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Abstract: Prevailing linguistic steganalysis approaches focus on learning sen-
sitive features to distinguish a particular category of steganographic texts
from non-steganographic texts, by performing binary classification. While it
remains an unsolved problem and poses a significant threat to the security
of cyberspace when various categories of non-steganographic or stegano-
graphic texts coexist. In this paper, we propose a general linguistic steganalysis
framework named LS-MTL, which introduces the idea of multi-task learning
to deal with the classification of various categories of steganographic and
non-steganographic texts. LS-MTL captures sensitive linguistic features from
multiple related linguistic steganalysis tasks and can concurrently handle
diverse tasks with a constructed model. In the proposed framework, convolu-
tional neural networks (CNNs) are utilized as private base models to extract
sensitive features for each steganalysis task. Besides, a shared CNN is built to
capture potential interaction information and share linguistic features among
all tasks. Finally, LS-MTL incorporates the private and shared sensitive
features to identify the detected text as steganographic or non-steganographic.
Experimental results demonstrate that the proposed framework LS-MTL
outperforms the baseline in the multi-category linguistic steganalysis task,
while average Acc, Pre, and Rec are increased by 0.5%, 1.4%, and 0.4%,
respectively. More ablation experimental results show that LS-MTL with
the shared module has robust generalization capability and achieves good
detection performance even in the case of spare data.

Keywords: Linguistic steganalysis; multi-task learning; convolutional neural
network (CNN); feature extraction; detection performance

1 Introduction

Steganography [1,2] conceals secret messages within a carrier and then transmits them through
public channels, so that prospective eavesdroppers are unaware of the existence of the hidden confi-
dential information. Since the text is the most popular and frequently used information interaction
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media in people’s daily lives, linguistic steganography [3–5], using text as the carrier for covert
communication, has excellent research value and practical significance.

Currently, linguistic steganography has attracted wide attention from researchers and emerged
as an intriguing area. It mainly includes two types of methods modification-based [6] and generation-
based [7]. In modification-based methods, such as synonym substitution, the content of natural texts is
selected by a human and slightly modified to achieve the purpose of hiding information. Nevertheless,
it has the disadvantage of low hiding capacity due to the low redundancy of the texts. The generation-
based steganography automatically generates steganographic texts with the assistance of the trained
neural network-based language model, which increases the hiding capacity by generating unlimited
text. Moreover, texts generated by a well-trained language model are more natural, implying that
generation-based steganographic methods can generate higher-quality steganographic texts [8]. At
present, generation-based linguistic steganography is the dominant and promising branch of linguistic
steganography.

As the counter-technique of linguistic steganography, linguistic steganalysis [9] aims to reveal
whether secret messages are hidden in detected texts (a text that carries secret information is called
a steganographic text, and a text that does not is a non-steganographic text), preventing the seemingly
regular communication between criminal offenders. Namely, linguistic steganalysis methods need to
find out as much as possible about the difference in linguistic characteristics between steganographic
and non-steganographic texts, and then classify them correctly. Over the past decades, linguistic
steganalysis has proliferated. Early methods [10] mainly relied on manually designed statistical
features to capture the artifacts of embedding operations, such as context fitness and word frequency
distribution. However, they are developed based on the statistical changes targeted by specific
steganography and required various heuristic features designed by the domain specialists, which
hinders their performance and universality. In particular, the prevailing generation-based linguistic
steganography can automatically generate higher-quality steganographic texts that are so statistically
and linguistically close to natural texts, thus, it is much more difficult to distinguish them using hand-
crafted features [11].

Due to the unprecedented success of deep learning, neural network models have been widely
introduced in linguistic steganalysis [12]. The strong capability of models to automatically learn
and extract discriminative features, such as the semantic and syntactic features inside detected texts,
drives the detection performance of linguistic steganalysis tasks. Although these approaches achieve
excellent performance and demonstrate tremendous potential for detecting generation-based linguistic
steganographic methods, they perform almost a single binary steganalysis task to distinguish between
steganographic and non-steganographic texts targeted by specific steganography. In more detail,
different kinds of steganographic and non-steganographic texts are obtained by multiple means. For
example, generated non-steganographic texts (generated without secret messages) and natural non-
steganographic texts (selected from text corpora) are both referred to as non-steganographic texts; at
the same time, steganographic texts also can be classified as generative steganographic texts (generated
under the control of secret messages [4]) or modified steganographic texts (created by linguistic
steganography through slightly modifying a natural text [13]). However, existing works in this field
have yet to perform steganalysis tasks for a mixture of four categories of steganographic or non-
steganographic texts. In summary, the detection performance of the prevailing binary classification
methods will be limited when various types of texts coexist.

