least amount

of error) for any type of test input. To validate the suggested model’s reliability, one of the reliable
metrics Root Mean Square Error (RMSE) is used to measure the success of predictive models. The
RMSE is a common approach for assessing a model’s error in forecasting quantitative data. The formal
definition is as follows:

RMSE =
√∑n

i=1

(xi − yi)
2

n
(14)

where n stands for the total number of samples, xi denotes predicted value and yi denotes observed
value.

According to Table 9, the suggested approach has a low RMSE error rate when compared to other
methods. The suggested model performs well on both known and unknown or new datasets. This is
because the suggested model performs accurate prediction by adjusting hyper-parameters and hidden
layer adjustments repeatedly until optimal results are obtained, as shown in Table 9. The suggested
model is highly reliable to use for classification based on its RMSE value.
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4.9 Stability Assessment
The Population Stability Index (PSI) is used to determine the stability of the proposed model by

assessing how the population or features have changed within the framework of the model. It is a
term for determining how much a variable’s distribution has moved between two samples over time.
It is extensively used for monitoring changes in population features and detecting potential problems
with model performance. It is often a useful indicator of whether the model has stopped forecasting
effectively owing to large changes in population distribution.

Using the following equation, calculate the PSI for each kind of anomaly:

PSI =
∑n

i=1
(Bi − Ti) (ln Bi − ln Ti) (15)

where Bi expected anomaly probability values, Ti predicted anomaly probability values and i is
the types of anomalies. The examination of the resulting PSI calculation in three categories is used
to interpret the outcomes of applied PSI analytics. PSI < 0.1 = The population hasn’t changed and
can keep the model which is stable. 0.1 ≤ PSI < 0.2 = The population has slightly changed, and
it is advisable to evaluate the impacts of these changes. PSI ≥ 0.2 = The population changes are
significant, and the model should be retrained or even redesigned.

Various actions and measures may be taken depending on the outcome. If the outcome is
satisfactory, there is no need for more action. If the result is not satisfactory, additional detailed
analysis will be required, based on whether a score or individual score component was evaluated for
PSI. The PSI for the QC-CNN model was estimated in Table 10.

Table 10: PSI calculation for the proposed QC-CNN model

Type of
anomaly (i)

Expected anomaly
probability (Bi)

Predicted anomaly
probability (Ti)

(Bi − Ti) (ln Bi − ln Ti) Product

1 0.267 0.385 −0.118 −0.366 0.043
2 0.165 0.144 0.021 0.136 0.003
3 0.125 0.139 0.264 −0.106 −0.028
4 0.219 0.060 0.159 −1.01 −0.160
5 0.224 0.272 −0.048 −0.194 0.009
Total 1.000 1.000 PSI= −0.133

Table 10, 1, 2, 3, 4, and 5 represent five types of anomalies namely Shoplifting, Assault, Vandalism,
Fighting, and Burglary respectively. The PSI value is estimated with the help of expected and predicted
anomaly probability values. Here the PSI value is −0.133 which is less than 1. It satisfied the above
condition PSI < 0.1 which indicates the model is stable and the population hasn’t changed, so keep the
model as it is. This indicates the effectiveness of the model in terms of stability.

5 Conclusion and Future Work

This work investigates the hybrid quantum computing-based deep learning model for anomaly
classification in surveillance videos. Unlike traditional CNN, this work uses a quantum circuit as
one of the quantum layers in CNN for multi-class types. This increases overall accuracy and reduces
the computational efficiency of the proposed QC-CNN model. Furthermore, experimental findings
reveal that the QC-CNN outperforms the UCF-Crime dataset in the confusion matrix, accuracy,
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precision, recall, F1-score, ROC, and AUC. The accuracy of the QC-CNN is 95.65%, which is 2.26%,
4.59%, 6.55%, and 8.11% greater than the QGAN, HAE, QANN, and QONN, accordingly. As a
result, the proposed QC-CNN outperforms other current models in overall classification accuracy
of about 5.37%. In addition, the suggested method’s effectiveness is tested by altering the number
of layers in CNN and comparing it to quantum and classical models. Future studies will seek to
increase the quantum processing component’s contribution to the hybrid approach. Furthermore,
more sophisticated quantum circuits are expected to improve the model’s learning capabilities.
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