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Abstract: Facial expression recognition (FER) remains a hot research area among
computer vision researchers and still becomes a challenge because of high intra-
class variations. Conventional techniques for this problem depend on hand-crafted
features, namely, LBP, SIFT, and HOG, along with that a classifier trained on a
database of videos or images. Many execute perform well on image datasets cap-
tured in a controlled condition; however not perform well in the more challenging
dataset, which has partial faces and image variation. Recently, many studies pre-
sented an endwise structure for facial expression recognition by utilizing DL
methods. Therefore, this study develops an earthworm optimization with an
improved SqueezeNet-based FER (EWOISN-FER) model. The presented
EWOISN-FER model primarily applies the contrast-limited adaptive histogram
equalization (CLAHE) technique as a pre-processing step. In addition, the
improved SqueezeNet model is exploited to derive an optimal set of feature vec-
tors, and the hyperparameter tuning process is performed by the stochastic gradi-
ent boosting (SGB) model. Finally, EWO with sparse autoencoder (SAE) is
employed for the FER process, and the EWO algorithm appropriately chooses
the SAE parameters. Awide-ranging experimental analysis is carried out to exam-
ine the performance of the proposed model. The experimental outcomes indicate
the supremacy of the presented EWOISN-FER technique.
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1 Introduction

Facial expression recognition (FER) plays a pivotal role in the artificial intelligence (AI) period.
Following the emotional information of humans, machines could offer personalized services. Several
applications, namely customer satisfaction, virtual reality, personalized recommendations, and many
more, rely upon an effective and dependable way of recognizing facial expressions [1]. This topic has
grabbed the attention of several research scholars for years. Still, it becomes a challenging topic as
expression features change significantly with environments, head poses, and discrepancies in the different
individuals involved [2]. Technologies for transmission have conventionally been formulated based on the
senses that serve as the main part of human communication. Specifically, AI voice recognition technology
utilizing AI speakers and sense of hearing was commercialized due to the enhancements in AI technology
[3]. By using this technology that identifies voice and language, there are AI robots that could
communicate thoroughly with real life for handling the daily lists of individuals. But sensory acceptance
was needed to communicate more accurately [4]. Thus, the most essential technology was a vision
sensor, since vision becomes a large part of human perception in many communications.

AI robots communicate between a machine and a human, human faces present significant data as a hint
to understand the user’s present state. Thus, the domain of FER has been studied broadly for the past 10 years
[5]. Currently, with the rise of appropriate data and continuous progression of deep learning (DL), a FER
mechanism that precisely identifies facial expressions in several surroundings is being studied actively
[6]. FER depends on an evolutionary and ergonomic technique. Depending on physiological and
evolutionary properties, universality, similarity, and emotions in FER research are categorized into
6 categories: anger, happiness, disgust, sadness, surprise, and fear [7]. Moreover, emotions are further
categorized into 7 categories, along with neutral emotion. Motivated by the achievement of Convolutional
Neural Networks (CNNs), numerous existing DL techniques were devised for facial expression
recognition and were superior to conventional techniques. CNN-related techniques could automatically
learn and model the extracted features of the facial object due to the neural network structure; therefore,
such methods could have superior outcomes in real-time applications [8]. In recent times, by using DL
and particularly CNNs, numerous features have been learned and extracted for a decent FER mechanism
[9]. It is noted that, in facial expressions, several clues arise from some parts of the face, for example, the
eyes and mouth; other parts, like the hair and ears, play little parts in the result [10]. This indicates that
the machine learning (ML) structure preferably must concentrate only on significant parts of the face and
be less delicate than other facial areas.

This study develops an earthworm optimization with an improved SqueezeNet-based FER (EWOISN-
FER) model. The presented EWOISN-FER model primarily applies contrast limited adaptive histogram
equalization (CLAHE) technique as a pre-processing step. In addition, the improved SqueezeNet model is
exploited to derive an optimal set of feature vectors, and the stochastic gradient boosting (SGB) model
performs the hyperparameter tuning process. Finally, EWO with sparse autoencoder (SAE) is employed
for the FER process, and the EWO algorithm appropriately chooses the SAE parameters. A wide-ranging
experimental analysis is carried out to demonstrate the enhanced performance of the EWOISN-FER
technique.

