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Abstract: The Internet of Things (IoT) offers a new era of connectivity, which
goes beyond laptops and smart connected devices for connected vehicles,
smart homes, smart cities, and connected healthcare. The massive quantity
of data gathered from numerous IoT devices poses security and privacy
concerns for users. With the increasing use of multimedia in communications,
the content security of remote-sensing images attracted much attention in
academia and industry. Image encryption is important for securing remote
sensing images in the IoT environment. Recently, researchers have intro-
duced plenty of algorithms for encrypting images. This study introduces an
Improved Sine Cosine Algorithm with Chaotic Encryption based Remote
Sensing Image Encryption (ISCACE-RSI) technique in IoT Environment.
The proposed model follows a three-stage process, namely pre-processing,
encryption, and optimal key generation. The remote sensing images were pre-
processed at the initial stage to enhance the image quality. Next, the ISCACE-
RSI technique exploits the double-layer remote sensing image encryption
(DLRSIE) algorithm for encrypting the images. The DLRSIE methodology
incorporates the design of Chaotic Maps and deoxyribonucleic acid (DNA)
Strand Displacement (DNASD) approach. The chaotic map is employed for
generating pseudorandom sequences and implementing routine scrambling
and diffusion processes on the plaintext images. Then, the study presents three
DNASD-related encryption rules based on the variety of DNASD, and those
rules are applied for encrypting the images at the DNA sequence level. For
an optimal key generation of the DLRSIE technique, the ISCA is applied
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with an objective function of the maximization of peak signal to noise ratio
(PSNR). To examine the performance of the ISCACE-RSI model, a detailed
set of simulations were conducted. The comparative study reported the better
performance of the ISCACE-RSI model over other existing approaches.

Keywords: Remote sensing; internet of things; image encryption; security;
optimal key generation

1 Introduction

Recently, an important spread of the Internet of Things (IoT) gadgets was noted. Gartner
estimates that the IoT will reach 26 billion units by 2020, and research work by Statista states that
this number will become 75.44 billion by 2025 [1]. The usage of such gadgets is increasing in numerous
applications like mobile health, industrial control, environmental monitoring, Internet of Vehicles,
and smart homes spreading the scope of mobile transmissions from interpersonal transmissions to
smart interconnection among people and things, and also amongst things and things [2,3]. Remote
sensing has emerged with the arrival of the IoT, allowing cheap and fast attainment of data from
billions and millions of interconnected gadgets positioned globally. The IoT and the continual data
stemming from IoT have altered the conventional interpretation of remote sensing (indulges how
capturing and extracting knowledge from this data can be done). IoT Remote Sensing presents the
foundation for supporting the growth of Digital Earth Twins, which would make huge chances for
addressing significant societal and environmental difficulties in fields like geology, agriculture, and
smart cities, amongst others [4].

Grand difficulties posed by brownfield and greenfield IoT remote sensing placements invoke
federated learning, big data acquisition, scalability, connectivity, unmanned aerial vehicles (UAVs),
security and privacy, spatial data analytics, and mobility [5]. Remote sensing images (RSI) play a
significant part in disaster prevention and mitigation, agriculture, minerals, land, weather, national
defence, air pollution monitoring, water resources, and much more, presenting a solid technical
guarantee of sustainable advancement of a national economy. They were the main source of informa-
tion procurement, data processing, and analysis [6]. Moreover, sensor systems to acquire RSIs were
generally installed on space stations, satellites, spacecraft, etc. So, RSIs were exposed to space radiation
atmosphere, and the data presented in images would unavoidably experience serious interference risks
and attacks during communication [7]. Thus, the protection of RSIs security slowly highlights its
significance.