Intuitively, steganographic and non-steganographic texts from different sources carry various
text properties, which may provide helpful information with varying characteristics for steganalysis
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tasks. For example, modified steganographic texts are obtained by slightly modifying natural non-
steganographic texts. In contrast, generative steganographic texts are automatically generated under
the constraint of secret messages, meaning they contain statistical and linguistic properties specific
to the texts. When the number of tasks is large, and the learned features are required for each
task, multitask learning is an appropriate approach, which provides a convenient way to combine
information from multiple tasks and uses the correlation features between these related tasks to
help improve the classification performance of a single task. Given the above point, we opt to use
multi-task learning [14–16] to mine potential correlation information among several steganalysis
tasks. Experimental results demonstrate that the proposed approach enhances the feature learning
and generalization ability of the prevailing single-task-based methods and improves the detection
performance of each steganalysis task in a general framework. In summary, the main contributions of
this paper are as follows:

• We incorporate multi-task learning into linguistic steganalysis to enhance the performance of
detecting steganographic texts and propose a novel general linguistic steganalysis framework,
which takes advantage of the private and shared features with CNNs from multiple categories
of tasks. Furthermore, the interactive shared features between tasks can effectively alleviate the
data sparsity issue.

• To the best of our knowledge, this paper is the first to perform a four-category linguistic
steganalysis task in a general framework, improving the universality and generalization of
linguistic steganalysis methods.

• Experimental results show that the proposed framework can simultaneously detect various texts
by training a separate model and achieve excellent steganalysis detection performance.

2 Related Work

Benefiting the rapid development of deep learning, the steganographic texts generated by
generation-based linguistic steganographic methods are increasingly statistically similar to non-
steganographic texts. Thus, the traditional steganalysis that relies solely on the use of hand-crafted
features becomes a less feasible solution for detecting steganographic texts. Considering the decisive
role played by linguistic features on classification accuracy, researchers have begun to introduce deep
learning into linguistic steganalysis and employ neural network models to automatically capture
linguistic features for text detection. The current linguistic steganalysis methods based on the neural
networks are summarized in Table 1 below, where steganographic texts are called stego texts, and
non-steganographic texts are represented as non-stego texts. Subsequently, the methods mentioned in
Table 1 will be elaborated.

CNN is the most representative one among the many existing neural network models. The success
of CNN-based generative linguistic steganographic methods has motivated researchers to apply CNN
to linguistic steganalysis. Wen et al. [12] used the word embedding layer to retrieve semantic and
syntax features and employed rectangular convolution kernels of varying sizes to extract discriminative
features for steganalysis tasks. To detect the generated steganographic poetry, Yang et al. [17]
proposed the single-feature and multi-feature fusion TS-CNN to capture the distribution differences
in the semantic space before and after the information is hidden. In addition, Yang et al. [18] used
convolutional sliding windows of multiple sizes to obtain relevant features, distorted before and after
embedding between the generated non-steganographic and steganographic texts. Xiang et al. [19]
presented a two-stage cascaded CNN-based linguistic steganalysis to improve the system’s ability to
recognize steganographic texts generated via synonym substitution.
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Moreover, other neural networks have also been applied to tasks of linguistic steganalysis.
Yang et al. [20] introduced the idea of feature pyramids into steganalysis, developing an approach
that employs densely connected Long Short-Term Memory networks (LSTMs) with feature pyramids
to incorporate more low-level features and thereby achieve effective detection of steganographic texts.
To capture the differences in conditional probability distributions, Yi et al. [21] proposed two pre-
trained methods for linguistic steganalysis, based on recurrent neural network (RNN) or a sequence
autoencoder, to improve the detection performance. To address the shortcomings of traditional
networks, Li et al. [22] presented insightful explorations of using capsule network-based dynamic
routing to extract and analyze semantic feature differences. To fully consider the global information of
the text, Wu et al. [11] introduced a Graph Convolutional Neural Network (GCN) to collect contextual
information to update the node representation and further employed a global shared matrix to obtain
better text representation.

