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Abstract: Acoustic emission (AE) is a nondestructive real-time monitoring
technology, which has been proven to be a valid way of monitoring dynamic
damage to materials. The classification and recognition methods of the AE
signals of the rotor are mostly focused on machine learning. Considering that
the huge success of deep learning technologies, where the Recurrent Neural
Network (RNN) has been widely applied to sequential classification tasks
and Convolutional Neural Network (CNN) has been widely applied to image
recognition tasks. A novel three-streams neural network (TSANN) model is
proposed in this paper to deal with fault detection tasks. Based on residual
connection and attention mechanism, each stream of the model is able to
learn the most informative representation from Mel Frequency Cepstrum
Coefficient (MFCC), Tempogram, and short-time Fourier transform (STFT)
spectral respectively. Experimental results show that, in comparison with
traditional classification methods and single-stream CNN networks, TSANN
achieves the best overall performance and the classification error rate is
reduced by up to 50%, which demonstrates the availability of the model
proposed.

Keywords: Convolutional neural network; attention mechanism; acoustic
emission; fault detection

1 Introduction

The powerful identification and classification of AE signal of the rotor are very important to the
early analysis of rubbing state degree, early diagnosis of mechanical faults, and fault development
trend early warning. Many ways have been proposed to extract robust characteristics, which are the
properties of the rotor’s rubbing acoustic emission signal. Derived from traditional propagation theory,
Modal Acoustic Emission (MAE) technology effectively represents AE signals. It uses multimodal
suppression to resolve AE signals into fundamental modal sound waves. And then, it extracts the
AE signal’s property parameters. A method called Gaussian mixture model (GMM) which is able to
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classify rubbing fault, for instance, was proposed by Deng et al. in 2014 and the cepstral coefficient of
the AE signal is utilized as an input feature [1]. In addition, some traditional methods are also applied
in this field which is about machine learning, such as the Bayesian classifier [2], the support vector
machine (SVM) [3], and the K-NN algorithm [4].

The neural network represented by CNN is also used in the field of fault detection [5] with the
mushroom growth of deep learning. In 1989, LeCun et al. of New York University (NYU) [6] proposed
the CNN, and used it to handle high-dimensional grid data. In the fault diagnosis field, a CNN
model combined with the input of AE signal was proposed to detect bearing faults [7] which improves
recognition efficiency and level compared with traditional methods. In the same way, CNN can also
use to cope with the work of AE. Other methods such as acoustic emission [8–10] and K-means [11]
are utilized to improve the performance.

Although CNN has strong processing power in image and other fields, AE signal is essentially a
time-dependent signal. In the field of sequential tasks, Long Short-Term Memory (LSTM) neural
network, a variation of RNN, plays a crucial role. With the advent of the attention mechanism,
initially applied in the field of image processing and achieved excellent results [12], the structure of
LSTM-Attention is diffusely applied in the Natural Language Processing (NLP) [13] fields as well as
speech processing to obtain the sentence-level embedding [14]. For AE, in this paper, the structure is
considered to be equally effective.

Researchers have studied many interesting diagnosis methods of vibration analysis of rolling
element bearings. However, the potential of multi-streams neural network has never been tried. Multi-
stream neural network is known to be better at feature extraction in areas like facial expression
recognition than single-stream neural networks [15]. Fault detection [16]. As a result, in order to
accurately identify the AE signal, an improved neural network called TSANN is proposed in this
paper. First of all, the AE signal’s time-frequency analysis is performed to determine how frequently
AE signals occur over a given period of time. Secondly, three streams of input data are created by
calculating the STFT, MFCC, and Tempogram. Then, each stream of the model is used to extract a
unique feature representation through CNN-LSTM. To better focus on the most effective features,
attention is applied to the output of LSTM. Finally, experiments are used to confirm the availability
of the TSANN network, which is proposed in this paper.