Since a significant fundamental decision-making information source, RSI plays a vital part in
decision making in the domain of military affairs and national security. Nowadays, it is a most
potential, secure, and dependable means of surveillance that could perform comprehensive and real-
time remote sensing inspection in combat regions. The conventional encoding technique of RSI details
generally leverages the prevailing public key for encoding an image [8]. This encryption technique raises
encryption security by altering primary circumstances. But, after the initial conditions and public
key were altered, the encryption would fail, which was inappropriate for the RSI details encoding.
Image encryption has become a key and effective way of protecting the security of image information.
Recently, researchers have brought forth many exemplary methods for image encryption [9]; because of
its complications and extreme sensitivity to primary parameters and values, chaotic mechanisms tend
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to be a common encryption technique as a pseudorandom number originator for image encoding. The
prevailing enhanced encoding technology depends on chaotic mechanisms invoking deoxyribonucleic
acid (DNA) encrypting, mathematical model, S-box replacement, lifting scheme, compressive sensing,
and Zigzag scrambling.

This study introduces an Improved Sine Cosine Algorithm with Chaotic Encryption based
Remote Sensing Image Encryption (ISCACE-RSI) technique in IoT Environment. The proposed
model initially experiences pre-processing to enhance the image. Next, the ISCACE-RSI technique
exploits the double layer remote sensing image encryption (DLRSIE) to encrypt the images. The
DLRSIE technique incorporates the design of Chaotic Maps and the DNA Strand Displacement
(DNASD) approach. For an optimal key generation of the DLRSIE technique, the ISCA is applied
with an objective function of the maximization of peak signal to noise ratio (PSNR). A detailed set of
simulations were conducted to illustrate the improvised performance of the ISCACE-RSI model.

The rest of the study is planned here. Section 2 explains the related works, Section 3 presents the
proposed model, Section 4 offers result analysis, and Section 5 draws a conclusion.

2 Literature Review

Zhang et al. [10] established a new approach of fast and productive measurement matrix and
arbitrary stage mask to colour image encrypted, where Kronecker product (KP) was integrated with
a chaotic map. The encrypted model depended on 2D compressive sensing (CS) and fraction Fourier
transforms (FrFT). During this technique, the KP was utilized to extend the lower dimensional seed
matrix to obtain a higher dimensional measurement matrix and arbitrary stage masks. Liu et al. [11]
present a new image encrypt approach based on DNA base probabilities and execute it for RSIs for
data protection. Primary, the plain image was arbitrarily encoded from DNA rule, and their outcome
contributes from DNA and DNA mask created with a 2D logistic map. Second, the cryptosystem
applies a 2D logistic map over DNA base probabilities against differential attacks. Tertiary, the pixel-
level rearrangement and DNA base-level rearrangement correspondingly executed for chaos sequence
to permutation and diffusion.

In [12], an effectual image encryption approach dependent upon the chaotic map and Advanced
Encryption Standard (AES) was presented to application on-board Earth observation satellite. The
presented approach involves several technical and attraction features for higher security levels and
tolerance to Single Event Upsets (SEU). In [13], the authors plan a visually secure encrypt model using
the parallel compressive sensing (PCS) counter mode and embedded approach. To achieve a superior
security level, the Logistic-Tent model and 3D Cat map are established to construct the measurement
matrix and disturb the sequences of embedding data correspondingly. Nan et al. [14] present an RSI
compression and encrypt technique dependent upon block compressive sense and several S-boxes,
which employs a new hyperchaotic method. Especially to provide which RSIs were large-sized, it can
establish a block compression–encrypt technique including a new hyperchaotic model integrated with
block compressive sense. The presented hyperchaotic model contains a 2D Logistic coupling Cubic
map which couples the Logistic map and Cubic map.

In [15], a new triple-image encrypt and hidden technique was presented by integrating a 2D chaotic
system, compressive sensing (CS), and 3D-discrete cosine transform (DCT). Primary, 3 grayscale plain
images were sparsely demonstrated by 2D-DWT. The resultant sparse matrix is scrambled twice with
index sort scramble and 3D zigzag scramble. Afterwards, the measurement matrix created with a
2D chaotic model was utilized to compress the scrambled matrix. In [16], a 7D hyperchaotic map
was utilized to produce the confidential keys to image encrypt. While this hyperchaotic map needs
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many primary parameters, the manual evaluation has been computationally general. Thus, minimax
differential development was employed to provide an optimum parameter to the hyperchaotic map.
The fitness of parameters is estimated utilizing correlation coefficient and entropy.