The remaining sections of the paper are organized as follows. Section 2 provides the literature review,
and Section 3 elaborates on the proposed model. Then, Section 4 offers performance validation, and Section
5 concludes.
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2 Literature Review

Nezami et al. [11] introduced a DL algorithm for improving engagement recognition from images that
overwhelm the challenges of data sparsity via pre-training on an easily accessible facial expression dataset
and beforehand training on a specialized engagement dataset. Firstly, FER can be trained to give a rich face
representation using DL. Next, the model weight is employed for initializing the DL-based methodology for
recognizing engagement; we term this the engagement module. Bargshady et al. [12] report on a newly
improved DNN architecture intended to efficiently diagnose pain intensity in 4-level thresholds with
facial expression images. To examine the robustness of presented techniques, the UNBC-McMaster
Shoulder Pain Archive Database contains facial images of humans and has been first balanced after being
utilized for testing and training the classifier technique, in addition, to optimally tuning the VGG-Face
pre-trainer as a feature extracting tool. The pre-screened attributes, utilized as method inputs, were
transmitted to generate a novel enhanced joint hybrid CNN-BiLSTM (EJH-CNN-BiLSTM) DL technique
that encompasses CNN, which can be linked to the joint Bi-LSTM for multi-classifying the pain.

The authors in [13] concentrate on a semi-supervised deep belief network (DBN) method for predicting
facial expressions. To achieve precise facial expression classification, a gravitational search algorithm (GSA)
was applied to optimise certain variables in the DBN network. The HOG features derived from the lip patch
offer optimal performance for precise facial expression classification. In [14], a new deep model can be
presented to enhance facial expressions’ classifier accuracy. The presented method includes the following
merits: initially, a pose-guided face alignment technique was presented to minimize the intra-class
modification surpassing environmental noise’s effect. A hybrid feature representation technique has been
presented to gain high-level discriminatory facial features that attain superior outcomes in classifier
networks. A lightweight fusion backbone was devised that integrates the ResNet and the VGG-16 to
obtain low-data and low-calculation training.

Minaee et al. [15] modelled a DL technique related to attentional convolutional networks to focus on
significant face areas and attain important enhancement over prior methods on many datasets. Kim et al.
[16] present a novel FER mechanism related to the hierarchical DL technique. The feature derived from
the appearance feature-oriented network can be merged with the geometric feature in a hierarchical
framework. The presented technique integrates the outcome of the softmax function of 2 features by
considering the mistake linked with the second highest emotion (Top-2) predictive outcome. Further, the
author presents a method for generating facial imageries with neutral emotion utilizing the autoencoder
(AE) method. By this method, the author could derive the dynamic facial features among the emotional
and neutral images without sequence data.

3 The Proposed Model

In this study, a new EWOISN-FER algorithm was devised to recognise and classify facial emotions. The
presented EWOISN-FER model employed the CLAHE technique as a pre-processing step. In addition, an
improved SqueezeNet method is exploited to derive an optimal set of feature vectors, and the SGB model
performs the hyperparameter tuning process. Lastly, EWO with SAE is employed for the FER process
and the EWO algorithm appropriately chooses the SAE parameters. Fig. 1 demonstrates the block
diagram of the EWOISN-FER algorithm.
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3.1 Image Pre-Processing

CLAHE splits the image into MxN local tiles. For all the tiles, histograms can be individually calculated
[17]. First, we should compute the average amount of pixels for each region to computer the histogram as
follows:

NA ¼ NX � NY

NG
(1)

Here, Na indicates the average amount of pixels, Nx and NY denotes the pixel count in the X and Y
dimensions, and NG denotes the number of gray levels. Next, determine the clip limit to clip the histogram.

NCL ¼ NA � NNCL (2)

NCL shows the clip limit, and NNCL indicates the normalized clip limits within [0, 1]. Then, the clip limit
can be exploited to the histogram height for all the tiles.

Hi ¼ NCL if Ni � NCL

Ni else
i ¼ 1; 2; . . . ; 1� 1

�
(3)

where Hi indicates the height of the histogram of the i� th tile, Ni denotes the histogram of the i� th tile,
and L represents the number of gray levels.

