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Abstract: Android malware has evolved in various forms such as adware that
continuously exposes advertisements, banking malware designed to access users’
online banking accounts, and Short Message Service (SMS) malware that uses a
Command & Control (C&C) server to send malicious SMS, intercept SMS, and
steal data. By using many malicious strategies, the number of malware is steadily
increasing. Increasing Android malware threats numerous users, and thus, it is
necessary to detect malware quickly and accurately. Each malware has distin-
guishable characteristics based on its actions. Therefore, security researchers have
tried to categorize malware based on their behaviors by conducting the familial
analysis which can help analysists to reduce the time and cost for analyzing mal-
ware. However, those studies algorithms typically used imbalanced, well-labeled
open-source dataset, and thus, it is very difficult to classify some malware families
which only have a few number of malware. To overcome this challenge, previous
data augmentation studies augmented data by visualizing malicious codes and
used them for malware analysis. However, visualization of malware can result
in misclassifications because the behavior information of the malware could be
compromised. In this study, we propose an android malware familial analysis sys-
tem based on a data augmentation method that preserves malware behaviors to
create an effective multi-class classifier for malware family analysis. To this
end, we analyze malware and use Application Programming Interface (APIs)
and permissions that can reflect the behavior of malware as features. By using
these features, we augment malware dataset to enable effective malware detection
while preserving original malicious behaviors. Our evaluation results demonstrate
that, when a model is created by using only the augmented data, a macro-F1 score
of 0.65 and accuracy of 0.63%. On the other hand, when the augmented data and
original malware are used together, the evaluation results show that a macro-
F1 score of 0.91 and an accuracy of 0.99%.
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1 Introduction

Deep learning is playing a vital role in various cyber security systems such as fraud detection, intrusion
detection, spam detection, and malware detection [1,2]. Naturally, a lot of deep learning-based Android
malware classification systems have been proposed to detect Android malware which has been evolving
in various forms such as Adware that continuously exposes advertisements, Banking malware designed to
access users’ online banking accounts, and SMS Malware that uses a C&C server to send malicious
SMS, intercept SMS, and steal data. Attackers have been designing new attack methods, and thus, there
are various types of emerging malware and the number of malware is continuously increasing [3,4]. In
addition, there are malware that aim to leak users’ personal information. Therefore, there have been a line
of research work on approaches for protecting various information such as analysis of abnormal data
collected from various devices such as mobile devices and Internet of Things (IoT) devices and data
collected from sensors [5–9]. As such, malware is threatening numerous users and thus it is necessary to
detect malware quickly and accurately. Malware belonged in a specific malware family has
distinguishable characteristics of malicious actions. Therefore, in order to detect malware faster and more
accurately, a lot of research on malware analysis and detection based on deep learning algorithms was
conducted [10–22]. To effectively analyze/classify the rapidly increasing number of malware, it is more
effective to classify malware in detail by family or behavior than to classify benign/malicious [12,23]. In
addition, if malware is classified into a family, we can minimize damage affecting users, and the time for
manually analyzing malware can be reduced [4,24]. However, to make a classifier based on deep learning
algorithms, a large amount of malware data of various types is required and should be labeled as a
family. However, collecting and labeling malware data belonging to a specific family in the wild is time-
consuming and expensive. In addition, even if a lot of time is invested in collecting malicious code data,
there are cases where the number of data belonging to a specific family is not sufficient [17,25,26]. Due
to this problem, a large body of research has used well-labeled open-source datasets such as Drebin [27]
and Android Malware Dataset (AMD) [28]. However, the well-labeled open-source dataset also has a
disadvantage in that the number of data for each family is imbalanced. As a result, the malware family
classifier may not detect a specific label and has poor performance for the multi-class classification
[29,30]. To overcome this problem, there have been studies that augment data in various fields [31].
However, among these studies, none of them could not completely preserve malicious behaviors when
augmenting malware because malware augmentation studies visualize and use features extracted from
malware as images.