The linguistic steganalysis methods described above primarily employ a single neural network
to construct a steganalysis model that can detect whether the text is steganographic or non-
steganographic. To further improve the detection accuracy, some researchers opted to combine
multiple neural network models to design steganalysis methods. Li et al. [23] proposed a two-stage
text steganalysis method, which employs Bi-LSTM to obtain sentence vectors that preserve the strong
correlations between word information, and also uses Graph Neural Network (GNN) to extract
anomalous features from both intra-sentence and inter-sentence levels. To address the limitations
of RNN and CNN in preserving semantic features, Niu et al. [24] proposed a hybrid linguistic
steganalysis scheme by combining Bi-LSTM and CNN to capture both local features and long-term
semantic information. For their part, Bao et al. [25] introduced an attention mechanism to facilitate
an additional focus on suspicious information. Jiao et al. [26] took this a step further by introducing a
multi-head attention mechanism, connecting word representations with a multi-headed self-attentive
representation for further classification. Subsequently, Zou et al. [27] employed Bidirectional Encoder
Representation from Transformers (BERT) and Global Vectors for Word Representation (Glove)
to capture inter-sentence contextual association relationships, then extracted context information
using Bi-LSTM and finally obtained the sensitive semantic features via the attention mechanism for
steganographic text detection. Xu et al. [28] employed a pre-trained BERT language model to obtain
initial contextually relevant word representation, after which the extracted features were fed into an
LSTM with attention to obtain the final sentence representation used to classify the detected texts.
Besides, [28] also mixes the steganographic texts generated by several steganographic methods.

In general, there are multiple kinds of steganographic and non-steganographic texts (i.e., several
steganalysis tasks). However, as shown in Table 1, the above-mentioned linguistic steganalysis methods
implement only a single binary steganalysis task, which strictly limits the generalizability of the
classification model. Accordingly, motivated by multi-task learning, this paper proposes a linguistic
steganalysis framework named LS-MTL, which extends the binary steganalysis task into a four-
category task to enable the detection of multiple steganalysis tasks. The proposed framework can
be used to implement steganalysis tasks by employing various neural networks. Benefiting from the
tremendous development in the field of deep neural networks in the past two years, related researchers
have used CNN to extract high-level semantic features and subtle distribution differences of different
categories of texts [17]; CNN can capture complex dependencies and automatically learn feature
representations from the texts. Thus, LS-MTL employs the CNN as the base model, enhancing the
extraction and generalization ability by fusing the private and shared features of various categories
of steganalysis tasks, thus reducing the impact of data sparsity on detection performance. It is
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experimentally demonstrated that the proposed steganalysis method can achieve superior detection
performance.

Table 1: The comparison and analysis of the existing linguistic steganalysis methods

Method Detected texts Characteristics

Types of texts Stego texts

TS-CNN [17] Generative stego
texts and natural
non-stego texts.

CT-stega [17] • Exploring the sentence-level and whole poem-level
linguistic features; collecting a large corpus of
steganographic poetries;
• The pooling layer of CNN only retains significant
semantic features, so most of the subtle differences will be
filtered in the low embedding rate; specifical for
steganographic poetry, which is not universal.

TS-CSW [18] T-stega [18] • Designing special convolutional sliding windows with
multiple sizes to obtain anomalous word association
features triggered by secret information embedding;
estimating the amount of secret information in
steganographic texts; collecting a large corpus of
steganographic poetries and texts;
• Specifical for steganographic poetry, not universal.

GCN [11] T-stega [18] • Using GCN to extract global information first;
• Building graphs for each text, which is costly.

LSTM-Pyramid
[20]

T-stega [18] • Employing LSTM with feature pyramids to incorporate
more low-level features;
• Neglecting the coarse granularity of semantic text units,
such as sentences.

Pre-train [21] T-stega [18],
RNN-based [4]

• Introducing pre-train methods by pre-training a language
model based on RNN or a sequence autoencoder;
• Analyzing statistical distribution differences of texts,
without considering semantic features.

Dynamic-routing
[22]

RNN-based [4] • Employing capsule network with dynamic routing to
extract subtle differences of semantic distribution in the low
embedding rate;
• Ignoring the apparent difference in texts, such as syntactic
features.

LSTM-CNN [25] T-stega [18] • Employing an attention mechanism to identify important
cues in suspicious sentences; extracting the contextual and
semantic features;
• Relying on CNN to extract high-level local features from
the global semantic space and neglecting the coarse
granularity of semantic text units such as words, sentences,
etc.

Multi-Attention
[26]

T-stega [18] • Adding the attention mechanism to extract correlation
linguistic features;
• Only considering semantic interactions between words.

(Continued)
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Table 1: Continued
Method Detected texts Characteristics

Types of texts Stego texts

HLS [27] T-stega [18] • Locating where secret information may be embedded;
employing BERT or Glove as an embedding layer;
• Focusing on contextualized association relationships of
words and context information, but ignoring inter-sentence
semantic relationships.