3 The Proposed Model

In this study, a novel ISCACE-RSI algorithm was projected to encrypt remote sensing images
in the IoT environment. The presented ISCACE-RSI technique follows a three-stage process: pre-
processing, encryption, and optimal key generation. Firstly, the remote sensing images are pre-
processed to enhance image quality. After this, the ISCACE-RSI technique uses the DLRSIE
technique to encrypt the images. For an optimal key generation of the DLRSIE technique, the ISCA
is applied with an objective function of the maximization of PSNR. Fig. 1 depicts the overall process
of the ISCACE-RSI technique.

Figure 1: Overall process of ISCACE-RSI technique

3.1 Image Pre-Processing
Firstly, the ISCACE-RSI technique initially encounters pre-processing to enhance image quality.

Thin clouds and mist bring a slight blur to RSI. Those blurs have dramatically decreased the resolution
of an image. The procedure of local light passes via the thin cloud and mist vapour, viz., the procedure
of light waves being blurred by optical channel modulation using fog and cloud, and the modulation
was a convolutional operation. Therefore this type of blur is regarded as a smooth convolutional blur.
The positive spike function using the negative side lobe was carefully chosen as the filter function. Also,
originally blurred images are convolved to acquire good recovery outcomes. This restoration technique
can be a type of grayscale edge enhancement technique. Since the operations among frequency domain
matrices are of equivalent size, beforehand of the Fourier transform (FT), the filter function was filled
with zero to the right and extended to 256 × 256, viz., size of the fuzzy image to be treated, later
convolved through original images. The fog and cloud are removed from RSI. Some corrections were
made to the Gaussian mechanism for RSI with severe blurring via repeated experiments as follows:

f (x, y) = g (x, y) ∗ h (x, y) (1)

The FT formulation of the processed image is as follows:

F (u, v) = G (u, v) H (u, v) (2)
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Here, u and v represent frequency-domain variables, F (u, v) denotes an f (x, y) FT approaching
the original clear image, and G (u, v) indicates the FT of satellite RSI g(x, y) blurred through thin
cloud and mist.

3.2 Remote Sensing Image Encryption Technique
To encrypt the remote sensing images, the ISCACE-RSI technique utilized the DLRSIE model,

which includes the process of chaotic maps and the DNASD model. The DLRSIE encryption system
is classified as follows: encryption at a level of DNASD and chaotic map. At a level of DNASD, a
diversity of DNASD is used for performing diverse DNASD-based encryption rules. At the level of
chaos, Lorenz chaotic and Lorenz hyperchaotic maps are employed in carrying out XOR diffusion
and pixel position scrambling correspondingly [17].

Step 1. A gray image T of size M × N was the plaintext image.

Step 2. A group value of Lorenz hyperchaotic map first value x0, y0, z0, w0 are selected as the key,
as well as the hyperchaotic map equation is repeated through the fourth-order Runge-Kutta model for
M×N+t times. The outcome of chaos can be improved by eliminating the initial t iteration. Beginning
with t + 1, afterward 3000 iterations, the chaotic state x0 is perturbed slightly using the following
formula, and h refers to the step length; next, we obtain a pseudo-random chaotic sequence S of length
M ×N. The pseudorandom sequence X is attained by normalizing the S pseudo-random sequences to
the integer interval [1, M × N]. The recurrent pseudo-random number in sequence X retains the initial
occurrence. In contrast, the number in integer interval [1, M × N] that doesn’t emerge in sequence X
is arranged after a sequence X in ascending order from smaller to larger. There is also no duplicate
value in sequence X .

x0 = x0 + h ∗ sin (y0) . (3)

Step 3. The original plain-text image matrixes T (M, N) are scrambled through sequence X and
Eq. (4). Also, the resultant matrix is represented by (M, N).

t = T (X (i)); T (X (i)) = T (X (M ∗ N − i + 1));
T (X (M ∗ N − i + 1)) = t. (4)

Step 4. A group value of Lorenz chaotic map primary value x0, y0, z0 is selected as the key, as well
as the chaotic map equation is repeated through the fourth-order Runge-Kutta algorithm for M×N+t
times. Three pseudo-random chaotic sequences, Lx, Ly, and Lz, with lengths of M × N are attained
by removing the preceding t iteration. Lx, Ly, and Lz were mapped into integer intervals [0, 255] as
well as the 3 pseudo-random sequences were recreated into the matrixes with M × N size, represented
by Lxm, Lym, and Lzm. The matrix A (M, N) in Step 3 is processed by B (M, N) using the XOR
operation with the Lxm matrix.

