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Abstract: Recently, there has been a considerable rise in the number of diabetic
patients suffering from diabetic retinopathy (DR). DR is one of the most chronic
diseases and makes the key cause of vision loss in middle-aged people in the
developed world. Initial detection of DR becomes necessary for decreasing the
disease severity by making use of retinal fundus images. This article introduces
a Deep Learning Enabled Large Scale Healthcare Decision Making for Diabetic
Retinopathy (DLLSHDM-DR) on Retinal Fundus Images. The proposed
DLLSHDM-DR technique intends to assist physicians with the DR decision-mak-
ing method. In the DLLSHDM-DR technique, image preprocessing is initially
performed to improve the quality of the fundus image. Besides, the
DLLSHDM-DR applies HybridNet for producing a collection of feature vectors.
For retinal image classification, the DLLSHDM-DR technique exploits the
Emperor Penguin Optimizer (EPO) with a Deep Recurrent Neural Network
(DRNN). The application of the EPO algorithm assists in the optimal adjustment
of the hyperparameters related to the DRNN model for DR detection showing the
novelty of our work. To assuring the improved performance of the DLLSHDM-
DR model, a wide range of experiments was tested on the EyePACS dataset. The
comparison outcomes assured the better performance of the DLLSHDM-DR
approach over other DL models.

Keywords: Decision making; healthcare sector; deep learning; diabetic
retinopathy; emperor penguin optimizer

1 Introduction

The latest advancements in healthcare and machine learning can offer high-quality medical services to
patients. In the past few years, the convergence of dominant ideas from the psychology, bioethics, medicine,
and sociology fields has contributed to our understanding of the advantageous role of engaging patients in the
medical data mining (MDM) procedure [1]. Many possible advantages of including patient in MDM involves
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improved concordance, greater self-efficacy, and higher satisfaction with their physician, reduced depression
and anxiety [2]. Also, patients’ expectation about exercising choice in MDM was affected by socio-cultural
factor and thus increased litigious practices and consumerist attitudes in society, resulting in the belief among
medical personnel that patient is better placed to estimate the benefits and risks of alternate treatment [3].
MDM is a challenging task, the outcome of which is the interplay of many correlated features and not
constraint to uncertainty in scientific studies. Since decision-making is influenced by various factors, it is
prone to error [4]. Therefore, it is not surprising that some patient decisions might be at odds with the
healthcare provider's recommendation, which makes shared decisions challenging for the implementation
of medical practice.

Diabetes is a major cause of many diseases, namely stroke, heart, and foot problems, gum disease, nerve
damage, etc., [5]. Also, the eye is the most important organ impacted by diabetes. The diabetic problem
related to the eye is named Diabetic Retinopathy (DR), and it is the major cause of impaired vision,
mainly in adults [6]. It damages the retina, a light-sensitive part of the eye, and might become the cause
of impaired vision if it hasn’t been diagnosed at an earlier stage. Chances of suffering DR become high if
the duration of having the disease is extensively over the threshold [7]. Automated diagnosis of the lesion
might assist in earlier DR control of progression and monitoring optimally and effectively. During the
past few years, researcher workers have put their effort into building an efficient technique where they
could recognize distinct abnormalities by accomplishing high performance. But, extracting precise
features is highly complicated [8].

Furthermore, the selection of precise machine learning (ML) algorithm at an earlier stage leads to better
outcomes in DR earlier diagnosis and is considered the primary step of the ubiquitous solution. Each
algorithm has its advantages and drawbacks, but in all stages, no technique could be considered superior
[9]. In recent times, deep learning (DL) networks have accomplished considered interesting because of
their strong abstract representation learning and capability to extract features automatically [10]. Similar
to the ML algorithm, this model depends on learning from the data, but rather than utilizing hand-
engineered features, which is a time-consuming and very difficult task, the DL technique provides various
benefits like the exclusion of clumsy feature extraction methods and development in the performance of
the training dataset.