In this paper, we propose an android malware familial analysis system based on a data augmentation
method to create an effective multi-class classifier for malware family analysis. In this work, we
particularly focus on the data augmentation method using a generative model to augment data by
reflecting various behavioral characteristics of malware. By alleviating the imbalance of the dataset used
through the data augmentation, we overcome the problem of the malware family multi-class classifier.
Our approach makes a malware family multi-class classifier to learn with rich (augmented) data so that it
can effectively classify malware into each family. We extract features that can reflect the behavior of the
malicious code by statically analyzing the malicious code. Our proposed method is distinct from the
previous work of augmenting data which visualize malware as an image. The extracted features are
trained to augment data for each family using a generative model, Conditional Variational Autoencoder
(CVAE) [32]. Also, by using the augmented data, we create a Convolutional Neural Network (CNN)-
based malware family multi-class classifier. The evaluation result of our proposed method demonstrates
through experiments that the malware family multi-class classifier trained with the augmented data can
detect the well-labeled open-source dataset data, which is the original data.
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In summary, the contributions of this paper are as follows.

� To effectively augment malware while preserving behaviors of them, we study API and Permissions
of malicious applications can be used.

� In order to overcome the problem that the previous deep learning-based classifier, which learned the
imbalanced dataset, cannot detect a class with little data, we augment the insufficient malware data.
Therefore, our deep learning-based android malware familial analysis model can provide enough data
to learn.

� We perform evaluations on open-source datasets used in many malwares detection studies. Our
evaluation results show that our model has the performance of multi-class family classifiers with
high accuracy (99%) and macro F1-score (0.91).

2 Related Work

There are many studies that detect malicious applications based on deep learning/machine learning with
augmented malware dataset. Kim et al. [18] extracted five features that can reflect the characteristics of
malicious applications. Their evaluation results show the high accuracy because it uses various features.
However, the approach may not be suitable for the malware family classification because the binary
classification between benign and malicious applications can leverage a clear difference between
behaviors of benign and malicious applications, but the familiar analysis requires to find detailed
behavioral differences. Qiu et al. [19] showed that the detection efficiency of existing malware detection
and family classification studies is low due to the advent of zero-day family malware. To overcome this,
Qiu et al. proposed Automatic Capability Annotation for Android Malware (A3CM) that automatically
identifies security/privacy-related capabilities rather than classifying malware families. However, since
there is no annotated capability malware dataset, the open-source dataset was used to designate security/
privacy-related capabilities labels. DL-Droid [10] extracted four features through the hybrid analysis
using both dynamic and static analysis. Then, they performed the binary classification against
applications using a deep learning classifier. However, the performance deviation of the deep learning
classifier is poor because it is highly dependent on features extracted through dynamic analysis. Taheri
et al. [20] detected malicious apps using the similarity between malicious code of an open-source dataset.
However, there is a limitation in analyzing large-size dataset due to the time complexity of the Nearest
Neighbors algorithm for measuring the similarity, and imbalanced open-source data was used as it is.
Kim et al. [17] assumed that each malware family performs similar malicious behaviors. Based on this
assumption, Kim et al. performed the malware family classification by using permissions that are
relatively immune to obfuscation techniques. However, it is difficult for the classifier to accurately
classify when the application requests many Permissions.

Those studies performed the binary classification of malware or used imbalanced open-source datasets.
In order to perform effective malware detection based on deep learning, other studies have been conducted to
alleviate the imbalance of open-source datasets. Arp et al. [27] addressed the issue of not enough family-
labeled malware samples. First, it analyzes the malware’s raw bytes, extracts features, and creates new
data by inserting data into the empty space between each section of the Portable Executable (PE) file.
However, since the extracted feature uses only important sequences longer than a certain length for data
augmentation, malicious codes of 200 or less that perform malicious actions cannot be used for data
augmentation. Raff et al. [33] solved the data imbalance between benign and malicious or malware
families through oversampling. To this end, Raff et al. proposed Stochastic Hashed Weighted Lempel-Ziv
(SHWeL), a method for vectorizing data. However, since SHWeL is based on Lempel-Ziv Jaccard
Distance (LZJD), compressing a shared subsequence of 100 bytes in a byte sequence can damage the
binary code structure or malicious behavior information. Chen et al. [13] aimed to mitigate the problem
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of data imbalance caused by the scarcity of some malware. To this end, Chen et al. proposed a deep learning-
based malware detection framework that visualizes the opcode of an application and uses it as a feature and
performs data augmentation through a Generative Adversarial Network (GAN) [34]. However, in the process
of normalizing and visualizing opcodes, the behavior information and code structure of the malicious code
can be disappeared. Burks et al. [11] also compared and evaluated using GAN and Variational Autoencoder
(VAE) [35] to solve the problem of imbalance of malware data. Experimental results show that the
efficiencies of the two generative models are different. However, as a result, both generative models
increase the accuracy of the classifier. Also, since the feature used in their study is an image, Burks et al.
concluded that GAN is more efficient for data augmentation than VAE. Wong et al. [36] proposed
Marvolo using semantics-preserving transformations to augment labeled datasets. However, due to
Marvolo’s efficiency-oriented optimization, the accuracy is improved only for a limited number of binaries.