Step 5. The matrix B (M, N) is first converted into the binary matrices and then to DNA matrix
C (every position in DNA sequence matrix C was no longer a decimal number but 4 bases). The DNA
sequence matrix C can be divided into columns, one block per 4 columns, and we acquire the DNA
sequence matrices D1, D2, D3, . . . , DN/4. The size of the matrix Di (i = 1 ∼ (N/4)) is × (N/4), and
it has four bases at every location. Hence every row of matrix Di is a 16 nt DNA sequence. Fix the
direction of the DNA sequence from left to right as 5′ to 3′ terminals.

In DNASD based encryption rule, the key of DNASD-rule a and b is made up of 4 bases. Also,
the key of DNASD-rule c is comprised of sixteen bases. Owing to the pseudo-random of chaotic
sequence, we apply the Lym and Lzm matrixes in Step four for generating the key needed by the
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DNASD-based encryption rule. The Lym and Lzm matrixes are first converted into the eight-bit
binary matrixes and then converted to the DNA sequence Lykey and Lzkey matrices with M × N
size. Every position in the Lykey matrix comprises four bases; therefore, there exist M × N keys
needed for the DNASD-rule a and b in the Lykey matrix. Also, every position in the Lzkey matrix
comprises four bases. Therefore, there exist (M × N/4) keys needed for the DNASD-rule c in the
Lzkey matrix. For matrix Di (i = 1 ∼ (N/4)), there are 3 forms of DNASD-related encryption rules
that it could select. For realizing encryption faster, matrixes D1, D4, . . . , D1+3n (n represents a natural
number, then 1 + 3n ∈ [1, (N/4)]) are encrypted using DNASD-rule a, matrixes D2, D5, . . . , D2+3n

(n denotes a natural number, then 2 + 3n ∈ [2, (N/4)]) are encrypted using DNASD-rule b, and
matrixes D3, D6, . . . , D3+3n (n refers to natural number, then 3 + 3n ∈ [3, (N/4)]) were encrypted using
DNASD-rule c.

For matrices D1, D4, . . . , D1+3n, remove the 1st column of every block matrix based on DNASD-
rule a; the original matrix has four columns in a row M transformed into three columns in row
M, and 1st n columns of Lykey matrix were inserted to the 4th columns of every block matrix to
obtain an encrypted block matrixes E1, E4, . . . , E1+3n. For matrices D2, D5, . . . , D2+3n, remove the 4th
column of every block matrix based on DNASD-rule b, and the n + 1 column to n + 3n columns of
Lykey matrix were inserted to the 1st column of each block matrix to obtain encrypted block matrixes
E2, E5, . . . , E2+3n. For matrices D3, D6, . . . , D3+3n, each displaced with the 1st 3n columns of Lzkey matrix
based on DNASD-rule c, and the encrypted block matrices E3, E6, . . ., E3+3n were attained.

Step 6. The encrypted block matrix Ei (i = 1 ∼ (N/4)) attained in Step 5 were combined into a
DNA sequence matrix E of size M × N.

Step 7. A random DNA coding rule can be carefully chosen for decoding the DNA sequences
matrix E, and later it can be converted into the decimal matrix F , and lastly, the encrypted image is
attained.

3.3 Optimal Key Generation Process
In this study, the ISCA technique is utilized to generate the keys for the DLRSIE technique

optimally. Mirjalili [18] proposed an SCA based on mathematical modelling of the sine and cosine
trigonometric functions. The solution position in the population is upgraded according to the sine
and cosine function output, that makes them oscillate around the optimal solution. The return value
of this function lies between −1 and +1, that keeps the solution fluctuating. An algorithm initiates
by producing a set of solution candidates randomly within the boundary of the searching space in the
initialized stage. Exploitation and exploration are controlled through the implementation of random
adaptive variables.