This article introduces a Deep Learning Enabled Large Scale Healthcare Decision Making for Diabetic
Retinopathy (DLLSHDM-DR) on Retinal Fundus Images. The proposed DLLSHDM-DR technique intends
to assist physicians in the DR decision-making process. In the DLLSHDM-DR technique, image
preprocessing is initially performed to improve the quality of the fundus image. Besides, the DLLSHDM-
DR applies HybridNet to produce a collection of feature vectors. For retinal image classification, the
DLLSHDM-DR technique exploits the Emperor Penguin Optimizer (EPO) with a Deep Recurrent Neural
Network (DRNN). The application of the EPO algorithm assists in the optimal adjustment of the
hyperparameters related to the DRNN model, which helps in accomplishing maximum classification
results. To validate the enhanced performance of the DLLSHDM-DR approach, wide-ranging simulation
analysis experiments were tested on the EyePACS dataset.

2 Related Works

This section offers a detailed review of existing DR methods available in the literature. Sahoo et al. [11]
provide a devised intellectual HRS utilizing the Restricted Boltzmann Machine (RBM)-DL technique that
offers an insight into how big data analytics is employed for the application of potential health
recommender’s engines and demonstrates chances for the healthcare sector for a transition from a
conventional scenario to a highly personalized pattern in a telehealth atmosphere. In [12], a case study of
utilizing CMC, which can be improved by DL and fuzzy rule induction to gain superior stochastic
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insights regarding epidemic advancement, can be tested. As a replacement for applying uniform and
simplistic assumptions for an MC that becomes a usual practice, a DL-related CMC can be utilized in
conjunction with fuzzy rule inducting approaches. Yahyaoui et al. [13] project a Decision Support System
(DSS) for diabetes forecasting related to ML methods. The author compared traditional ML with DL
methods. For classical ML algorithms, authors consider the typically utilized random forest (RF) and
support vector machine (SVM). In contrast, for DL author used a fully convolutional neural network
(CNN) for predicting and detecting diabetes patients.

Račić et al. [14] define the utility of ML techniques for processing chest X-ray images to support the
process of decision-making and precise analysis. To be specific, the study focus on the use of the DL
technique related to a convolutional neural network (CNN) for building a processing method. Rahman
et al. [15] devise a B5G structure that supports coronavirus diagnosis, using the high-bandwidth and low-
latency features of the 5G network at the edge. This structure uses a distributed DL pattern where every
COVID-19 edge utilizes its individual local DL structure and employs a 3-stage reconciliation has the
universal DL structure. Gumaei et al. [16] project an effectual multi-sensor-related structure for human
activity detection utilizing a hybrid DL technique that integrates the gated recurrent units (GRUs) with
simple recurrent units (SRUs) of neural networks (NN). The author uses the deep SRUs for processing
the series of multimodal input datasets by utilizing the ability of its internal memory states. In addition,
the author uses the deep GRUs for storing and learning that several past data can be sent to the upcoming
state to solve instability or fluctuations in accurateness and disappearing gradient complexities. Subiksha
[17] provides an application-related service share method for generalizing mapping and knowledge
processing to integrate healthcare mechanisms. Depending on the method, a distributed DL structure was
offered that readily compiles several systems and healthcare databases transparently.

3 The Proposed Model

In this study, a new DLLSHDM-DR system was established to assist physicians in the DR decision-
making process. At an initial level, the DLLSHDM-DR approach performed image preprocessing to
boost the image quality. Following this, the HybridNet technique was exploited for creating a group of
feature vectors. Then, the DLLSHDM-DR technique used the DRNN model to perform image
classification. Finally, the EPO algorithm is utilized for optimal hyperparameter selection of the DRNN
method. Fig. 1 displays the block diagram of the DLLSHDM-DR algorithm.