2 Main Principle

2.1 Residual Connection Network
Residual connection network was originated from ResNet [17] which is an improvement to

traditional CNN models and has become the most popular CNN structure to extract features so
far. The original experience shows that the deeper CNN is, the more various extracted features will
be. However, more experiments demonstrate that optimization suffers and accuracy falls as a result
of gradient disappearance and gradient explosion that deepening the network will bring about. As
is shown in Fig. 1, batch normalization will only alleviate this impact to a limited extent, hence the
introduction of residual connection. The main idea of residual connection network is that it will
directly add the input to the output of current layer so that the shape of tensors must be the same.
In the function layer, we adopted the same structure as Fig. 1b.
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Figure 1: The ResNet Block structure. (a) a ResNet-34 building block. (b) a ResNet-50/101/152
bottleneck building block

2.2 LSTM
A type of time-recurrent neural network called LSTM aims to address the long-term dependence.

In our model, LSTM is used to extract time features because there still are acoustic characteristics
related to time in AE signal.

2.3 Scaled Dot Product Attention
Scaled dot product attention has gained popularity in tasks involving sequence learning in recent

years, which is mainly used to enhance the representation of the current word by introducing context
information. The attention structure is shown in Fig. 2 and the final score is calculated as follows:

A = QKT

√
d

(1)

Score = Softmax (A) ∗ V (2)

softmax (A) = eA

∑N

j=1 eAj
(3)

where Q, K, V is considered to be the same input vectors in each stream with the shape of (N, d), N
represents the sequence length of input, and d represents the sequence’s dimension of input.

2.4 Three-Streams Input
Rotating machine rotor AE signal, considered as short-term stationery, is a sort of acoustic signal,

just like the natural speech [18]. Therefore, spectral analysis is first performed on AE signal. Fig. 3
presents the spectra of STFT, MFCC, and Tempo of three kinds AE signals respectively, which
obviously shows that the three kinds of AE signals exhibit different characteristics. We designed a
three-streams input based on the unitary frequency distribution and generally stable of the CNN’s
excellent learning classification capacity and the three types of spectrum.
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Figure 2: The scaled dot product attention structure

(c)

(a)

(b)

Figure 3: STFT spectra and MFCC of normal, cracking, and rubbing AE signals. (a) Normal.
(b) Cracking. (c) Rubbing

STFT. The STFT computes the discrete Fourier transform (DFT) on a short overlapping window
to represent signals in the time-frequency domain. Each column in the STFT represents a 512 point
FFT of a single signal frame, each frame in it has a duration of 1.024 ms with an overlap rate of 0.5.
Since network can only learn the real values, we use the amplitude of STFT which is as known as
magnitude instead of raw STFT, and so do other extracted features if necessary.
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MFCC. The MFCC takes into account the traits of human hearing by way of mapping linear
frequency spectrum to Mel nonlinear frequency spectrum, which converts to the cepstrum and based
totally on auditory perception. Each column in MFCC conducts a 2048 points FFT signal’s one frame,
and each frame has a continuance of 4.096 ms, and the overlap rate is 0.25.

Tempo. One of the most valuable representations for tempo is named Tempogram, and it has
multiple applications such as beat tracking, music structure analysis, music tempo estimation, and
music classification. For AE signal, due to the different types of faults, different characteristics may
be exhibited during the average rotation cycle. The frame length and overlap of tempogram are in
accordance with those of STFT.

As a result, the input is composed of an STFT stream with the shape of 257 × 200 × 1, an MFCC
stream with the shape of 128 × 200 × 1, and a Tempo stream with the shape of 512 × 200 × 1.

2.5 TSANN
Fig. 4 shows the Basic CNN block based on the ResNet in our mode. The whole CNN structure is

one basic block or a superposition of multiple basic blocks. To avoid over-fitting, dropout is adopted
in each residual connection block output. Then, LSTM [19] is adopted to obtain time characteristics
after CNN. Scaled dot product attention is applied to the output of the LSTM to concentrate on the
most useful features. The features of this construction are presented in Table 1.