CNN-Syn [19] Modified stego
texts and natural
non-stego texts.

T-lex • Propounding a two-stage CNN, a sentence-level, and a
text-level CNN;
• Only applicable to linguistic steganography based on
synonyms, not universal.

LSTM-GNN [23] T-lex • Proposing two phrases to extract intra-sentential and
inter-sentential features;
• Only extensive extracting features, without more
fine-grained extraction of the text’s semantic, syntactic, or
statistical features.

LS-CNN [12] Generative stego text (Markov-based)
and natural stego texts; modified stego
(T-lex) texts and natural stego texts.

• Utilizing CNN with a decision strategy to capture the
semantic and synaptic features of long texts;
• The effectively extracted features are local.

R-BILSTM-C [24] Generative stego text (T-stega [18]) and
natural stego texts; modified stego
(T-lex) texts and natural stego texts.

• Capturing local features and long-term semantic text
features by asymmetric convolution kernels and residual
shortcuts block;
• Neglect the coarse granularity of semantic text units, such
as words.

BERT-LSTM [28] Conducting a three-category task,
generative (T-stega [18]), modified
stego texts (T-lex), and natural
non-stego texts.

• Introducing the idea of transfer learning;
• Increasing data noise when multiple types of
steganographic texts are mixed.

3 Proposed Method

Supposing that a complex problem needs to be solved, it can be decomposed into several simple
and mutually independent subproblems; multiple results can then be integrated to obtain the results
of the initial complex problem. We observed that the individual subproblems are interrelated, and the
rich correlation information enriched between the problems is ignored when treating the problems as
a single independent task. Existing linguistic steganalysis tasks typically detect a single category of
steganographic and non-steganographic texts. In contrast, multiple categories of steganographic and
non-steganographic texts coexist, and we need to use various steganalysis models to achieve multi-
category text detection. Notably, it is worth noting that it ignores the interactive sensitive linguistic
features, which still need to perform better detection performance.

To alleviate the problem mentioned above, this paper introduces the idea of multi-task learning to
share the interaction information and sensitive linguistic features among multiple linguistic steganaly-
sis tasks while aiding the private features of each steganalysis task. By obtaining more comprehensive
and meaningful auxiliary details in this way, LS-MTL can significantly enhance the detection
performance of each task in a multi-category steganalysis method. If there are M categories of



CSSE, 2023, vol.46, no.2 2389

steganographic texts and N categories of non-steganographic texts, LS-MTL will build k steganalysis
tasks, and k = M ∗ N. In this paper, we construct four linguistic steganalysis tasks by considering
the four categories of texts (generative and modified steganographic texts, generative and natural non-
steganographic texts). As shown in Fig. 1, LS-MTL obtains the word embedding representation at the
pre-processing step; then constructs private and shared feature spaces by CNNs for steganalysis tasks;
finally, the globally comprehensive features are obtained by fusing each steganalysis task’s private and
shared features of each steganalysis task, which are used by the classifier to determine whether the
detected text is a steganographic text (stego text) or a non-steganographic text (non-stego text). It is
worth adding that the private feature space is employed to retain the linguistic features specific to each
task, which are extracted by a private CNN severally; while another is utilized to capture shared inter-
textual interaction features in the corpus of all steganalysis tasks, which a shared CNN constructs. The
proposed general framework of LS-MTL is presented in more detail below.

Non-stego texts

Stego texts

Feature fusion and classificationPrivate feature extraction

Shared feature extraction

SoftmaxPrivate CNN

Shared CNN

Feature fusion

Generative

stego texts

Generated

non-stego texts

Natural

non-stego texts

Modified

stego texts

Pre-processing

Task 4

Task 1

Figure 1: The overall framework of the proposed linguistic steganalysis framework, LS-MTL

3.1 Pre-Processing
LS-MTL first uses a word embedding model to preprocess the corpus and then obtains the word

vector matrix xk based on the text of the k-th steganalysis task, as shown in Eqs. (1) and (2) below:

Dk = {(
xk

i , yk
i

)}N

i=1
, (1)

xk
i = [

V k
1 , . . . , V k

l

] (
V k

j ∈ R
d, 1 ≤ j ≤ l

)
, (2)

where k represents the k-th steganalysis task; N represents the number of texts; Dk denotes a
corpus containing Nk texts for the k-th steganalysis task; xk

i and yk
i indicate the detected text and

the corresponding label of the text xk
i in the k-th steganalysis task, respectively; V k

j is the vector
representation of the j-th word in the i-th text for the k-th steganalysis task, and all the V k

j denotes the
representation of the detected text xk

i ; l is the length of the text; Rd is the vector space with d dimension.
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3.2 Private Feature Extraction
For obtaining the specific features contained in the k-th single steganalysis task, this paper employs

k CNNs to get the respective private feature representation of the texts for each steganalysis task
respectively, as outlined in more detail below.