3.1 Image Preprocessing

Firstly, the DLLSHDM-DR technique performed image preprocessing to boost the image quality.
Wiener filter (WF) refers to a method that executes optimum trading, indulging noise smoothing and

Figure 1: Block diagram of the DLLSHDM-DR approach
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opposite filtering [18]. It eliminates the muddling and extra noises in the image and is also highly optimum
about the mean squared fault, in which it eradicates the complete Mean Square Error in the functioning of the
filtering approach for removing noises. WFs were described by the following:

a) Hypothesis: Image signal and additive noise were inactive linear random procedures comprising
spectral features.

b) Necessity: The filter should achieve a noise removal process.

c) Performance criteria: It relies upon minimal Mean Square Errors.

3.2 Feature Extraction Using HybridNet

In this study, the HybridNet model is exploited to create a set of feature vectors. CNN is a multi-layer
feed-forward neural network (FFNN), viz., generally comprised of 3 kinds of layers: fully connected (FC),
convolutional, and pooling layers. The convolution and pooling layers extract the features of the input dataset
via down-sampling operation and convolution calculation. Next, the FC layer accomplishes regression or
classification tasks. The FC layer has a similar architecture and calculation model as the conventional
FFNN [19].

Convolution Layer. This layer learns the feature of the input dataset via convolutional calculation. It is
comprised of different mapping features. Every neuron of the mapping feature is interconnected with
the local area of the preceding layer of the mapping feature via a group of weights known as the
corresponding fields of the neuron, and the set of weights is named the convolutional kernels. The
forward propagation of the CNN from the l � 1 layer to the l layer is formulated as follows:

xlj ¼ f
X

i2Mj
xl�1i � klij þ blj

� �
; (1)

In Eq. (1), xlj characterizes the output of the layer; Mj signifies the designated mapping feature, xl�1i
denotes the output of layer l � 1; klij embodies the weight of the layer, and blj characterizes the bias of the
l layer:

Activation Layer. It is generally operable to execute a non-linear conversion on the output of
convolutional calculation to attain a non-linear demonstration of the input dataset, thus enhancing the
feature learning capability of the network. This layer widely applied in the CNN is a rectified linear unit
(ReLU) function, and it is calculated as follows:

f xð Þmax ð0; xÞcov; (2)

Now x represents the input of the activation function.

To enhance the antinoise capability of the model, we apply the Exponential Linear Unit (ELU) activation
function in the multi-scale convolutional structure that might accelerate the learning method and enhance the
performance of the network. As well, it applies a saturation function in the negative part for making the ELU
effective to noise, and it is calculated as follows:

yi ¼ zi; zi � 0
a exp zið Þ � 1ð Þ; zi , 0

�
(3)

In Eq. (3), yi and zi represent the activation function input and output values, and a denotes a
predetermined variable that controls the saturation value of ELU for the negative input.

Pooling Layer. This layer is generally inserted between consecutive convolution layers in the structure of
CNN. The aim is to considerably decrease the dimension of convolution layer output to decrease the
parameter and calculation in the network and suppress over-fitting and execute secondary feature
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extraction. It is comprised of various mapping features, and it corresponds to the mapping feature of the
preceding convolution layer sequentially without amending the number.

Plþ1
i jð Þ ¼ max

j�1ð ÞW þ 1�t�jW
fqil tð Þ (4)

In Eq. (4), qli tð Þ signifies the output of t-th neurons in the i-th feature map of the l layer;
t 2 j� 1ð ÞW þ 1; jW½ �, W denotes the width of the pooled region, and Plþ1

i jð Þ symbolizes the pooled
value of respective neurons in the l þ 1 layer.