The overall amount of clipped pixels is calculated by the following equation.

Nc ¼ NX � NYð Þ �
XL�1

i¼0
Hi (4)

Let, NC be the number of clipped pixels. Afterwards, computing NC , we should reallocate the clipped
pixel. The pixel is either redistributed uniformly or non-uniformly. The following equation is used to
calculate the number of pixels to be redistributed.

Figure 1: Block diagram of EWOISN-FER approach
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NR ¼ NC

L
(5)

Now, NR indicates the number of pixels to be redistributed. Then, the clipped histogram can be
normalized as follows.

Hi ¼ NCL ifNi þ NR � NCL

Ni þ NR else

�
i ¼ 1; 2; . . . ; 1� 1 (6)

The amount of undistributed pixels is calculated using Eqs. (4) and (5). Eq. (6) is repeated until each
pixel is redistributed. Lastly, the cumulative histogram of the context region is formulated as follows.

Ci ¼ 1

NX � NYð Þ
Xi

j¼0
Hj (7)

After each calculation is accomplished, the histogram of the contextual region is matched with Rayleigh,
exponential or uniform likelihood distribution. For the output image, the tile is fused and the removal of the
artefacts among the independent tiles is completed using the bilinear interpolation, the novel value of s that is
represented by s’ as follows.

s0 ¼ 1� yð Þ 1� Xð Þ � R1 sð Þ þ X � R2 sð Þð Þ þ y 1� Xð Þ � R3 sð Þ þ X � R4 sð Þð ÞÞ (8)

Then, the enhanced image is attained.

3.2 Feature Extraction Using Improved SqueezeNet

In this stage, the improved SqueezeNet method is exploited to derive an optimal set of feature vectors,
and the hyperparameter tuning process can be performed by the SGB model. The CNN initiates with a
standalone convolutional layer (conv1) and slowly increases the filter number for all the fire modules
from the start to the end of the networks. The CNN architecture implements max pool with a stride of
2 afterwards layers conv1, fire4, fire8, and conv10. Since the light weighted SqueezeNet architecture
trained on the insect databases with 9 object classes, we adapted the conv10 layers (because they are
personalized to other tasks) that comes from the pre-trained SqueezeNet CNN architecture and replaces
newly adapted conv10 layers with a nine-class output [18]. In this study, the Fire module contains 1 × 1
filter s1�1ð Þ in the squeeze layer, 1 × 1 filters e1�1ð Þ and 3 × 3 filters e3�3ð Þ in expand layer 3D
hyperparameter, hence the module with eight Fire modules that contain twenty-four dimension hyper-
parameters. Then, describe B indicates the amount of expanding filters in the initial Fire module;
afterwards M Fire model, we increased the expanded filters using C. Hence, for i� th modules, the

amount of expanding filter is ei ¼ ei1�1 þ ei3�3 ¼ Bþ C � i

M

���� ����� �
. In other words, ei3�3 ¼ ei � per

signifies the percentage of expanding filter that is 3 × 3. Lastly, determine SR that signifies the filter count
in the squeeze layer of Fire modules: si1�1 ¼ SR� ei. The enhanced module has the: B = 128, C = 128,
per = 0.4, M = 2, and SR = 0.2.

Furthermore, a bypass connection is added to improve the representation bottleneck presented by
squeeze layers, however, the limitation is that the quantity of input channels of the Fire module and
amount of output channels is dissimilar, and the component-wise addition operator could not be satisfied.
Hence, determine a complicated bypass as a bypass that involves a 1 × 1 convolutional layer with the
number of filters equal to the number of output channels. In such a way, we require the module for
learning a residual function among inputs and outputs, in the meantime, attaining the upper convolutional
layer with rich semantic data. Fig. 2 illustrates the architecture of SqueezeNet. The experiment result
shows the best object detection performance compared to the pre-trained, light-weighted SqueezeNet
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CNN module. The final softmax layers frequently handle multi-classification problems. In softmax
regression, the probability p that an input ×belonging to class c is formulated below

p yi ¼ cjxi; 0ð Þ ¼ eh
c
nxiPC

m¼1 e
hcmxi

(9)

Figure 2: Structure of SqueezeNet

In Eq. (9), h indicates the parameter of the DL algorithm. The loss function represents the cross-entropy
loss between the actual class and the output probability vectors:

j hð Þ ¼ � 1

N

XN

i�1

Xc

i�c
1 yi ¼ cf glogp

h i
(10)

In Eq. (10), 1 signifies an indicative function whose value is 1 as long as the ith image of the test is
accurate.