First, the word vector matrix of the detected text is input into the private CNN of the steganalysis
task to which the text belongs. LS-MTL then leverages multiple convolutional kernels of various
widths to extract features and generate the candidate feature representation for the k-th steganalysis
task. ck

i is denoted as in Eq. (3):

ck
i = f

(
W · xk

i:i+h−1 + b
)

, (3)

where k represents the k-th steganalysis task; ck
i is the candidate feature representation for the k-

th steganalysis task; W is a convolutional kernel weight matrix; h is the width of the convolutional
kernel matrix; xk

i:i+h−1 represents the candidate feature representation of the selected text to be detected
controlled by the convolutional kernel; b is the bias term; f (·) is the nonlinear activation function.

For the features obtained from the different convolution kernel matrices, a maximization pooling
operation max (·) is performed, respectively. In short, the maximum value is taken for each candidate
feature representation to obtain the maximum pooled feature ĉk

i for the k-th steganalysis task in Eq. (4):

ĉk
i = max

(
ck

1, . . . , ck
l−h+1

)
. (4)

The private feature representation zk of the detected text for the k-th steganalysis task is obtained
by concatenating the maximum pooled features obtained from convolution kernel matrices together.
Meanwhile, zk is represented as following Eq. (5):

zk = [
ĉk

1, . . . , ĉk
m

]
, (5)

where m is the number of convolutional kernel matrices of the private CNN.

3.3 Shared Feature Extraction
Multi-task learning aims to enhance detection performance by learning tasks in parallel, lever-

aging the correlative features between multiple-category steganalysis tasks. Thus, to simultaneously
obtain the sensitive interaction features between each steganalysis task and other related tasks, this
paper designs a shared CNN to extract shared features for multiple linguistic steganalysis tasks, while
simultaneously stabilizing the impact of diverse data on the detection performance of steganalysis
tasks. The shared features are obtained by following the steps presented below.

When the word vector matrix xk of the detected text for a specific steganalysis task is input
to the corresponding private CNN, xk will also be input to the pre-constructed shared CNN. The
shared CNN employs multiple convolutional kernel matrices of different widths to extract features
and simultaneously generate the candidate feature representations. si is calculated by Eq. (6):

si = f (W · xi:i+h−1 + b), (6)

where si is the candidate feature representations; W is a convolutional kernel weight matrix; x
represents the word vector matrix of the selected text to be detected; xk

i:i+h−1 represents the candidate
feature representation of the selected text to be detected controlled by the convolutional kernel, and
h is the width of the convolutional kernel matrix; b is the bias term; f (·) is the nonlinear activation
function.
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A maximization pooling operation is performed for the features obtained from the convolution
kernel matrices. Briefly, each candidate feature is represented by taking the maximum value to obtain
the maximum pooled feature ŝ, which can be described as Eq. (7):

ŝ = max (s1, . . . , sl−h+1). (7)

The maximum pooled features obtained from convolutional kernel matrices are concatenated
together to obtain a shared feature representation o for all steganalysis tasks, which is expressed as
Eq. (8):

o = [
ŝ1, . . . , ŝn

]
, (8)

where n is the number of shared convolutional kernel matrices of the CNN.

3.4 Feature Fusion and Classification
After obtaining the private features zk for the k-th steganalysis task and the shared features o,

LS-MTL concatenates the two types of features to form the combined feature vector for the k-th
steganalysis task in Eq. (9), that is:

Hk = zk ⊕ o, (9)

where ⊕ is the concatenation operator; the Hk refers to the concatenation of the private features zk for
the k-th steganalysis task and the shared features o.

Next, the combined feature vector Hk is processed by a specific classifier, and the detection
probability distribution can be obtained by an activation function softmax. The computation is
performed as Eq. (10):

ŷk = softmax
(
W · Hk + b

)
, (10)

where ŷk is the probability distribution of the text to be detected for the k-th steganalysis task; Hk

denotes the combined feature vector of private and shared features; W and b are the trainable model
parameters. Finally, the predicted label will be obtained by comparing the probability distributions of
the categories.