The solution location update method can be implemented in every iteration, whereby X t
i and

X t+1
i denote the existing solution location in i-th varibale at t and i + 1 iterations, correspondingly,

r1−3 indicates the pseudo-randomly produced number, the P∗
i indicates the destination point location

(existing optimal calculation) in the i-th parameter, whereas || signifies the total value. The same
notation in the original manuscript where the technique was firstly projected is applied in these
manuscripts.

X t+1
i = X t

i + r1 · sin (r2) · ∣∣r3 · P∗t
i − X t

i

∣∣ (5)

X t+1
i = X t

i + r1 · cos (r2) · ∣∣r3 · P∗t
i − X t

i

∣∣ (6)
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The above formula is applied to control variable r4:

X t+1
i =

{
X t+1

i = X t
i + r1 · sin (r2) · ∣∣r3 · P∗t

i − X t
i

∣∣ , r4 < 0.5
X t+1

i = X t
i + r1 · cos (r2) · ∣∣r3 · P∗t

i − X t
i

∣∣ , r4 ≥ 0.5,
(7)

In Eq. (7), r4 refers to a randomly produced value within zero and one.

Note that, for each solution in the population, a novel value for pseudo-random parameter r1−4 is
produced [19]. Fig. 2 illustrates the flowchart of SCA.

Figure 2: Flowchart of SCA

Four random variables control the algorithm search method, and they affect the present and
the optimal solution position. To converge toward the global optimal, a balance between solutions
is needed. Exploitation is assured by the fact that sine and cosine function exhibits cyclic pattern that
enables for reposition of the solution. Modifications in the range of sine and cosine functions allow
searching outside the destination. Moreover, the solution needs location not to overlap with the area
of other solutions.

For improved quality of randomness, the value for variable r2 is produced within the range [0, 2�]
and assurances exploration. The control of the balance between diversification and exploitation is
given below.

r1 = a − t
a
T

, (8)

In Eq. (8), t denotes the current iteration, T indicates the maximal iterations count, and a
represents a constant. In several cases, the population creates individuals from an arbitrary fashion.
But, when the technique begins with searching in a place distant from the optimum solutions,
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particularly during the worst case whereas the primary solutions are placed opposite the optimum
solutions, the searching is obtained a considerable count of time. Thus, an optimum approach is
searching from every direction, particularly in opposite directions. This article utilizes opposition-
based learning (OBL) from the 2 phases of population initialization and algorithm stagnation. OBL
mostly completes the subsequent 3 parts.

• A primary place of individual gorillas are Xi,j, i = 1, 2, · · · , N, j = 1, 2, · · · ,D. N implies the
population size, and D denotes the dimensional of the searching space. The population at this
time is termed P1.

• The population was created based on Eq. (9) and termed P2.

X ′
i,j = lb (j) + ub (j) −rand × Xi,j, (9)

Tizhoosh’s technique is utilized and for broadening the searching space. In Eq. (9), lb (j) refers to
the lower bound of jth dimensional and ub (j) implies the upper bound of jth dimensional. Rand refers
to the arbitrary value from the range zero to one. X ′

i,j denotes the opposite gorilla.

• During the population P1 and P2, this technique chooses the number N of individuals with
optimum fitness for procedure and initializing population.

During the population initialized phase, this process initially creates a primary population and
implements OBL [20]. Based on the technique flow, SCA is a slow method, the primary solution to
optimum solutions. But, because of the restriction of several factors, this technique was inclined to
the premature phenomenon and decreases as local optimum solutions, which leads to evolutionary
stagnation. Thus, if the technique stagnates, SCA executes OBL to expand the scope of explorations
and escape the present local optimal solution as possible.

Primary, the SCA requires performing stagnant recognition. This article establishes the sliding
window approach for designing the technique for efficiently detecting the stagnation of technique. The
size of the windows is fixed to 4. If the optimum values computed by the technique are all equivalent
to the neighboring 4 iterations, it represents that technique was stagnant. At this time, the original
population was upgraded by OBL. In this study, the ISCA is derived using SCA with the OBL concept.
The objective function of ISCA is evaluated according to the fitness function. The primary intention
was to design a steganography model that must maximize PSNR and minimize the error rate (MSE)
and is estimated by the following equation

F = {min (MSE), max (PSNR)} (10)

The maximized and minimized values can be acquired by leveraging the CSO system.