Friedman [19] built an SGB model by presenting the concept of gradient descent (GD) into the boosting
algorithm. Gradient boosting is an ensemble learning mechanism fused with the decision and boosting trees,
and the novel paradigm is constructed alongside the GD direction of the loss function of the predetermined
method. The core of the SGB approach is to minimalize the loss function among the classification and real
functions by training the classifier function � Xð Þ.

The loss function distribution is the core element of the application of the SGB algorithm, and it has
pertinence towards each loss function. For the K-class problem, the substitute loss function (multiclass
log-loss) is recommended by Friedman and is extensively employed in different fields, and it is
expressed in the following equation.

wðyk ; Fk X ÞK1
� �

¼ �
XK

k¼1
yk log pk Xð Þ ¼ �

XK

k¼1
yk log exp Fk Xð Þð Þ=

XK

l¼1
exp Fl Xð Þð Þ

h i
(11)

Now X ¼ x1; x2; . . . xnf g indicates the input parameter, k shows the number of classes, y indicates
the output parameter, and pk Xð Þ shows the probability [20]. Next, the subsequent formula is attained
using Eq. (12):

~yim ¼ � @wðyi; Fj xið ÞÞKj¼1

@F xið Þ

" #
ðFj Xð Þ¼Fj;m�1 Xð ÞÞK1

¼ yki � pk xið Þ (12)
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In Eq. (12), yki � pk xið Þ indicates the existing residuals and thereby, induces the K-trees. In the
meantime, it produces each K tree with an L-terminal node at iteration m; Rklm. Next, all the tree terminal
nodes are resolved using a different line search.

clm ¼ arg min
c

X
ix2Rlm

w yi; Fm�1 xið Þ þ cð Þ (13)

Every function is upgraded and later established as the SGB.

3.3 FER Process Using Optimal SAE

At the final stage, the SAE model is employed for FER. During this case, it can execute the hyperbolic
tangent activation function to encode and decode [21]. Primarily, the bias vector and weight matrix were
allocated arbitrary values. For obtaining a network with generalized ability, the number of trained
instances is at least 10 times the count of degrees of the freedoms. The recreated errors decreased
significantly with training for determining suitable values of weight and bias. Utilizing the sparse AE, the
cost function signifies the reconstructed errors demonstrated in Eq. (14).

E ¼ 1

N

XN

n¼1

XK

k¼1
ðXnk � X0

nkÞ2 þ k � �w þ b � �s; (14)

whereas E signifies the cost function of AE; N denotes the number of trained instances, K refers to the
dimensional of data; Xnk and X0

nk demonstrate the input and output values correspondingly of
k-dimensional from the nth sample; λ and β define the coefficients; �w signifies the L2 regularization, and
�s implies the sparse regularization.

To improve AE’s generation capability and avoid overfitting, the L2 regularized, and the sparse
regularized were executed. The L2 regularized prevent the improving value of weighted illustrated in
Eq. (15).

�w ¼ 1

2

Xc

l

XN

j

XK

i
½W lð Þ

ji �2; (15)

In which C indicates the count of hidden layers and W lð Þ
ji defines the weighted of ith dimensional of jth

instance from the lth layer. The sparse regularization was defined in Eqs. (16) and (17).

q̂i ¼
1

N

XN

j¼1
Hi X j

� 	
(16)

�s ¼
XD

i¼1
KLðqjjq̂iÞ ¼

XD

i¼1
plog

qb̂qi
 !

þ 1� qð Þ log 1� q

1� b̂qi
 !

; (17)

whereas q̂i signifies the average value of hidden units i; N implies the count of trained instances, and q stands
for the value which is set to AE. The Kullback-Leibler divergence KLmeasures the errors among the desired
values q̂i and q, and D represents the hidden nodes count.