3 Background

In this section, we discuss technical backgrounds and the limitation of previously proposed deep
learning-based approaches for detecting Android malicious applications. Also, we introduce technical
challenges for augmenting malware dataset.

Threats to Validity: For this paper, we included the studies that (1) deal with deep learning-based
Android malware detection, or malware familial analysis, and malware data augmentation, (2) we have
used combinations of strings such as ‘deep learning’, ‘data augmentation’, ‘Android malware familial
analysis’, and ‘Android malware detection, (3) and discuss our purposed android malware familial
analysis system based on a data augmentation method to create an effective multi-class classifier for
malware family analysis.

3.1 Deep Learning-Based Malware Detection (Analysis)

To use Machine Learning (ML) and Deep Learning (DL) for malware detection/analysis, most studies
extract and use various features such as API, Permission, Operation code (Opcode), and Control Flow Graph
(CFG) that can infer the behavior of malware [10,14,15,17–20,37,38]. Previous ML/DL based on malware
detection studies show that different classification and evaluation indicators are used using various
algorithms, datasets, and features as shown in Table 3. Many of these studies performed malware familial
analysis using a well-labeled open-source dataset [17,19,20,37,39]. Also, accuracy, which is the most
reasonable performance indicator used by the most studies, is difficult to trust when the data set is
imbalanced. This is because the classifier classifies all data into a major class where there is a lot of data
to improve accuracy [29,40].

Even well-labeled open-source datasets such as Drebin [27] and AMD [28] used in many studies have
imbalanced data distribution between classes. Fig. 1 shows Drebin’s imbalanced data distribution. Previous
research used an imbalanced open-source dataset as it is, so when splitting train/test data for model
generation, the number of classes evenly distributed on both sides is small, and a specific class can be
included only in the training set or test set. The classifier will not be able to sufficiently learn the features
of minor class malware with little data. As a result, it shows a low detection rate for the minor class or no
detection at all. As a result, the malware family classifier cannot detect a specific family and cannot
perform effective family analysis, and it can be difficult to respond to new malware [17,19,39]. In
addition, the evaluation metric used in previous studies is not suitable for multi-class classification.

For example, suppose you have 990 data in the benign class and 10 data in the malware class. At this
time, the malware classifier learns to correctly classify the malware. The classifier 1 in Table 1 shows 99%
accuracy by classifying all data into benign classes in order to optimize the accuracy. However, this classifier
cannot be used to detect malware because it misclassifies malware. The classifier 2 in Table 2 shows an
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accuracy of 98.6% in the same scenario. Although the classifier 2 in Table 2 has low accuracy, it can be seen
that it is more accurate for malware detection. This situation is called the accuracy paradox. As such, the
accuracy can demonstrate the performance of the model, but only the underlying class distributions are
sometimes reflected for unbalanced data. Consequently, when the data is imbalanced, the reliability of the
accuracy is low [28,30].

Table 1: Confusion matrix for hypothesis classifier 1

Classified benign Classified malware

Actual benign 0 10

Actual malware 0 990

Table 2: Confusion matrix for hypothesis classifier 2

Classified benign Classified malware

Actual benign 6 10

Actual malware 4 980

Table 3: Summary of ML/DL-based malware classification studies

Name Dataset Accuracy or
F1-score

Classification Features

DL-Droid
[10]

McAfee
labs

99% Binary API calls, permission, intents, actions/events,

Kim et al.
[17]

Drebin 91% Multiclass Permission

(Continued)

Figure 1: The data distribution of each malware family in Drebin [27]
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3.2 Malware Data Augmentation

Alleviating the data imbalance is to increase or decrease the number of training data through sampling.
Raff et al. [33] introduced a probabilistic component to vectorization to oversample the byte sequence to
mitigate the imbalance.