In this study, the visual features of the input images are generated by the HybridNet mechanism [20]. In
general, classification requires intra-class invariant features while reconstruction desires to retain every data.
HybridNet includes the unsupervised path (Eu & Du) and the discriminative path (Ec and Dc) for overcoming
these drawbacks. Encoders Eu and Ec take an x input image and produce hc and hu representations, while Dc

and Du decoders take hc and hu correspondingly as input for generating x̂ and x̂ partial reconstruction.
Finally, C classifiers generate a class prediction through discriminatory features: ŷ ¼ C hcð Þ. Even though
both paths might have similar structures, they must carry out dissimilar and complementary roles. The
discriminatory paths must extract hc discriminatory features and should be crafted well to efficiently
implement classification tasks and generate an x̂c partial reconstruction that cannot be precise while
preserving every data. Subsequently, the part of the unsupervised path was complementarity to the
discriminatory path via p in hu the data lost in hc. As a result, it generates x̂ complementarity
reconstruction, meanwhile incorporating x̂ and x̂, the last reconstruction x̂ is near to x. The HybridNet
structure is expressed in the following:

hc ¼ Ec xð Þ x̂c ¼ Dc hcð Þ ŷ ¼ C hcð Þ
hu ¼ Eu xð Þ x̂u ¼ Du huð Þ x̂ ¼ x̂c þ x̂u

It is noteworthy that the eventual role of complementary reconstruction is to implement regularization
for discriminatory encoding. The HybridNet method contains two data paths, namely a partial reconstruction
and class prediction, that need to be incorporated. In this section, we overcome the shortcoming of
proficiently training this model. It includes terms for classification with Lcls; stability with �stability,
intermediate reconstruction with Lrec�interb;l (for branch b and layer l) and last reconstruction with Lrec.

As well it is followed by a branch complementarity training model. Each term is correspondingly
weighted over the k variable:

L ¼ kcLcls þ krLrec þ
X

b2 c;uf g;l krb;lLrec�interb;l þ ks�stability: (5)

HybridNet structure is trained on partially labelled datasets, i.e., encompassed of unlabelled images
Dunsup ¼ fx kð Þgk¼1…Nu

and labelled pair D sup ¼ f x kð Þ; y kð Þ� �gk¼1::Ns
. Each batch encompassed n samples,

classified into labelled images ns from D sup and unlabelled images nu from Dunsup. The classification
term is a regular cross-entropy term, i.e., only exploited on ns labelled samples in the following:

‘cls ¼ ‘CE ŷ; yð Þ ¼ �
X

i
yilog ŷ;Lcls ¼ 1

ns

X
k
‘cls ŷ kð Þ; y kð Þ

� �
: (6)

3.3 DR Classification Using DRNN Model

To classify the retinal fundus images for the existence of DR, the DRNN model is utilized in this study.
The structure of Deep RNN classification has been elaborated in this section, which is employed in carrying
out the sentiment classification of political reviews [21]. The G feature extracted from Twitter is given as
input to the model. But the classification model is the network structure which comprises many recurrent
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hidden states related to the network hierarchy. In this study, the recurrent connection exists merely in the
hidden state. The main advantage of utilizing the model is that it efficiently carries out the classifier
method even at a different feature length regarding the series of data. The primary data is fed as an input
to the existing prediction and continue the iteration with the data related to the hidden layer. The feature
of the recurrent layer makes these classifications efficient in implementing sentiment classifiers. As a
result, the model is regarded as the optimal classifier for performing the sentiment classifier of political
reviews. The structure of Deep RNN classification has been demonstrated in Fig. 2, and it is made

regarding the output vector of the pth layer at sth time as S p;sð Þ ¼ fS p;sð Þ
1 ; S p;sð Þ

2 ; . . . S p;sð Þ
l ; . . . Sðp;sÞq g and the

input vector of pth layer at sth time as G p;sð Þ ¼ fG p;sð Þ
1 ; G p;sð Þ

2 ; . . .G p;sð Þ
l ; . . .Gðp;sÞq g, correspondingly.