This paper leverages a supervised learning framework and minimizes the loss function via back-
propagation iterative optimization to obtain the best model. The loss function calculates the average
cross-entropy between the predicted and actual label as the prediction error, is defined as follows in
Eq. (11):

Loss = −
K∑

k=1

Nk∑

i=1

βkyk
i log

(
ŷk

i

)
, (11)

where K denotes the number of steganalysis tasks; Nk represents the number of samples in the corpus
of the k-th steganalysis task; βk is the weight of the k-th steganalysis task; yk

i is the actual label of the
i-th sample in the k-th steganalysis task; and ŷk

i denotes the predicted label of the i-th sample in the
k-th steganalysis task. The prediction error will be progressively smaller through the model, meaning
that the prediction result will be closer to the actual label.
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4 Experimental Results and Analysis

4.1 Datasets
In the experiments, this paper utilized the current promising steganographic methods to produce

the corresponding categories of steganographic texts, which are universal, highly concealed, and
challenging to be detected by statistical analysis. The detected texts are referred into four categories:
modified steganographic texts, generative steganographic texts, generated non-steganographic texts,
and natural non-steganographic texts. Modified steganographic texts are produced by a stegano-
graphic tool T-Lex [19], which modifies natural texts from the Gutenberg corpus by synonym
substitutions to hide secret messages. Generative steganographic texts are automatically generated
by the generative linguistic steganography in [4], using the steganographic encoding methods FLC
and VLC with the Movie dataset. Texts generated by the same method proposed in [4], but without
embedding secret messages, are treated as generated non-steganographic texts. While natural non-
steganographic texts are randomly selected from the original Movie dataset. For each steganalysis
task, we choose 10,000 steganographic texts and 10,000 non-steganographic texts, for generative
steganographic texts, we selected 5,000 generated by each of the two encoding methods (FLC and
VLC) to form the whole generative steganographic text dataset. Notably, we choose and mix 8,000
steganographic texts and 8,000 non-steganographic texts as the training set, and other steganographic
texts and non-steganographic texts are blended as well.

We constructed four-category steganalysis tasks, corresponding to four types of datasets, to detect
whether a text is a steganographic text. The first type of dataset, named Dataset 1, includes generative
steganographic texts and generated non-steganographic ones; Dataset 2 consists of generative stegano-
graphic texts and natural non-steganographic ones; Dataset 3 is composed of modified steganographic
texts and generated non-steganographic ones; the dataset that comprises of modified steganographic
texts and natural non-steganographic texts is called Dataset 4. In our experiments, we train LS-MTL
with all four categories of datasets one time and input the test texts into the trained LS-MTL to
distinguish whether the corresponding tested text is steganographic or non-steganographic text.

4.2 Setup and Metrics
In this paper, the structure of the CNN used in this paper is as follows: an embedding layer,

we pre-trained a word embedding model, Word2vec, on the Google News corpus to produce a 300-
dimensional dense vector for each word; a convolutional layer with 3, 4, 5 three different sizes
of convolutional kernels, and each size has 100 convolutional kernels; a pooling layer and a fully
connected layer following with a softmax classifier. Besides, the learning algorithm is the minibatch
gradient descent with the Adam algorithm, and the learning rate is initialized as 0.00001 and the
epoch as 100. Note that the hyper-parameters are finally obtained through training, and we adopted
the model performing best during the training process to evaluate test sets.

To evaluate the performance of our method, we employ several evaluation metrics commonly used
in linguistic steganalysis tasks: Accuracy (Acc), Precision (Pre), and Recall (Rec). Among them, Acc
reflects the ratio of the number of correctly detected texts to the total number of samples; Pre is the
ratio of the detection accuracy to actual detection, and Rec reflects the percentage of correct detection
to what should have been detected. These metrics are calculated as shown in Eqs. (12)–(14) below:

Acc = TP + TN
TP + FP + FN + TN

, (12)
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Pre = TP
TP + FP

, (13)

Rec = TP
TP + FN

, (14)

For each steganalysis task, TP (True Positive) is the number of steganographic texts that are cor-
rectly detected as steganographic ones; TN (True Negative) is the number of non-steganographic texts
that are rightly detected as non-steganographic ones; FP (False Positive) denotes the number of non-
steganographic texts that are incorrectly detected as steganographic ones; FN (False Negative) repre-
sents the number of steganographic texts that are incorrectly detected as non-steganographic ones.