Another method for alleviating data imbalance is to augment data by using generative models. In
general, data generation models, such as GAN [34] and VAE [35], are used to solve the unbalanced data
distribution. These approaches can be used to increase the accuracy of the classification model by about
2% to 20% with newly generated data samples. Also, it has been verified through several experiments
that data augmentation has a positive effect on malware analysis and detection research [11,13,21,26,36].
On the other hand, there is a line of research work that uses the excellent performance of computer vision
research to visualize malware as an image to augment data and detect malware [11,13,21]. For example,
Cavli et al. [12] augmented the data with GAN to solve the imbalance in the dataset used in mobile
malware detection by visualizing the opcode of the malicious code as an image. However, since the
malware is different from the image, the contextual information confusion of the malware binary may
occur while visualizing it as an image. The three examples below are typical examples of contextual
information confusion that can occur while converting malware into images [22].

� Edge loss: If a binary instruction is placed on an edge of an image, the binary instruction is truncated
into two parts and converted to an image. Due to binary instructions truncated in two parts, the model
may have difficulty recognizing multiple long instructions. Also, the truncated binary instruction
loses contextual information.

� Resampling Noise: Sometimes an image feature is resized to match the size of other images. At this
time, as different unrelated binary commands are merged, contextual information may be confused.

� Padding problem: The addition of padding may make it difficult for the model to recognize the start
and end of the original binary sequence. In order to make the image size the same, the padding is filled
as much as the insufficient size. However, unlike image processing, malware image classification is
affected by padding. Therefore, it is difficult for the model to train accurately.

Therefore, the malware family classification model may not properly learn important features of
malware because the behavior of the malware can be damaged due to the preprocessing process for
augmenting the malware data [11,13,21,26,33,36]. For more accurate and effective malware data
augmentation, it is necessary to augment the data based on the original behavior of the malware.

Table 3 (continued)

Name Dataset Accuracy or
F1-score

Classification Features

Kim et al.
[18]

Genome
project

99% Binary API, permission, component, string, opcode

A3CM [19] Drebin,
AMD

99% Multiclass API calls, permission, network address

Blanc et al.
[37]

Drebin 98% Multiclass App review, bytecode instruction, class,
method

AFCGDroid
[39]

Drebin 95% Multiclass Attributed function call graph (Contain API
call, permission, etc.)
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4 Overview

In this section, we describe the overview of our goal and our approach.

4.1 Our Goal

In this paper, our goal is to design an effective multi-class classification system based on a data
augmentation scheme for the Android malware familial analysis. To generate an effective deep learning-
based model for the familial analysis of real-world Android malware, we first need a rich dataset which
contains various malware families affiliated to each malware family. Also, we need abundant malware in
each family to effectively train them. In general, when generating deep learning classifiers, the lack of
data leads to the poor performance and inadequate outcomes of deep learning models. Unfortunately, in
the wild, there is a significant imbalance in the number of malware in each family. Some of them have
numerous samples but there are malware families that do not have sufficient samples to train them as we
showed in Fig. 1. This characteristic of the real-world malware dataset seriously hinders us from making
an effective multi-class classifier for the malware familial analysis.

4.2 Our Approach

To overcome the challenge in the malware data augmentation, we first statically analyze the malware and
extract APIs and Permissions, which are important features that can be used to infer behaviors of each
malware. Then, we can create rich malware for each family by performing the data augmentation by
using the generation model based on the API and Permission extracted earlier. To create an effective
multi-class classifier for our target malware family analysis, we use the malware augmented for each
family and the actual malware dataset together. Because our proposed technique augments data samples
by using the features that can reflect behaviors of malware, it can effectively detect the original data
samples. In addition, there is a strong advantage in classifying malware of some families where there are
a few of real-world samples. The following section introduces the detail design of our approach.