Consequently, the pair of every component of the output and input vectors are named units. Now, l
denotes the arbitrary value of the pth layer, and q shows the overall amount of components of the pth

layer. Along with the abovementioned variable, the arbitrary amount of ðp� 1Þth e layers are denoted by

a and the overall amount of units of ðp� 1Þth layer is denoted by me, correspondingly. Now, the
recurrent weight of the pth layer is denoted by w pð Þ 2 Bq�I, and the input propagation weight from

ðp� 1Þth layer to pth layer is denoted by W pð Þ 2 Bq�I and B indicates the set of weights. Furthermore, the
mathematical expression of the input vector is denoted by,

G p;Sð Þ
l ¼

XI

b¼1 x
pð Þ
lb S p�1Sð Þ

b þ
Xq

l
h pð Þ
ll0 S

p;s�1ð Þ
l; (7)

In Eq. (7), x pð Þ
lb and h pð Þ

ll; denotes the element ofW pð Þ and w pð Þ: l0 shows the arbitrary value of the pth layer
and the element of the output vector of the pth layer is formulated by,

S p;sð Þ
l ¼ a pð Þ G p;sð Þ

l

� �
(8)

In Eq. (8), a shows the activation function. Furthermore, the logistic sigmoid function as

Gð Þ ¼ 1

1þ e�Gð Þ, the ReLU as a Gð Þ ¼ max G; hð Þ and the activation function such as the sigmoid

function as Gð Þ ¼ tanh Gð Þ are the widely applied activation function.

For making the classification simple, consider hth unit as S p�1;sð Þ
h and hth weight as x pð Þ

lh , and the bias is
represented by,

Figure 2: Structure of DRNN
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S p;sð Þ ¼ a pð Þ: W pð ÞS p�1;sð Þ þ w pð Þ:S p; S�1ð Þ
� �

(9)

Now, S p;sð Þ states the classification output.

3.4 Hyperparameter Optimization Using EPO Algorithm

In the final stage, the EPO algorithm is utilized for optimal hyperparameter tuning of the DRNN model.
Emperor penguins (EP) are considered social animals, and they perform many different activities, like
hunting mainly for living and foraging in groups [22]. In extreme winter, they huddle to survive. At the
time of huddling, every penguin ensemble in their social behaviour gives a mutual sense of unity.

The huddling behaviour of the penguins is summarized below:

� Produce and determine the huddling domain.

� Evaluate the temperature.

� Consider every penguin's distance.

� Reposition the validated mover.

Modelling can be mainly performed for identifying the actual mover. The huddle shape is represented by
L shape plane of the polygon. The huddle boundary is calculated if effectiveness is discovered.

Huddling is used to map the behaviours of EPs. During huddling, a minimum of two penguins are
approached. The huddling boundary can be defined by the direction and speed of wind flow. The
mathematical expression of the huddling boundary is given as follows:

The wind velocity is signified as h, and the gradient of h is represented as v:

x ¼ rh (10)

The vector a is integrated with h to accomplish a complex potential.

G ¼ hþ ia (11)

The imaginary constant is denoted as ‘i’, and the function of the polygon plane is signified by G.

The huddling action can be performed by the EPs that surge the temperature of the huddle to conserve its
energy, T ¼ 1 if X < 1; T ¼ 0 if X > 1; the polygon radius is denoted by X and the calculation for the
temperature shown below:

T 0 ¼ T � Maxitr
y�Maxitr

� �
(12)

T ¼ 0; if X > 1
1; if X < 1

�

The time required for finding an optimum solution is denoted by T, and the maximal amount of iterations
is indicated by Maxitr. The present iteration is characterized by y, and X denotes the radius.