Figure 4: Basic CNN block

Table 1: The CNN model parameter setting

Stream No. Layer Dropout Kernel Channel Activation

STFT 1 Conv – (1, 1) 16 ReLU
Conv – (3, 3) 16 ReLU
Conv – (1, 1) 64 ReLU
Max pool – (2, 2) – –
Batch norm – – – –
Dropout 0.1 – – –

MFCC 1 Conv – (1, 1) 32 ReLU
Conv – (3, 3) 32 ReLU
Conv – (1, 1) 64 ReLU

(Continued)
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Table 1: Continued
Stream No. Layer Dropout Kernel Channel Activation

Max pool – (2, 2) – –
Batch norm – – – –
Dropout 0.1 – – –

Tempo 1 Conv – (1, 1) 16 ReLU
Conv – (3, 3) 16 ReLU
Conv – (1, 1) 64 ReLU
Max pool – (2, 2) – –
Batch norm – – – –
Dropout 0.1 – – –

2 Conv – (1, 1) 16 ReLU
Conv – (3, 3) 16 ReLU
Conv – (1, 1) 64 ReLU
Max pool – (2, 2) – –
Batch norm – – – –
Dropout 0.1 – – –

The whole TSANN framework is shown in Fig. 5. In the preprocessing stage, the amplitude of
STFT, MFCC and Tempogram are extracted by a Python Library named Librosa. Those three features
are then input into neural networks with almost the same structures. Outputs on behalf of the highest
own representation of each stream are concatenated into a linear layer. As a result, the final output is
obtained by a linear layer with softmax activation.

Figure 5: The overall framework

3 Experiments

3.1 Database
We use a database gathered by our laboratory research group during the past years in this paper,

which includes rotor cracks, normal signals, and rotor rubbing AE signals composed of the AE signals
of rotating machinery to be the AE signal database. In general, the AE signals of the database are at
three different rotational speeds, that are 800, 700, and 600 rad/s.
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The concrete details of the AE database are shown in Table 2. All of the sampling rates utilized
are 500 kHz, and each piece of data sampling time lasts 102.294 ms. In the case of 600 rad/s rotation
speed, each AE discrete signal’s whole point length is 51147, and continually collects around 9.8 rotor
cycles. Fig. 6 depicts the time domain audio waves of the three signals. To compare the differences
objectively, the scale on Y-axis is limited in (−2, 2).

Table 2: Three AE signals’ quantity distribution at different rotational speeds (unit: Sample)

The speed of machine

800 rad/s 700 rad/s 600 rad/s

State of the rotor Rubbing 396 518 592
Cracking 270 728 494
Normal 123 121 118

(c)

(a)

(b)

Figure 6: The database samples. (a) Normal. (b) Cracking. (c) Rubbing

3.2 Experiment Setup
The main experiment uses the AE signal, which has a rotation speed of 600 rad/s. We also used the

700 and 800 rad/s rotation speed of AE signal as the reference experiment. And we used the Hanning
window to frame the discrete AE signal, and the frame length choice is mostly determined by the FFT
point representation validity. We eventually take the 512 points FFT after carrying out experiments on
the 2048 points, 1024v points, 512 points, and 256 points FFTs respectively to construct and train the
network well in this experiment, the deep learning framework in PyTorch is used. And the rate of the
test set to the training set is 14. As for the activation, ReLU [20], Leaky ReLU [21], and GELU [22] were
adopted respectively, and ReLU was taken in the end. SGD optimization algorithm was performed
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for training. Noam scheme learning rate was adopted which is defined as Eq. (4), where n is current
iteration step and w represents warm up steps. Table 3 shows more details of the training section.

learning_rate = (init_lr · w)
−0.5 · min

(
n−0.5, n · w−1.5

)
(4)

Table 3: The training details

Parameters Value

LSTM for STFT 256
LSTM for MFCC 128
LSTM for Tempogram 256
Activation in CNN ReLU
Activation in each stream final linear output GELU
Batch size 32
Epoch 500
Warm-up step 1000
Initial learning rate 0.001
Loss function Categorical cross-entropy
Optimizer SGD
L2 decay 1e-5
Momentum 0.99

3.3 Result Analysis
3.3.1 Recognition Result

The recognition accuracy is measured by UAR (Unweighted Average Recall). Fig. 7 shows the
comparison among the network if LSTM is introduced or not. It can be figured out that there is an
obvious increase for MFCC, while only slight improvements for the other features, which indicates
that MFCC contains more characteristics in time dimension. As for the tempogram, the reason for
such a slight increase is that tempo is considered as a measure of the speed of music which may be less
obvious in AE signals, but it still works to some extent.