4.3 Results and Analysis
4.3.1 Comparison Experiments

To verify the effectiveness of the proposed LS-MTL in this paper, we opt to use the linguistic
steganalysis proposed in [12], referred to as S-CNN, as the comparison method. S-CNN employs CNN
as its primary neural network to learn features for the detection of generative steganographic texts,
which is dedicated to linguistic steganalysis for single-based binary classification. In this paper, we
trained and tested for each steganalysis task with the corresponding dataset, while we trained LS-
MTL with all the datasets and tested with the corresponding dataset for each steganalysis task. The
results of the comparison experiments between LS-MTL and S-CNN on the four categories of datasets
for linguistic steganalysis are shown in Table 2 and Fig. 2.

Table 2: The comparison of experimental results between LS-MTL and S-CNN on different steganal-
ysis tasks

Datasets Model Acc Pre Rec

Datasets 1 S-CNN 0.927 0.962 0.890
LS-MTL (Ours) 0.943 0.947 0.938

Datasets 2 S-CNN 0.878 0.857 0.908
LS-MTL (Ours) 0.888 0.927 0.841

Datasets 3 S-CNN 0.996 0.998 0.994
LS-MTL (Ours) 0.997 0.996 0.998

Datasets 4 S-CNN 0.940 0.945 0.935
LS-MTL (Ours) 0.937 0.948 0.967

Average S-CNN 0.936 0.941 0.932
LS-MTL (Ours) 0.941 0.955 0.936
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Figure 2: The comparison results of S-CNN and LS-MTL

As shown in Table 2, S-CNN is demonstrated excellent detection performance on certain metrics
on datasets. We analyze that S-CNN is a single-based binary classification specifically for linguistic
steganalysis, which purposefully extracts linguistic features for particular steganalysis tasks. Therefore,
S-CNN also achieves excellent detection performance, the average Acc is 93.53%, the average Pre is
94.05% and the average Rec is 93.175%. Meanwhile, as illustrated in Table 2 and Fig. 2, the proposed
method achieves an average Acc of 94.10%, an average Pre is 95.5% and average Rec is 93.60%,
which exhibits better average detection performance for all metrics compared to the baseline, with
Acc improving by 0.5%, Pre by 1.4%, and Rec by 0.4%. LS-MTL is proven to detect steganographic
and non-steganographic texts more correctly by obtaining the higher Acc in Datasets 1, 2, and 3 of
steganalysis tasks, and it achieves the highest Acc of 99.7%. In the steganalysis tasks on Datasets 3
and 4, LS-MTL and S-CNN achieve detection performance of Pre that is not very different from
each other. However, in the steganalysis task on Dataset 2, our method is far ahead of the baseline by
7% Pre improvement. For Rec, LS-MTL exceeds the baseline by about 3% in most cases, achieving
better detection performance than S-CNN. Generally, results convincingly show that LS-MTL can
effectively improve detection performance by obtaining relevant interaction linguistic features from
multiple steganalysis tasks. Besides, it implements multiple linguistic steganalysis tasks in the same
model LS-MTL and improves detection performance, which is sufficient to prove that the proposed
framework has robust generalization capability.

It is worth noting that LS-MTL and S-CNN exhibit varying detection performance on sev-
eral steganalysis tasks. However, both methods achieve remarkable detection performance in the
steganalysis tasks on Datasets 3. We determine that the two datasets are extremely easy to classify
due to the significant differences in their text style and linguistic features. Specifically, the modified
steganographic texts are derived from the Gutenberg corpus, while the generated non-steganographic
texts are from the Movie dataset. Moreover, the writing styles used in these datasets are distinctive,
making them very easy to detect and distinguish.
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4.3.2 Ablation Experiments

To analyze the effect of different factors on the detection performance of LS-MTL, we conduct the
ablation experiments mainly from two perspectives: model structure and dataset. First, to measure the
practical effectiveness of the shared module in LS-MTL on the detection performance, we constructed
two models based on LS-MTL: the LS-MTL prototype and the LS-MTL variant without the shared
CNN module. Since the LS-MTL without the shared module does not share mutual information
among multiple tasks, it implements a single binary classification task on the corresponding dataset,
so we train a separate model with the corresponding dataset for the eliminated shared CNN to
implement the corresponding separate binary classification task. Meanwhile, we named the LS-
MTL variant as the single-task, and the prototype of LS-MTL as the multi-task. Theoretically, the
shared feature capturing from multi-category steganalysis tasks can effectively mitigate the impact
of data sparsity on detection performance. To argue the above issue, we simulate the existing data
sparsity situation by cropping the number of steganographic and non-steganographic texts to 5,000
for each steganalysis task separately. In this paper, we train the LS-MTL model on the cropped and
uncropped datasets, respectively. While the model trained on the cropped dataset is denoted as task-1,
the model trained on the uncropped dataset is represented as task-2. In summary, we implemented the
comparison experiments in four scenarios: single-task-1, single-task-2, multi-task-1, and multi-task-2.
The experimental results are presented in Table 3 and Fig. 3.