5 Design

In this section, we introduce detail design of our malware family analysis system based on the data
augmentation method. Fig. 2 shows the architecture of our system. Since our proposed method is to
design an android family multi-class classifier based on data augmentation, we first design a generative
model for data augmentation. We extract APIs and Permissions that can infer behaviors of malicious
applications from each application. The extracted API and Permission are marked 0 and 1 after
determining whether each application is used or not. Afterward, it is used as input with family
information into the generation model CVAE [32] of Fig. 2, and malware samples for each family is
augmented. Finally, using the augmented data and the original data together as a training dataset, a
classifier for the android family multi-class classification is generated.

Figure 2: The architecture of the proposed scheme
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5.1 Feature Extraction and Encoding

App developers can implement and use various functions such as mobile device network connection,
camera, Global Positioning System (GPS), call, SMS transmission, and storage access through APIs to
utilize various hardware functions of the mobile device. Also, Android applications depend on framework
APIs for inter-application communication and hardware interactions [41]. In addition, the Android system
uses the permission-based security mechanism to restrict applications’ accesses to system resources. As
such, permissions are at the heart of Android’s security model [17].

For example, to use the getExternalFilesDir()API to access app files from any external storage, we must
first request the READ_EXTERNAL_STORAGE permission in AndroidManifest.xml file. Through this, we
know that in order to use a specific API, a specific permission must be declared first. After all, by analyzing
the permissions and APIs used in an application, we can know what functionalities are provided to the user
and what the application does. For more details, in the case of APIs, when an application uses android.
telephony and android.telecom APIs, it can be inferred that the application monitors the network status of
a mobile device and manages phone calls. As a result, the APIs used by an application is a useful feature
that provides information about the functionalities of the application [15]. Also, combinations of multiple
permissions can reflect some harmful behaviors and requesting specific permissions is essential for
malware to achieve its goals. Permission can also play an important role in malicious code analysis
[17,42]. For an effective malware data augmentation, we focus on which APIs and permissions are used
rather than the order or frequency of use of APIs and permissions. To this end, we use two arrays, in
which each entry stands for a specific API and permission, that consists of only 1 and 0 to express
whether an API or permission is used in an application or not.

5.2 Augmentation Model CVAE

The goal of a generative model is to learn the training data and generate similar data that follow the
distribution of the data. VAE [35] has the same structure as Autoencoder with encoder and decoder. The
main goal of Autoencoder is to compress and encode data. On the other hand, VAE aims to create a
latent vector using an encoder to find the probability distribution of data from input data and to generate
new data samples with a decoder.

VAE is a statistical probability distribution model for generating new data samples by learning the
distribution of the dataset. When a latent vector z is given, it learns in a direction that maximizes the
likelihood that a data sample x will appear. At this time, if we slightly change the latent vector z, we can
get the new data sample x0 we want. The VAE encoder calculates the mean and variance, the latent
variables of the n-dimensional normal distribution, from the high-dimensional data x. The latent vector z
is generated using the mean, variance, and ε generated through the encoder. ε is a value obtained by
extracting random values from a normal distribution to generate various values. In this process, the mean
and variance calculated by the encoder can be updated because of noise samplings obtained from the
normal distribution. The decoder generates the reconstructed input data x0 from the latent vector z value.
Decoder pðxjzÞ maps the latent vectors back to the original input data. In conclusion, the VAE is trained
to minimize the reconstructed error between the input data x and the reconstructed input data x0. In this
case, the loss function of VAE is defined as follows Eq. (1).

LVAE h; fð Þ ¼ �Ez�qf xð Þ zð Þ½ � þ DKL½qfðzjxÞ k ph zð Þ� (1)

EncoderðqðzjxÞÞ is a posterior probability function. This approximates the posterior probability
distribution pðzjxÞ. Also, it is assumed that the prior probability distribution p zð Þ is a Gaussian
distribution. In the loss function, DKL is the KL Divergence to measure and minimize the dissimilarity
between the two distributions, which measures the degree of similarity between p zð Þ and qðzjxÞ.
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CVAE [32] learns with the same structure and goals as VAE. However, unlike VAE, CVAE uses
condition information with input data. Our proposed method uses behavioral characteristics of a malware
family as condition information. Specifically, in this paper, we use the extracted API and permission
information together with the malware family information in CVAE, it is possible to generate high-quality
malware samples than using the existing VAE. Therefore, to perform our proposed data augmentation in a
family unit, CVAE is used to augment the malware data.