4 Experimental Validation

In this section, the experimental validation of the ISCACE-RSI model is carried out using a set
of remote-sensing images. Fig. 3 shows the sample results offered by the ISCACE-RSI model. Fig. 3a
depicts the original remote-sensing images, and Fig. 3b denotes the encrypted versions of the original
images.

Table 1 provides an overall analysis of the ISCACE-RSI methodology on various test images.
The attained values implied that the ISCACE-RSI model had enhanced results under all images.
Fig. 4a depicts a detailed MSE inspection of the ISCACE-RSI technique under distinct images. The
figure shows that the ISCACE-RSI approach has achieved better results with minimum MSE values.
For example, in image 1, the ISCACE-RSI model has offered MSE of 0.4070. Also, in image 3, the
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ISCACE-RSI approach has provided MSE of 0.2450. Next, in image 5, the ISCACE-RSI technique
has shown MSE of 0.4060. Then, in image 6, the ISCACE-RSI approach demonstrated MSE of 0.4210.

Figure 3: (a) Original images (b) Encrypted images

Table 1: Result analysis of ISCACE-RSI approach with various measures and images

Test images MSE RMSE SSIM PSNR UACI

Image-01 0.4070 0.6380 98.94 52.03 20.31
Image-02 0.5440 0.7376 99.64 50.77 21.31
Image-03 0.2450 0.4950 99.18 54.24 18.70
Image-04 0.5520 0.7430 99.31 50.71 21.48
Image-05 0.4060 0.6372 98.94 52.05 20.12
Image-06 0.4210 0.6488 99.00 51.89 20.86
Average 0.4292 0.6499 99.17 51.95 20.78
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Figure 4: Result analysis of ISCACE-RSI approach (a) MSE, (b) RMSE, (c) SSIM, (d) PSNR, and
(e) UACI

Then, Fig. 4b shows a thorough RMSE analysis of the ISCACE-RSI technique under different
images. The figure described the ISCACE-RSI method has obtained improved outcomes with the least
RMSE values. For example, in image 1, the ISCACE-RSI system has rendered an RMSE of 0.6380.
Moreover, in image 3, the ISCACE-RSI algorithm has presented an RMSE of 0.4950. And then, in
image 5, the ISCACE-RSI method offered an RMSE of 0.6372. Next, in image 6, the ISCACE-RSI
approach has provided an RMSE of 0.6488.
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Fig. 4c shows the SSIM assessment of the ISCACE-RSI model under six distinct test images. The
figure highlighted that the ISCACE-RSI model has resulted from ineffectual outcomes with increased
SSIM values under all images. For instance, in image 1, the ISCACE-RSI model has provided an SSIM
of 98.94. Meanwhile, in image 2, the ISCACE-RSI model has offered SSIM of 99.64. Concurrently,
in image 3, the ISCACE-RSI methodology has rendered SSIM of 99.18. Afterward, on image 5, the
ISCACE-RSI approach presented SSIM of 98.94. At last, in image 6, the ISCACE-RSI methodology
has provided SSIM of 99.

Fig. 4d exhibits the PSNR assessment of the ISCACE-RSI algorithm under six distinct test
images. The figure emphasized that the ISCACE-RSI methodology has resulted to effectual outcomes
with increased PSNR values under all images. For example, on image 1, the ISCACE-RSI method
has presented PSNR of 52.03 dB. At the same time, on image 2, the ISCACE-RSI techniques have
offered PSNR of 50.77 dB. Simultaneously, on image 3 the ISCACE-RSI model has provided PSNR
of 54.24 dB. After, on image 5, the ISCACE-RSI algorithm offered PSNR of 52.05 dB. Finally, on
image 6, the ISCACE-RSI methodology has provided PSNR of 51.89 dB.