Table 3: Comparison results of ablation experiments for LS-MTL on four categories of datasets

Datasets Models Acc Pre Rec

Datasets 1 Single-task-1 0.883 0.914 0.846
Single-task-2 0.904 0.920 0.884
Multi-task-1 0.922 0.902 0.947
Multi-task-2 0.943 0.947 0.938

Datasets 2 Single-task-1 0.810 0.886 0.711
Single-task-2 0.838 0.940 0.722
Multi-task-1 0.872 0.914 0.821
Multi-task-2 0.888 0.927 0.841

Datasets 3 Single-task-1 0.942 0.997 0.886
Single-task-2 0.997 0.997 0.998
Multi-task-1 0.996 0.994 0.998
Multi-task-2 0.997 0.996 0.998

Datasets 4 Single-task-1 0.884 0.895 0.870
Single-task-2 0.926 0.930 0.921
Multi-task-1 0.931 0.909 0.956
Multi-task-2 0.937 0.948 0.967

Average Single-task-1 0.900 0.923 0.828
Single-task-2 0.916 0.947 0.881
Multi-task-1 0.930 0.930 0.931
Multi-task-2 0.941 0.955 0.936
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Figure 3: The comparison results of ablation experiments

As shown in Figs. 3a and 3b, all the multi-task learning methods outperform single-task clas-
sification methods in all steganalysis tasks, i.e., the multi-task-1 methods are superior to single-
task-1, and the multi-task-2 are preferable to single-task-2. As can be analyzed from Table 3, the
multi-task learning approaches achieved excellent detection performance compared to the single-task
approaches, where multi-task-1 outperformed single-task-1 by 3% in average Acc, 0.7% in average Pre,
and 10.3% in average Rec; multi-task-2 outperformed single-task-2 by 2.5% in Acc, 0.8% in Pre, and
10.3% in Rec higher. Experimental results demonstrate that shared features between multiple tasks by
introducing the idea of multi-task learning can significantly and consistently enhance the performance
of linguistic steganalysis methods and the generalization capability of the proposed framework.

From the experimental results in Figs. 3c and 3d, we noticed that the detection performance
of single-task-1 is lower than that of single-task-2, while the performance of multi-task-1 is also
lower than that of multi-task-2. Experimental results indicate that data sparsity problem affects the
performance of linguistic steganalysis tasks to some extent, regardless of single-task or multi-task
text classification. From Table 3, we find a big difference between the single-task-1 and single-task-2
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models, with average variance values of 1.6%, 1.6%, and 5.3% for the Acc, Pre, and Rec three indicators,
respectively. Besides, it even shows a difference in Rec value of up to 11.2% on Datasets 3 between
single-task-1 and single-task-2.

From Table 3, the difference in detection performance between the multi-task-1 and multi-task-
2 models is relatively small, with an average difference of 1%, 2%, and 0.5% for metrics, respectively.
The differences in detection performance between the multi-task-1 and multi-task-2 models are far less
than those between the single-task-1 and single-task-2 models under the reduced dataset. Notably, for
the last two types of tasks in Table 3, multi-task-1 achieves about the same detection performance
as single-task-2 with fewer data. These findings conclusively demonstrate that steganalysis based on
multi-task learning is less dependent on the amount of available data than single-task learning. The
multi-task learning-based approach has better generalization ability and mitigates the data sparsity
problem to a remarkable extent.

5 Conclusion and Future Work

This paper presents a general multi-task learning-based framework for linguistic steganalysis, LS-
MTL, which makes it possible to implement multi-category linguistic steganalysis tasks with a single
model. Compared to related works, LS-MTL provides a solution for a real-world scenario where
there are more types of steganographic and non-steganographic texts. LS-MTL exhibits better average
detection performance for all metrics compared to the baseline, with Acc improving by 0.5%, Pre by
1.4%, and Rec by 0.4%. Meanwhile, ablation experiments are conducted in terms of model structure,
and it argues that the proposed framework has a strong generalization ability. In the case of sparse
data, LS-MTL also achieves stable and promising detection performance. Although the proposed
framework achieves excellent text detection performance, there are still some limitations. For example,
the different linguistic features from multi-tasks are distinct, so using the same neural network CNN
as the base model is inappropriate. In future work, we will employ diverse and appropriate neural
networks to capture more effective and sensitive linguistic features for linguistic steganalysis.
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