Once the huddling boundary is discovered then, the EPs distance is computed. The maximum fitness
value solution is regarded as an optimal solution. The position of the search agent is updated concerning
the optimum solution.
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The position updating process can be mathematically given in the following:

Nq
ep ¼ Ebs N Eð Þq:Q qtJ yð Þ � E

q

Qep
yð Þ

� �
(13)

Now, the distance is represented as Nep}’, and the collision among the penguins is avoided by X
	!

and

E. The optimum solution is characterized as Qt
	!

the running iteration is signified as y, and the EPs location

vector is represented by ~Q ep. The social forces are denoted by N that assist to discover optimum solutions.
YP and E vectors are computed using the following equations:

Y q ¼ ðN � T 0 þ Rgrid Accð Þ� �� Rand � T 0 (14)

Rgrid Accð Þ ¼ Abs Qq � Qq
ep

� �
(15)

Cq ¼ RandðÞ (16)

Let, Pgrid (Acc) be the accuracy, and Rand ðÞ denotes the random value ranging from zero to one. The N
parameter is fixed as 2.

The function N ðÞ can be evaluated in the following:

N Eð Þq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f :e�

x
l � e�x

q� �2

(17)

The expression function is represented by e, the control parameter is represented by f and l, and the
values lie within [2, 3] and [1.5, 2].

By utilizing the mover, the EPs location can be upgraded. The movement of other searches is led by
considering the optimal solution in a search space. To find the next location of EP following equation is
applied:

Qq
ep yþ 1ð Þ ¼ Qq1J yð Þ � X q:Nq

ep (18)

EP’s updated location is denoted by ~Q yþ 1ð Þ. The EPO approach makes extraction of a fitness function
(FF) for acquiring enriched classifier outcomes. It sets positive values which indicate superior outcomes of
the candidate solution. During this paper, the decrease in the classifier error rate can be taken into account as
the FF, as presented below in Eq. (19).

fitness xið Þ ¼ ClassifierErrorRate xið Þ ¼ number of misclassified samples

total number of samples
	 100 (19)

Algorithm 1: Pseudocode of emperor penguin optimization

Input: Emperor penguin population Pep
	!

x½ �
� �

Maximal count of iterations Imaxð Þ
Output: Global optimum search agent ~P

� �
Initializing population and control parameters.

Calculate the fitness value of every emperor penguin.

While ðx < I max Þ do
Define the fittest emperor penguin.

(Continued)
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Upgrade the place of every emperor penguin.

Determine the fitness value of every emperor penguin.

Upgrade ~P if there is an optimum solution than the preceding optimum solution.

x xþ 1

End while

returning Global optimum emperor penguin (~P).

4 Experimental Validation

This section investigates the DR classification performance of the DLLSHDM-DR model on the Kaggle
dataset (available at https://www.kaggle.com/c/diabetic-retinopathy-detection). The dataset comprises
2471 samples with two classes, namely healthy and unhealthy, as depicted in Table 1.

Fig. 3 exemplifies the confusion matrices created by the DLLSHDM-DR approach on the Kaggle
dataset. With 80% of training (TR) data, the DLLSHDM-DR model has classified 899 fundus images into
healthy and 1035 fundus images into unhealthy classes. In the meantime, with 20% of testing (TS) data,
the DLLSHDM-DR approach has classified 213 fundus images into healthy and 280 fundus images into
unhealthy classes. Concurrently, with 70% of TR data, the DLLSHDM-DR methodology has classified
774 fundus images into healthy and 921 fundus images into unhealthy classes. Simultaneously, with 30%
of TS data, the DLLSHDM-DR system has classified 335 fundus images into healthy and 399 fundus
images into unhealthy classes.

Table 2 and Fig. 4 provide an overall DR classification outcome of the DLLSHDM-DR model. Fig. 4
examines the DR results obtainable by the DLLSHDM-DR model on 80% of TR data. The DLLSHDM-DR
model has recognized images under healthy class with accuy, sensy, specy, Fscore, and MCC of 97.87%,
97.51%, 98.20%, 97.72%, and 95.73% respectively. Also, the DLLSHDM-DR algorithm has identified
images under unhealthy class with accuy, sensy, specy, Fscore, and MCC of 97.87%, 98.20%, 97.51%,
98.01%, and 95.73% respectively. Moreover, the DLLSHDM-DR model has obtained average accuy,
sensy, specy, Fscore, and MCC of 97.87%, 97.85%, 97.85%, 97.86%, and 95.73%, respectively.