The EWO algorithm is exploited in this study to adjust the SAE parameters. The EWO algorithm was
exploited that is simulated the reproductive process of earthworms (EW) to overcome the optimization
problems [22]. The EW is a kind of hermaphrodite and performs at all of them and employs female and
male sex organs. Consequently, the single parent EW produces a child EW via themselves:

ui1;k ¼ umax;k þ umin;k � aui;k (18)

The abovementioned equation described the process of producing the kth component of a child’s EW i1
in parent EW i. ui1;k and ui;k indicates the kth component of EW i1 and i. umax;k and umin;k shows the effective
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restriction of kth component of all the EW. a indicates the similarity factor that ranges within [0, 1] and
defines the movement in parent-to-child EW.

The Reproduction_2 applies an enhanced kind of crossover operator. Consider M as the number of child
EWs, which is 2 or 3 in major components. The amount of parent EWs (N) is an integer that is greater than 1.
In the study, the uniform crossover was employed with N ¼ 2 and M ¼ 1. In 2 parent EWs P1 and P2 are
selected for employing the roulette wheel chosen as follows:

P ¼ P1

P2


 �
(19)

Firstly, 2 offspring u12 and u22 are made in 2 parents. The arbitrary number rand within [0, 1] is complete
and the kth component of u12 and u22 are made in the following:

If rand. 0:5;

u12;k ¼ P1;k (20)

u22;k ¼ P2;k (21)

Then,

u12;k ¼ P2;k (22)

u22;k ¼ P1;k (23)

Finally, the produced EW ui2 in Reproduction-2 is illustrated as (24). Let rand1 be another arbitrarily
produced value within [0, 1].

ui2 ¼ u12 for rand 1, 0:5
u22 else

�
(24)

Then, the producing EWs ui1 and ui2, the EW u
0
i for the following generation as follows:

u
0
i ¼ bui1 þ 1� bð Þui2 (25)

In Eq. (25), b denoted as the “proportional factor”. It is used for manipulating the proportion of ui1 and
ui2 that global and local searching effectiveness was recollected from balancing as follows:

btþ1 ¼ cbt (26)

Now, t means the present generation. Initially, at t ¼ 0, b ¼ 1. c denotes the variable viz., outcomes to
cooling factor. The solution needs that existing run-away in local optimal. Therefore, the “Cauchy Mutation”
(CM) is implemented. It enhanced the searchability of “EWO”.

Wk ¼
NpopP

i¼1
ui;k

 !
=Npop (27)

In Eq. (27), Wk shows the weighted vector for a kth component of population i and Npop indicate the
population size:

u00i ¼ u
0
i þWk � Cd (28)

Now, Cd indicates the arbitrary value drawn in the “Cauchy distribution” regarding ¼ 1. Where s
signifies the “scale parameter”.

The EWO technique mostly defines a fitness value to accomplish maximal classification outcomes. It
calculates a positive integer for demonstrating enhanced outcomes on the candidate solution. In the study,
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decreasing the classification error rate could be processed as the fitness function, as follows. The optimal
holds the least error rate, and the poorly attained solution provides a higher error rate.

fitness xið Þ ¼¼ No: of misclassified samples

Total No: of samples
� 100 (29)

4 Experimental Validation

The FER performance of the EWOISN-FER model is tested using two datasets namely CK+ [23] and
RaFD [24] datasets. The CK+ dataset holds 630 samples under seven classes, and the RaFD dataset
comprises 3377 samples under seven classes, as depicted in Table 1. A few sample images are displayed
in Fig. 3. Fig. 4 indicates the confusion matrices of the EWOISN-FER model on CK+ dataset. The
confusion matrices demonstrated that the EWOISN-FER model can effectually recognize seven distinct
types of facial expressions.