5.3 Malware Family Classification Model

We use the Convolution Neural Network (CNN) to implement a malware family multi-class classifier.
The input feature is used with the one-hot encoding of the API and Permission used by the application. An
embedding layer maps input features to vectors in the embedding space and generates embedding vectors.
The embedding vector goes through a one-dimensional convolution layer (Conv1D) using Rectified
Linear Unit (ReLu) as an activation function. Conv1D recently showed excellent performance in Natural
Language Processing (NLP) and high performance in existing malware detection studies [43]. Then, the
data family label is classified as the last fully connected layer. Since our model performs multi-class
classification, we use Sigmoid as the activation function of the last dense layer. Finally, our model
minimizes the binary cross-entropy loss and learns from the given data. Fig. 4 shows the structure of the
malware family multi-class classifier of the CNN-based model we used.

6 Evaluation

In this section, we evaluate the effectiveness of malware data augmentation and the deep learning-based
multi-class classifier generated with the augmented malicious applications. The generative model and multi-
class classifier used in our evaluation used the CVAE and CNN mentioned in Sections 5.2 and 5.3.

Figure 3: The architecture of the CVAE

Figure 4: The architecture of the CNN-based malware family multi-class classifier
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6.1 Experiment Environment

Experimental environment was performed on 2 Intel(R) Xeon(R) Gold 6230 20-core 2.10 GHz CPUs,
256 GB RAM, 4 NVIDIA GeForce RTX 2080 Ti GPUs, and Ubuntu 18.04.3 LTS. The language used was
Python 3.7.7, and AndroGuard [44] 3.4.0a1 was used to extract APIs and Permissions by statically analyzing
the application. We used TensorFlow-GPU 1.14.0, Keras 2.2.4, and CUDA 10.1 for training the deep
learning model we used.

6.1.1 Model Setting
The CVAE [32] used for data augmentation used 4 dense layers. Each dimension of hidden states is

2048, 70, 1024, and 2048 respectively. The activation function uses ReLu and sigmoid. The data were
augmented by 2000 for each label using the Adam optimizer with learning rate = 0.0002 and beta_1 = 0.5.
The CNN-based malware family multi-class classifier uses two Conv1Ds and uses ReLu as an activation
function. Each of the two dense layers. Each dimension of hidden states is 32, 4 respectively. The Adam
optimizer with a learning rate of 0.001 was used. The batch size is 256. CNN learns by using augmented
and raw data together. The generative model we used and the hyperparameters of the CNN-based multi-
class classifier are most suitable for our dataset, and we selected the hyperparameters with the best
performance through several experiments.

6.1.2 Dataset
Among the datasets used by various malware detection and classification research, we perform

experiments with Drebin [27], a well-labeled open-source dataset. Drebin is a very useful dataset for
algorithms using supervised learning that require labels because 5,560 pieces of the sample are labeled
with 179 malware families. Fig. 1 shows some sample distributions from Drebin. FakeInstaller, the family
with the most samples, has 925 malwares, accounting for about 17% of the total data. On the other hand,
the families with the least sample, Whapsni, Qicsom, and Updtbot, have only one malware, accounting
for 0.01% of the total data. This shows that Drebin is very imbalanced. If we extract the API and
Permission that we use as a feature, a total of 5,480 samples are available. With 80 bad applications, the
usable samples are reduced. Therefore, we performed data augmentation for a total of 179 malware
families using a total of 5,480 samples in the experiment. Also, we use the AMD dataset [28] that
consists of 24,553 malware samples and each of them belongs one of 71 families.