Fig. 5 examines the DR results obtainable by the DLLSHDM-DR model on 20% of TS data. The
DLLSHDM-DR approach has recognized images under healthy class with accuy, sensy, specy, Fscore, and
MCC of 99.60%, 100%, 99.29%, 99.53%, and 99.18% correspondingly. Moreover, the DLLSHDM-DR
model has identified images under unhealthy class with accuy, sensy, specy, Fscore, and MCC of 99.60%,
99.29%, 100%, 99.64%, and 99.18% correspondingly. Also, the DLLSHDM-DR model has obtained
average accuy, sensy, specy, Fscore, and MCC of 99.60%, 99.65%, 99.65%, 99.59%, and 99.18%
correspondingly.

Algorithm 1: (continued)

Table 1: Dataset details

Class Description No. of Samples

Healthy No DR 1135

Unhealthy Having DR 1336

Total number of samples 2471

CSSE, 2023, vol.46, no.2 1909
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Figure 3: Confusion matrices of DLLSHDM-DR approach (a) 80% of TR data, (b) 20% of TS data, (c) 70%
of TR data, and (d) 30% of TS data

Table 2: Result analysis of the DLLSHDM-DR approach with distinct measures and class labels

Labels Accuracy Sensitivity Specificity F-Score MCC

Training phase (80%)

Healthy 97.87 97.51 98.20 97.72 95.73

Unhealthy 97.87 98.20 97.51 98.01 95.73

Average 97.87 97.85 97.85 97.86 95.73

Testing phase (20%)

Healthy 99.60 100.00 99.29 99.53 99.18

Unhealthy 99.60 99.29 100.00 99.64 99.18

Average 99.60 99.65 99.65 99.59 99.18
(Continued)
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Table 2 (continued)

Labels Accuracy Sensitivity Specificity F-Score MCC

Training phase (70%)

Healthy 98.03 97.36 98.61 97.85 96.04

Unhealthy 98.03 98.61 97.36 98.19 96.04

Average 98.03 97.98 97.98 98.02 96.04

Testing phase (30%)

Healthy 98.92 98.53 99.25 98.82 97.83

Unhealthy 98.92 99.25 98.53 99.01 97.83

Average 98.92 98.89 98.89 98.91 97.83

Figure 4: Result analysis of DLLSHDM-DR approach under 80% of TR data

Figure 5: Result analysis of DLLSHDM-DR approach under 20% of TS data

CSSE, 2023, vol.46, no.2 1911



Fig. 6 scrutinizes the DR results offered by the DLLSHDM-DR technique on 70% of TR data. The
DLLSHDM-DR methodology has recognized images under healthy class with accuy, sensy, specy, Fscore,
and MCC of 98.03%, 97.36%, 98.61%, 97.85%, and 96.04%, respectively. Similarly, the DLLSHDM-DR
system has identified images under unhealthy class with accuy, sensy, specy, Fscore, and MCC of 98.03%,
98.61%, 97.36%, 98.19%, and 96.04% correspondingly. Finally, the DLLSHDM-DR algorithm has
reached average accuy, sensy, specy, Fscore, and MCC of 98.03%, 97.98%, 97.98%, 98.02%, and 96.04%
correspondingly.

Fig. 7 demonstrates the DR results presented by the DLLSHDM-DR model on 30% of TS data. The
DLLSHDM-DR system has recognized images under healthy class with accuy, sensy, specy, Fscore, and
MCC of 98.92%, 98.53%, 99.25%, 98.82%, and 97.83%, respectively. Also, the DLLSHDM-DR
methodology has identified images under unhealthy class with accuy, sensy, specy, Fscore, and MCC of
98.92%, 99.25%, 98.53%, 99.01%, and 97.83%, respectively. Eventually, the DLLSHDM-DR model has
achieved average accuy, sensy, specy, Fscore, and MCC of 98.92%, 98.89%, 98.89%, 98.91%, and 97.83%
correspondingly.