Table 1: Dataset details

Labels Class No. of samples

CK+ RaFD

C-1 Anger 63 494

C-2 Disgust 91 494

C-3 Fear 40 466

C-4 Happiness 130 493

C-5 Sadness 42 485

C-6 Surprise 150 452

C-7 Neutral 114 493

Total number of samples 630 3377

Figure 3: Sample images
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Table 2 shows brief FER outcomes of the EWOISN-FER method on the CK+ dataset. The results
inferred the effectual FER performance of the EWOISN-FER model over other methods. For example, on
the entire dataset, the EWOISN-FER model has offered accuy, recal, specy, Fscore, and MCC of 93.61%,
69.38%, 96.05%, 72.03%, and 69.46%, respectively. In Parallel, on 70% of TR data, the EWOISN-FER
approach has presented accuy, recal, specy, Fscore, and MCC of 93.59%, 69.41%, 96.02%, 72.04%, and
69.66%, correspondingly. Eventually, on 30% of TS data, the EWOISN-FER technique has provided
accuy, recal, specy, Fscore, and MCC of 93.65%, 71.26%, 96.13%, 72.72%, and 69.99% correspondingly.

Figure 4: Confusion matrices of EWOISN-FER approach under CK+ dataset (a) Entire dataset, (b) 70% of
TR data, and (c) 30% of TS data

2256 CSSE, 2023, vol.46, no.2



Fig. 5 exhibits the confusion matrices of the EWOISN-FER algorithm on the RaFD dataset. The
confusion matrices illustrated that the EWOISN-FER technique could effectually recognise seven
different types of facial expressions.

Table 3 displays the detailed FER outcomes of the EWOISN-FER technique on the RaFD dataset. The
outcomes signify the effectual FER performance of the EWOISN-FER method over other models. For
example, on the entire dataset, the EWOISN-FER approach has presented accuy, recal, specy, Fscore, and
MCC of 98.72%, 95.52%, 99.25%, 95.52%, and 94.79% correspondingly. Simultaneously, on 70% of TR
data, the EWOISN-FER approach has presented accuy, recal, specy, Fscore, and MCC of 98.79%, 95.75%,

Table 2: Result analysis of EWOISN-FER approach with distinct class labels under the CK+ dataset

CK+ Dataset

Labels Accuracy Recall Specificity F-score MCC

Entire dataset

C-1 94.29 50.79 99.12 64.00 63.68

C-2 93.02 76.92 95.73 76.09 72.00

C-3 95.56 40.00 99.32 53.33 54.69

C-4 93.17 90.00 94.00 84.48 80.37

C-5 96.03 54.76 98.98 64.79 63.97

C-6 91.59 93.33 91.04 84.08 79.16

C-7 91.59 79.82 94.19 77.45 72.33

Average 93.61 69.38 96.05 72.03 69.46

Training phase (70%)

C-1 93.20 44.90 99.23 59.46 59.98

C-2 94.33 81.36 96.34 79.34 76.09

C-3 96.15 44.00 99.28 56.41 57.08

C-4 92.74 90.80 93.22 83.16 79.03

C-5 95.92 51.61 99.27 64.00 64.06

C-6 90.93 91.74 90.66 83.33 77.79

C-7 91.84 81.48 94.17 78.57 73.61

Average 93.59 69.41 96.02 72.04 69.66

Testing phase (30%)

C-1 96.83 71.43 98.86 76.92 75.49

C-2 89.95 68.75 94.27 69.84 63.82

C-3 94.18 33.33 99.43 47.62 50.51

C-4 94.18 88.37 95.89 87.36 83.59

C-5 96.30 63.64 98.31 66.67 64.79

C-6 93.12 97.56 91.89 86.02 82.56

C-7 91.01 75.76 94.23 74.63 69.17

Average 93.65 71.26 96.13 72.72 69.99
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99.29%, 95.76%, and 95.06% correspondingly. Finally, on 30% of TS data, the EWOISN-FER method has
shown accuy, recal, specy, Fscore, and MCC of 98.56%, 94.98%, 99.16%, 94.96%, and 94.14%
correspondingly.

Table 4 provides a detailed accuy analysis of the EWOISN-FER method on two test datasets [25]. Fig. 6
demonstrates a comparative analysis of the EWOISN-FER method with recent methodologies on the CK+
dataset. The outcomes indicated the CNN model had shown poor results with the least accuy of 80.47%.
EWOISN-FER model has shown a maximum accuy of 93.65%. Next, the AlexNet model has resulted in
a slightly improved accuy of 85.91% whereas the GoogleNet and AlexNet-SVM models have gained
reasonably closer accuy of 86.09% and 86.49%, respectively. Though the WCRAFM model has reached
near optimal accuy of 89.90%, the presented model exhibits maximum performance.