6.2 Evaluation Metrics

Our malware family detection model classifies Drebin’s [27] number of family labels into 179. The
malware family classification model trained on our augmented data is evaluated using accuracy, recall,
precision, and F1-score. Accuracy is the most used and is generally an evaluation metric showing the
performance of a model [45]. However, since the data we used is imbalanced and the importance of all
labels used in classifying malware families is the same, we used a macro average to use F1-score,
Precision, and Recall together [46]. For original data evaluation and augmented data evaluation, 80% is
used as training data and the remaining 20% is used as test data. Also, in the evaluation of augmented
and original data together, the two data are merged and randomly shuffled. After that, 80% is used as
training data and the remaining 20% is used as test data.

6.3 Drebin’s Imbalance Evaluation

We evaluate the performance of a CNN-based multi-class classifier using the metric described in
Section 6.2 to account for Drebin’s [27] imbalance. In addition, the API and permission, which are the
features we selected, were divided and compared and evaluated when using only the API and when using
the API and permission together. The graph on the left of Fig. 5 shows the results of learning Drebin data
in two cases. Both cases that we compared show the accuracy of 0.94, indicating that malware family

2224 CSSE, 2023, vol.46, no.2



classification is effective. However, as we can see in Fig. 1, because Drebin’s data is imbalanced, there is no
test data for a specific malware family, so the evaluation indicators macro-Recall, macro-Precision, and
macro-F1-score all show the low performance. Consequently, because the data imbalance has not been
considered, albeit the classification accuracy is high, the family detection is not excellent. Nevertheless,
the evaluation results show that the API and permission are effective features for malware classification.

6.4 Augmented Data Evaluation

We evaluate the performance of augmented data with the data augmentation technique that is the basis of
our proposed method. The graph on the right of Fig. 5 is the results of evaluating the performance of the
multi-class classifier trained with data augmented by using 2,000 data for each family targeting all
179 families of Drebin [27], and the original data.

Both features we used show the accuracy of 0.61 to 0.63 respectively, which is about 0.3 less than the
accuracy of Section 6.3. We performed data augmentation using the generative model. It can be seen through
experiments that our augmented model did not have enough original family data to learn, and thus the quality
of specific augmented family data was low. However, the experimental results show macro-Recall, macro-
Precision, and macro-F1-Score higher than the results of Section 6.3. Therefore, we find that the original data
can be better detected because the API and permission we selected are features that reflect the actual
behaviors of an application. As a result, we verified the validity of our augmented data through
experiments. Therefore, the evaluation results demonstrate that we can create a multi-class classifier that
does android malware familial analysis based on data augmentation.

6.5 Evaluating a Classifier that Trained Both Original and Augmented Data

Our goal is to evaluate whether we can create a multi-class classifier that performs android malware
familial analysis based on data augmentation. For the evaluation, we combine the original and augmented
data. The combined data were split and used as previously described in Section 6.1.1. The graph on the
left of Fig. 6 shows the evaluation result of the multi-class classifier learned by combining the augmented
data and the original data. As a result of the evaluation, the macro-F1-score of 0.91 is the highest when
data augmented by using API and Permission together is included. However, when data augmented using
APIs are included, a macro-F1-score of 0.9, which is an insignificant difference, is shown. However, it
can be seen that both cases are still effective for malware family classification.

Figure 5: Results of evaluating Drebin’s [27] imbalance using API, API, and permission and results of
augmented data evaluation
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When duplication is allowed for the augmented data, a macro-F1-score of 0.9 to 0.91 is shown.
However, when the deduplicates for the augmented data, a macro-F1-score of 0.88 to 0.89 is shown. This
shows an insignificant difference of 0.02, and it can be seen that the redundancy of data does not have a
significant effect on malware family classification.

6.6 Evaluation of Comparison of Original and Augmented Data

We evaluate whether data augmentation can generate a multi-class classifier for the Android malware
familial analysis. The graph on the right of Fig. 6 compares the performance evaluation result by creating
a multi-class classifier using only original data and the performance evaluation result by creating a multi-
class classifier using the both original data and augmented data. The classifier created by using the
augmented data together with all three evaluation indices used in the performance evaluation shows about
2 times higher performance than the classifier created with the original data. Those evaluation results
clearly show that the augmented data is effectively generated by using the APIs and permissions and the
features can be effectively used to infer behaviors of malicious applications.