Figure 6: Result analysis of DLLSHDM-DR approach under 70% of TR data

Figure 7: Result analysis of DLLSHDM-DR approach under 30% of TS data
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The training accuracy (TRA) and validation accuracy (VLA) realized by the DLLSHDM-DR algorithm
on the test dataset is depicted in Fig. 8. The experimental result stated that the DLLSHDM-DR system had
accomplished improved values of TRA and VLA. Mostly the VLA looked that longer than TRA.

The training loss (TRL) and validation loss (VLL) accomplished by the DLLSHDM-DR algorithm on
the test dataset are depicted in Fig. 9. The experimental result demonstrated that \ the DLLSHDM-DR system
had achieved minimal values of TRL and VLL. In certain, the VLL is lesser than TRL.

Figure 8: TRA and VLA analysis of the DLLSHDM-DR approach

Figure 9: TRL and VLL analysis of the DLLSHDM-DR approach
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Fig. 10 depicts a comparative accuy inspection of the DLLSHDM-DR approach with existing DR
classifiers [23]. The figure demonstrated that the deep CNN (DCNN), CNN, Faster RCNN, and RLL-
CNN models had poor performance with lower accuy of 91.8%, 92.09%, 93.61%, and 93.94%,
respectively. In line with the ResNet50, DNN, VGG16, and ensemble models have offered certainly
improvised accuy 95.99%, 96.47%, 96.69%, and 96.72%, respectively. Next, the stacked CNN model has
reached a reasonable accuy of 98.12%. But the presented DLLSHDM-DR model has accomplished a
higher accuy of 99.6%.

Fig. 11 showcases a comparative sensy examination of the DLLSHDM-DR system with existing DR
classifiers. The figure demonstrated that the DCNN, CNN, Faster RCNN, and RLL-CNN models had
demonstrated worse performance with lower sensy of 96.83%, 92.34%, 92.89%, and 91.13%
correspondingly. Moreover, the ResNet50, DNN, VGG16, and ensemble approaches have obtainable
certainly improvised sensy 93.67%, 92.09%, 91.53%, and 96.08% correspondingly. Afterwards, the
stacked CNN system reached a reasonable sensy of 97.85%. But the presented DLLSHDM-DR model has
accomplished a superior sensy of 99.65%. From the comprehensive results and discussion, it can be
apparent that the DLLSHDM-DR approach demonstrates maximal DR classification performance.

Figure 10: Accuy analysis of DLLSHDM-DR approach with existing methodologies

Figure 11: Sensy analysis of DLLSHDM-DR approach with existing methodologies

1914 CSSE, 2023, vol.46, no.2



5 Conclusion

In this study, a novel DLLSHDM-DR system was established to assist physicians in the DR decision-
making process. At an initial level, the DLLSHDM-DR system performed image preprocessing to boost the
image quality. Following this, the HybridNet approach was exploited to create a group of feature vectors.
Then, the DLLSHDM-DR technique used the DRNN model to perform image classification. Finally, the
EPO algorithm is utilized for optimal hyperparameter selection of the DRNN technique. The application
of the EPO algorithm assists in the optimal adjustment of the hyperparameters related to the DRNN
model which helps in accomplishing maximum classification outcomes. To assuring the improved
performance of the DLLSHDM-DR model, a wide range of experiments was tested on the EyePACS
dataset. The comparison outcomes assured the better performance of the DLLSHDM-DR methodology
over other DL models with maximum accuracy of 99.6%. In the future, the performance of the proposed
model can be improved by deep instance segmentation models.
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