Figure 5: Confusion matrices of EWOISN-FER approach under RaFD dataset (a) Entire dataset, (b) 70% of
TR data, and (c) 30% of TS data
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Table 3: Result analysis of the EWOISN-FER approach with distinct class labels under the RaFD dataset

RaFD dataset

Labels Accuracy Recall Specificity F-score MCC

Entire dataset

C-1 98.55 94.53 99.24 95.02 94.17

C-2 98.40 96.36 98.75 94.63 93.71

C-3 98.73 95.71 99.21 95.40 94.66

C-4 98.58 93.71 99.41 95.06 94.25

C-5 99.02 97.94 99.20 96.64 96.08

C-6 98.67 94.03 99.38 94.97 94.21

C-7 99.11 96.35 99.58 96.94 96.42

Average 98.72 95.52 99.25 95.52 94.79

Training phase (70%)

C-1 98.69 94.83 99.35 95.51 94.75

C-2 98.48 96.60 98.81 94.99 94.11

C-3 98.77 96.00 99.21 95.56 94.85

C-4 98.69 94.05 99.46 95.32 94.57

C-5 99.20 98.25 99.36 97.26 96.79

C-6 98.69 94.29 99.37 95.04 94.29

C-7 99.03 96.21 99.50 96.63 96.06

Average 98.79 95.75 99.29 95.76 95.06

Testing phase (30%)

C-1 98.22 93.84 98.96 93.84 92.80

C-2 98.22 95.74 98.63 93.75 92.74

C-3 98.62 95.04 99.20 95.04 94.23

C-4 98.32 92.99 99.30 94.50 93.53

C-5 98.62 97.18 98.85 95.17 94.39

C-6 98.62 93.43 99.43 94.81 94.03

C-7 99.31 96.67 99.77 97.64 97.25

Average 98.56 94.98 99.16 94.96 94.14

Table 4: Comparative analysis of the EWOISN-FER technique with recent methodologies under two
datasets

Accuracy (%)

Methods CK+ RaFD

EWOISN-FER 93.65 98.79

GoogLeNet Model 86.09 95.54
(Continued)
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Fig. 7 establishes a comparative study of the EWOISN-FER algorithm with recent methodologies on the
RaFD dataset. The outcomes denote the CNN methodology has exhibited poor results with the least accuy of
94.56%. Then, the AlexNet approach has resulted in a slightly improved accuy of 95.23%, whereas the
GoogleNet and AlexNet-SVM methods have obtained reasonably closer accuy of 95.54% and 95.17%,
correspondingly. However, the WCRAFM method has reached near optimal accuy of 96.02%; the
presented EWOISN-FER approach has shown a maximal accuy of 98.79%.

Table 4 (continued)

Accuracy (%)

Methods CK+ RaFD

AlexNet Model 85.91 95.23

AlexNet-SVM Model 86.49 95.17

CNN Model 80.47 94.56

WCRAFM 89.90 96.02

Figure 6: Accuy analysis of EWOISN-FER approach under CK+ dataset

Figure 7: Accuy analysis of the EWOISN-FER approach under the RaFD dataset
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Therefore, the EWOISN-FER model has exhibited maximum FER performance over other DL models.

5 Conclusion

In this study, a novel EWOISN-FER approach was projected to recognise and classify facial emotions.
The presented EWOISN-FER model employed the CLAHE technique as a pre-processing step. In addition,
an improved SqueezeNet model is exploited to derive an optimal set of feature vectors, and the SGB model
can execute the hyperparameter tuning process. Lastly, EWOwith SAE is employed for the FER process, and
the EWO algorithm appropriately chooses the SAE parameters. A wide-ranging experimental analysis is
carried out to demonstrate the enhanced performance of the EWOISN-FER technique. The experimental
outcomes indicate the supremacy of the presented EWOISN-FER technique. Thus, the EWOISN-FER
technique can be exploited for enhanced FER outcomes. In the future, hybrid metaheuristics algorithms
can be designed to improve the parameter-tuning process.
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