Figure 7: The contrast after and before introducing LSTM module
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The confusion matrices of different models are presented in Fig. 8 of which the number in figures
represents the number of samples. Fig. 9 reflects the average recognition performance between single-
stream CNN (abbreviated as SS) and TSANN. Compared to SS, the proposed model performs better.
The accuracy of Normal and Rubbing are the key to restrict the overall recognition performance for
both SS and TSANN. By combining three SS models, the classification error rate for Normal was
reduced by half, and it has been reduced to varying degrees for other categories.

(d)(c)

(a) (b)

Figure 8: The confusion matrices of the single-stream CNNs and TSANN. (a) STFT. (b) MFCC.
(c) Tempogram. (d) Three-streams CNN

3.3.2 Model Comparison Experiment

The traditional ways to identify AE signals are compared to further discover the capability of the
model. Different classifiers of AE signal classification capability is shown in Table 4, and Fig. 10 also
shows the results.
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Figure 9: Different networks’ UAR

Table 4: UAR of AE signals by different models at 600 rad/s (%)

Algorithm AE signal Average

Normal Cracking Rubbing

KNN 60.12 56.79 55.05 57.24
DNN 69.15 72.67 67.24 69.71
SVM 69.98 76.49 70.54 72.40
Single-stream CNN 83.33 94.56 87.01 88.30
TSANN 91.67 100.00 94.92 95.53

Figure 10: UAR of different models at three speeds
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The table shows that the proposed way’s recognition accuracy performance is the best for all
Rubbing, Cracking, and Normal, AE signals. The whole average recognition rate is more than 20%
higher than SVM, which has the best capability among the traditional classification methods, reaching
72.40% on average. On Rubbing AE signal, the classifier KNN has a poor recognition impact, with
a recognition rate of 57.23% overall. Compared with DNN and single-stream CNN, which are also
neural networks, since there are three-streams inputs in TSANN, raw AE signals can effectively capture
more features, leading to the highest UAR of 95.53%. Furthermore, the shallow CNN which only has
1 or 2 CNN blocks is better suited for the training of small datasets compared with the deep CNN.

3.4 Speed Comparison Experiment
Ultimately, we compare AE signals at different speeds to explore the influence of machine

speed on AE signals recognition performance. Experimental results reveal that TSANN gets the best
performance under conditions of different speeds. In comparison with traditional methods such as
SVM and KNN, methods with CNN make an incredible improvement. Besides, UAR of each model
is relatively stable at different speeds, although the higher speeds may account for higher accuracy to
a small extent, indicating that more sufficient loads for triggering AE signal are provided with the
increasement of speed and thus promoting the classification of AE signals within a reasonable range.

4 Conclusion

In this paper, a novel three-streams neural network called TSANN is proposed and we uses it
to detect rotor rubbing AE faults. The model takes into consideration the peculiarities of STFT,
MFCC, and Tempogram, and combines them into a three-streams input to feed into different
CNN-Attention-LSTM structures. Residual connection is adopted in CNN to avoid the problems
of gradient disappearance and gradient explosion. Scaled dot product attention is used for obtaining
more important feature representation. LSTM performs a slightly better performance in dealing with
the time information contained in the audio signals. We conduct multiple experiments to verify the
capability of TSANN. In comparison with other traditional classification ways, the proposed CNN
structure achieves a relatively high recognition accuracy. In addition, the recognition error rate of
TSANN decreased in varying degrees compared with single-stream model.
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