Fig. 4e depicts a detailed UACI inspection of the ISCACE-RSI method under distinct images. The
figure established that the ISCACE-RSI model has accomplished better results with minimal UACI
values. For example, on image 1, the ISCACE-RSI approach has rendered UACI of 0.20.31. Besides,
on image 3, the ISCACE-RSI technique has offered UACI of 0.18.70. Next, on image 5, the ISCACE-
RSI approach has presented UACI of 20.12. Then, on image 6, the ISCACE-RSI model has offered
UACI of 20.86.

For illustrating the improvised outcomes of the ISCACE-RSI methodology, a wide range of
comparison study with recent models is performed in Table 2. The experimental results implied that
the ISCACE-RSI model has gained enhanced results in terms of different measures [21–24].

Table 2: Comparative analysis of ISCACE-RSI approach with existing methods

Methods MSE PSNR SSIM

ISCACE-RSI 0.4292 51.95 99.17
NC-IE algorithm 0.7322 49.48 97.03
ESAPD-RES 0.8290 48.95 96.86
2D Henon-Sine map 0.7949 49.13 94.24
Chaotic Encryption-DNA 0.8069 49.06 95.74
Quantum IES 0.7417 49.43 95.41

Fig. 5 illustrates a comparative MSE inspection of the ISCACE-RSI model with recent models.
The figure implied that the chaotic encryption-DNA and ESAPD-RES models have shown ineffectual
outcomes with increased MSE values of 0.8069 and 0.8290 respectively. Followed by, the 2D Henon-
Sine map model has attained a slightly reduced MSE of 0.7949. Next to that, the ESAPD-RES and
quantum Integrated Encryption Scheme (IES) models reported reasonable MSE of 0.7417. Though
the NC-IE technique has showcased considerable MSE of 0.7322, the presented ISCACE-RSI model
has shown effectual performance with minimal MSE of 0.4292.

A detailed PSNR examination of the ISCACE-RSI model with existing techniques is made in
Fig. 6. The results identified that the ESAPD-RES model has demonstrated poor results with minimal
PSNR of 48.95 dB. Along with that, the 2D Henon-Sine map and chaotic encryption-DNA techniques
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have obtained slightly enhanced performance with PSNR of 49.13 and 49.06 dB respectively. Next to
that, the NC-IE and quantum IES techniques have reported moderately closer PSNR values of 49.48
and 49.43 dB respectively. However, the ISCACE-RSI model has showcased better performance with
higher PSNR of 51.95 dB.

Figure 5: MSE analysis of ISCACE-RSI approach with existing methodologies

Figure 6: PSNR analysis of ISCACE-RSI approach with existing methodologies

A detailed SSIM check of the ISCACE-RSI method with existing methods is made in Fig. 7.
The results identified that the 2D Henon-Sine map model has illustrated poor results with minimal
SSIM of 94.24%. Also, the Quantum IES and chaotic encryption-DNA techniques have gained
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slightly enhanced performance with SSIM of 95.41% and 95.74% correspondingly. Next, the NC-IE
and ESAPD-RES approaches have reported moderately closer SSIM values of 97.03% and 96.86%
correspondingly. But, the ISCACE-RSI algorithm has showcased better performance with higher
SSIM of 99.17%.

Figure 7: SSIM analysis of ISCACE-RSI approach with existing methodologies

By observing the above mentioned tables and discussion, it is confirmed that the ISCACE-RSI
model has shown effectual encryption performance over other models.

5 Conclusion

In this study, a new ISCACE-RSI algorithm has been proposed for remote sensing image
encryption in the IoT environment. The presented ISCACE-RSI technique follows a three stage
process, namely pre-processing, encryption, and optimal key generation. Firstly, the remote sensing
images are pre-processed to enhance image quality. Then, the ISCACE-RSI technique makes use of
DLRSIE technique to encrypt the images. For an optimal key generation of the DLRSIE technique,
the ISCA is applied with an objective function of the maximization of PSNR. To demonstrate the
improvised performance of the ISCACE-RSI model, a detailed set of simulations were conducted.
The comparative study reported the better performance of the ISCACE-RSI model over other existing
approaches. In the future, image watermarking and steganography techniques can be included to
improve the overall security of the ISCACE-RSI technique.
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