6.7 Evaluation of Comparison of Original and Augmented Data

We evaluate our proposed method using another open-source dataset, AMD [28]. In the AMD dataset, a
total of 24,553 pieces of the samples are classified into 71 families. We only use 24,474 samples from which
features are extracted. Fig. 7 compares the performance evaluation results of the multi-class classifier created
using only original data before data augmentation with the performance evaluation results of the classifier
using both original data and augmented data. Since AMD has a more significant number of malware
samples than Drebin [27], it shows excellent classification performance of macro-F1-score 0.87 in both
cases of using only API as a feature and using API and Permission together as a feature. Through this,
we can confirm once again that the APIs and Permissions we used perform effective classification. In
addition, the model generated by our proposed method shows a macro-F1-score of 0.98 when only API is
used as a feature, and a macro-F1-score of 0.99 when API and Permission are used together as a feature.
As a result, it can be seen that our proposed method shows higher performance than the macro-F1-score
of the original data. The evaluation results demonstrate that our proposed method can be effectively
applied to other datasets besides Drebin.

Figure 6: Results of augmented data evaluation, original and augmented data comparison of evaluation
result
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7 Discussion

In this section, we describe the limitations of our approach.

7.1 Why is GAN not Used as a Generative Model?

GAN [34] is a generative model composed of two competing networks, Generator (G) and Discriminator
(D). G is trained to produce a more realistic output, and D is simultaneously trained to distinguish the
distribution of real data from the synthetic data generated by G. GAN has been successfully applied to
methods for generating image samples. However, there is a problem in generating discrete sequence data.
After all, the expression method for the features we used is difficult for GANs to learn. Because GAN is
designed to generate continuous data, it is difficult to directly generate discrete token sequences (e.g.,
text) [47]. Therefore, most text GANs rely on gradient-free Reinforcement Learning (RL). However, RL
suffers from an unstable training process because it gives up gradient information. Although some studies
have investigated the feasibility of gradient-based methods, the optimization is still inefficient.

7.2 Why Not Use Pre-Trained Embeddings?

One could use a pre-trained embedding to initialize the embedding layer in our neural network.
Word2Vec [48] is among the most widely used embedding generation techniques. Once an embedding is
learned, it initializes the embedding layer with pre-trained ones, making it easy to test embeddings with
various neural network architectures, including multi-class classifiers. However, in Word2Vec, the
location of the surrounding words and the central word for learning is important when learning. Also,
because embeddings are formed by learning only words that appear during learning, an out-of-vocabulary
(OOV) problem occurs for unlearned words. The OOV problem is big in generating our proposed multi-
class classifier based on data augmentation. Because to solve the OOV problem, a specific token
(_UNK_) is added. For example, if an application filled with only _UNK_ exists and the application is
augmented, data that helps classify the malware family cannot be generated.

7.3 Why is the Low Quality of Augmented Data?

In this paper, we use CVAE [32] to augment malware samples of each family. In the raw data we used for
our evaluation, CVAE could not learn enough about families with a very small number of malware. As shown
in Fig. 1, the original Drebin [27] data is also imbalanced. Therefore, the augmented malware samples of a

Figure 7: Evaluation of comparison of original and augmented data for AMD [28] dataset
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specific family are not proper to learn and to be used for generating a deep learning-based classifier, but our
proposed method augments the data without compromising the behavior of the malware.

The time complexity of the deep learning models used in our proposed technique is affected by the
number of layers used in the model. Also, the multi-class classifier we used has a time complexity of
O nð Þ because it is constructed based on CNN [49]. Here, ‘n’ is the number of features. As a result, the
more features used, the more linearly the time complexity of the classifier increases. In this regard, it can
be difficult to quickly respond to the increasing cyber threats [50]. We leave optimizations of models
generated by the proposed approach as our future work.

8 Conclusion

In this work, we studied a method to design a multi-class classifier based on a data augmentation scheme
for a malware familial analysis system. To this end, we extracted APIs and permission that can be used to
infer behaviors of malicious applications, performed data augmentation with a generative model, and
created a multi-class classifier for malware familial analysis. Our evaluation results show that the multi-
class classifier effectively and accurately classified by using the rich (augmented) malware dataset and
original data with the accuracy of up to 0.99% and a macro-F1-score of 0.91.
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